1
|
Hawley JJ, Allen SL, Thompson DM, Schwarz AJ, Tranquart FJM. Commercially Available Ultrasound Contrast Agents: Factors Contributing to Favorable Outcomes With Ultrasound-Mediated Drug Delivery and Ultrasound Localization Microscopy Imaging. Invest Radiol 2025:00004424-990000000-00326. [PMID: 40262129 DOI: 10.1097/rli.0000000000001197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
ABSTRACT Ultrasound contrast agents (UCAs) are microbubbles comprising an inert gas core stabilized by an encapsulating shell, which serves to increase the signal-to-noise ratio of blood-to-tissue in diagnostic ultrasound imaging. More recently, research has investigated the use of UCAs to combine both diagnostics and therapeutic outcomes in an amalgamated approach, designated 'theranostics.' Two examples of theranostic based approaches include the use of super-resolution imaging with ultrasound localized microscopy (ULM) and ultrasound-mediated drug delivery (UMDD). Both ULM and UMDD have been shown to have the potential to improve both patient care and clinical outcomes. Currently, there are 4 commercially available global UCAs licensed for clinical use. The physico-chemical properties of each of these UCAs influence its potential theranostic efficacy. Because of differences in their composition and/or manufacturing processes, each UCA has different characteristics that contribute to different in vivo resonance behavior, which in turn influences their effective clinical applications. This review highlights the key physico-chemical characteristic differences of the 4 commercially available contrast agents, with specific emphasis on their gaseous core, shell composition, and microbubble volume distribution, while providing novel insights into their benefits for supporting emerging clinical technologies, specifically ULM and UMDD.
Collapse
Affiliation(s)
- Joshua J Hawley
- From the GE HealthCare Pharmaceutical Diagnostics, Chalfont St. Giles, UK (J.J.H., S.L.A., D.M.T., A.J.S.); Chesterfield Royal Hospital Foundation NHS Trust, UK (J.J.H.); and Advice-US, Lyon, Auvergne-Rhône Alpes, France (F.J.M.T.)
| | | | | | | | | |
Collapse
|
2
|
Morishita R, Hirosoko M, Toyonaga M, Yoshida H, Takaguchi Y, Yanagawa A, Murase R, Yoshida A, Kasahara Y, Kajiwara I, Shimizu S, Kamei N, Takeda-Morishita M. Boosting the oral absorption of insulin using Ultrafine bubbles. Int J Pharm 2025; 673:125378. [PMID: 39978701 DOI: 10.1016/j.ijpharm.2025.125378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Ultrafine bubbles (UFBs), which have a diameter < 1 μm, are renowned for their stability in liquid because of the effects of Brownian motion. The unique physicochemical properties and diverse biological effects of UFBs have potential industrial and biological applications. One important property of UFBs is their negative surface charge, which is thought to be able to influence the positively charged intestinal enzymatic activity and to increase peptide drug mucosal absorption. In this study, insulin was used as the peptide drug model and administered to rats both intestinally and orally at different concentrations of UFB solution to examine the effects of UFBs on the mucosal absorption of insulin. The UFB solution promoted mucosal insulin absorption. Increasing the number of UFBs in solution increased both ileal and oral insulin absorption. To identify the mechanism responsible for this increased insulin absorption, we examined insulin degradation in pepsin and trypsin solutions and found that the presence of UFBs slowed insulin degradation. The biological safety of UFBs in water was evaluated to examine their potential future health applications. UFBs did not affect common blood biochemical parameters or the health of organs and mucosal membranes. To our knowledge, this is the first study to provide evidence for the effects of UFBs in water on oral insulin absorption. In conclusion, the use of UFBs in water represents a novel method for increasing the oral absorption of peptide drugs, such as insulin. UFBs may be promising candidates as a delivery tool for clinical drug development.
Collapse
Affiliation(s)
- Risako Morishita
- Shinbiosis Corporation, 2-1-40-401, Katamachi, Miyakojima-ku, Osaka-shi, Osaka 534-0025, Japan; Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Mayuko Hirosoko
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Miwa Toyonaga
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Hayato Yoshida
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Yuuya Takaguchi
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Akikatsu Yanagawa
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Ryosuke Murase
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Ai Yoshida
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Yoshiharu Kasahara
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Ikumi Kajiwara
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Shin Shimizu
- Shinbiosis Corporation, 2-1-40-401, Katamachi, Miyakojima-ku, Osaka-shi, Osaka 534-0025, Japan
| | - Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan.
| |
Collapse
|
3
|
Patel PB, Latt S, Ravi K, Razavi M. Clinical Applications of Micro/Nanobubble Technology in Neurological Diseases. Biomimetics (Basel) 2024; 9:645. [PMID: 39451851 PMCID: PMC11506587 DOI: 10.3390/biomimetics9100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Nanomedicine, leveraging the unique properties of nanoparticles, has revolutionized the diagnosis and treatment of neurological diseases. Among various nanotechnological advancements, ultrasound-mediated drug delivery using micro- and nanobubbles offers promising solutions to overcome the blood-brain barrier (BBB), enhancing the precision and efficacy of therapeutic interventions. This review explores the principles, current clinical applications, challenges, and future directions of ultrasound-mediated drug delivery systems in treating stroke, brain tumors, neurodegenerative diseases, and neuroinflammatory disorders. Additionally, ongoing clinical trials and potential advancements in this field are discussed, providing a comprehensive overview of the impact of nanomedicine on neurological diseases.
Collapse
Affiliation(s)
- Parth B. Patel
- University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.B.P.); (K.R.)
| | - Sun Latt
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA;
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| | - Karan Ravi
- University of Central Florida College of Medicine, Orlando, FL 32827, USA; (P.B.P.); (K.R.)
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, USA;
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, FL 32816, USA
- Biomedical Engineering Program, Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
4
|
Terlikowska KM, Dobrzycka B, Terlikowski SJ. Modifications of Nanobubble Therapy for Cancer Treatment. Int J Mol Sci 2024; 25:7292. [PMID: 39000401 PMCID: PMC11242568 DOI: 10.3390/ijms25137292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer development is related to genetic mutations in primary cells, where 5-10% of all cancers are derived from acquired genetic defects, most of which are a consequence of the environment and lifestyle. As it turns out, over half of cancer deaths are due to the generation of drug resistance. The local delivery of chemotherapeutic drugs may reduce their toxicity by increasing their therapeutic dose at targeted sites and by decreasing the plasma levels of circulating drugs. Nanobubbles have attracted much attention as an effective drug distribution system due to their non-invasiveness and targetability. This review aims to present the characteristics of nanobubble systems and their efficacy within the biomedical field with special emphasis on cancer treatment. In vivo and in vitro studies on cancer confirm nanobubbles' ability and good blood capillary perfusion; however, there is a need to define their safety and side effects in clinical trials.
Collapse
Affiliation(s)
- Katarzyna M Terlikowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| | - Bozena Dobrzycka
- Department of Gynaecology and Practical Obstetrics, Medical University of Bialystok, M. Sklodowskiej-Curie 24A Street, 15-089 Bialystok, Poland
| | - Slawomir J Terlikowski
- Department of Obstetrics, Gynaecology and Maternity Care, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| |
Collapse
|
5
|
Shen D, Li L, Luo J, Jia J, Tang L, Long Y, Shentu J, Lu L, Liu W, Qi S. Enhanced removal of toluene in heterogeneous aquifers through injecting encapsulated ozone micro-nano bubble water. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133810. [PMID: 38382340 DOI: 10.1016/j.jhazmat.2024.133810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Organic contaminants have a tendency to accumulate in low-permeability aquifers, making their removal challenging and creating a bottleneck in groundwater remediation efforts. The use of ozone micro-nano bubbles, due to their smaller size compared to traditional macrobubbles, shows potential for efficient penetration into the low-permeability aquifer and effective oxidization of contaminants. This study conducted batch experiments, column studies, and 2D tank experiments to systematically investigate the remediation efficiency of toluene in a heterogeneous aquifer using ozonated water (OW), ozone micro-bubble water (OMBW), and encapsulated ozone micro-nano bubble water (EOMBW) with rhamnolipid. Experimental results showed that rhamnolipid effectively increased the densities and reduced the sizes of micro-nano bubbles, leading to improved ozone preservation and enhanced toluene degradation. Nanobubbles exhibited higher mobility compared to microbubbles in porous media, while rhamnolipid increased the density of penetrated nanobubbles by 9.6 times. EOMBW demonstrated superior efficiency in oxidizing toluene in low-permeability aquifers, and a numerical model was developed to successfully simulate the ozone and toluene concentration. The model revealed that the increased oxidation rate by EOMBW was attributed to the preservation of ozone in micro-nano bubbles and the enhanced toluene oxidation rate. These findings contribute significantly to the application of EOMBW in heterogeneous aquifer remediation.
Collapse
Affiliation(s)
- Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Lili Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, United States
| | - Jia Jia
- Eco-Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou 310012, PR China
| | - Lu Tang
- Hangzhou Environmental Protection Co., Ltd, Hangzhou 310000, PR China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Weilin Liu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
6
|
Wang J, Wang Y, Zhong L, Yan F, Zheng H. Nanoscale contrast agents: A promising tool for ultrasound imaging and therapy. Adv Drug Deliv Rev 2024; 207:115200. [PMID: 38364906 DOI: 10.1016/j.addr.2024.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Nanoscale contrast agents have emerged as a versatile platform in the field of biomedical research, offering great potential for ultrasound imaging and therapy. Various kinds of nanoscale contrast agents have been extensively investigated in preclinical experiments to satisfy diverse biomedical applications. This paper provides a comprehensive review of the structure and composition of various nanoscale contrast agents, as well as their preparation and functionalization, encompassing both chemosynthetic and biosynthetic strategies. Subsequently, we delve into recent advances in the utilization of nanoscale contrast agents in various biomedical applications, including ultrasound molecular imaging, ultrasound-mediated drug delivery, and cell acoustic manipulation. Finally, the challenges and prospects of nanoscale contrast agents are also discussed to promote the development of this innovative nanoplatform in the field of biomedicine.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Zhong
- School of public health, Nanchang University, Nanchang, Jiangxi, 330019, China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Dhara P, Shah N, Sundaram V, Srivastava A, Solovev AA, Mei Y, Gorin DA, Dey KK. Influence of protein nativity on the stability of bovine serum albumin coated microbubbles. iScience 2024; 27:109286. [PMID: 38482489 PMCID: PMC10933459 DOI: 10.1016/j.isci.2024.109286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 11/02/2024] Open
Abstract
Protein-coated microbubbles have become one of the emerging platforms in biomedical research as theranostic agents. In recent years, microbubbles have been extensively used as ultrasound contrast agents and carriers of molecular cargoes, pertaining to which several studies have focused on tuning the properties of these bubbles to achieve a higher degree of biocompatibility and extended stability. Synthesis of microbubbles has so far been traditionally carried out with pre-heated proteins like bovine serum albumin (BSA) as shell coatings, owing to the ease in making BSA crosslinked structures through disulfide bridge formation. We, however, have performed experiments to demonstrate that air core microbubbles formed with native BSA are more stable compared with those formed using denatured BSA. The experimental observations have been supported with analytical modeling and computational studies, which offer insights into the effect of BSA conformation in stabilizing the microbubbles shells and prolonging their lifetimes.
Collapse
Affiliation(s)
- Palash Dhara
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Niyati Shah
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Vidya Sundaram
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Ashutosh Srivastava
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | | | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai 200433 P.R. China
| | - Dmitry A. Gorin
- Center for Photonics Sciences and Engineering, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia
| | - Krishna Kanti Dey
- Laboratory of Soft and Living Materials, Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| |
Collapse
|
8
|
Malahlela HK, Belay ZA, Mphahlele RR, Sigge GO, Caleb OJ. Recent advances in activated water systems for the postharvest management of quality and safety of fresh fruits and vegetables. Compr Rev Food Sci Food Saf 2024; 23:e13317. [PMID: 38477217 DOI: 10.1111/1541-4337.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/28/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Over the last three decades, decontamination management of fresh fruits and vegetables (FFVs) in the packhouses and along the supply chains has been heavily dependent on chemical-based wash. This has resulted in the emergence of resistant foodborne pathogens and often the deposition of disinfectant byproducts on FFVs, rendering them unacceptable to consumers. The management of foodborne pathogens, microbial contaminants, and quality of FFVs are a major concern for the horticultural industries and public health. Activated water systems (AWS), such as electrolyzed water, plasma-activated water, and micro-nano bubbles, have gained significant attention from researchers over the last decade due to their nonthermal and nontoxic mode of action for microbial inactivation and preservation of FFVs quality. The aim of this review is to provide a comprehensive summary of recent progress on the application of AWS and their effects on quality attributes and microbial safety of FFVs. An overview of the different types of AWS and their properties is provided. Furthermore, the review highlights the chemistry behind generation of reactive species and the impact of AWS on the quality attributes of FFVs and on the inactivation/reduction of spoilage and pathogenic microbes (in vivo or in vitro). The mechanisms of action of microorganism inactivation are discussed. Finally, this work highlights challenges and limitations for commercialization and safety and regulation issues of AWS. The synergistic prospect on combining AWS for maximum microorganism inactivation effectiveness is also considered. AWS offers a potential alternative as nonchemical interventions to maintain quality attributes, inactivate spoilage and pathogenic microorganisms, and extend the shelf-life for FFVs.
Collapse
Affiliation(s)
- Harold K Malahlela
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Zinash A Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | | | - Gunnar O Sigge
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Oluwafemi J Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
9
|
Tran NLH, Lam TQ, Duong PVQ, Doan LH, Vu MP, Nguyen KHP, Nguyen KT. Review on the Significant Interactions between Ultrafine Gas Bubbles and Biological Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:984-996. [PMID: 38153335 DOI: 10.1021/acs.langmuir.3c03223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Having sizes comparable with living cells and high abundance, ultrafine bubbles (UBs) are prone to inevitable interactions with different types of cells and facilitate alterations in physiological properties. The interactions of four typical cell types (e.g., bacterial, fungal, plant, and mammalian cells) with UBs have been studied over recent years. For bacterial cells, UBs have been utilized in creating the capillary force to tear down biofilms. The release of high amounts of heat, pressure, and free radicals during bubble rupture is also found to affect bacterial cell growth. Similarly, the bubble gas core identity plays an important role in the development of fungal cells. By the proposed mechanism of attachment of UBs on hydrophobin proteins in the fungal cell wall, oxygen and ozone gas-filled ultrafine bubbles can either promote or hinder the cell growth rate. On the other hand, reactive oxygen species (ROS) formation and mass transfer facilitation are two means of indirect interactions between UBs and plant cells. Likewise, the use of different gas cores in generating bubbles can produce different physical effects on these cells, for example, hydrogen gas for antioxidation against infections and oxygen for oxidation of toxic metal ions. For mammalian cells, the importance of investigating their interactions with UBs lies in the bubbles' action on cell viability as membrane poration for drug delivery can greatly affect cells' survival. UBs have been utilized and tested in forming the pores by different methods, ranging from bubble oscillation and microstream generation through acoustic cavitation to bubble implosion.
Collapse
Affiliation(s)
- Nguyen Le Hanh Tran
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thien Quang Lam
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Phuong Vu Quynh Duong
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Linh Hai Doan
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Mai Phuong Vu
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khang Huy Phuc Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Khoi Tan Nguyen
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
10
|
Vu MP, Le Hanh Tran N, Lam TQ, Quynh Tran AT, Anh Le TP, Nguyen KT. Investigating the effects of ultrafine bubbles on bacterial growth. RSC Adv 2024; 14:2159-2169. [PMID: 38205233 PMCID: PMC10777100 DOI: 10.1039/d3ra07454d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Several previous studies have considered ultrafine bubbles as a potential research target because their properties can be applied in many different research areas. In particular, the interaction between UFBs and microorganisms has always been one of the aspects that receives much attention due to the high difficulty in controlling a living system. The properties of UFBs, as mobile air-water interfaces, are greatly determined by their gas cores which play a critical role in regulating microbial growth. This study aims to investigate the effects of ultrafine bubbles on bacterial growth. Two well-studied organisms were chosen as models - Escherichia coli and Staphylococcus aureus. Their growing behavior was examined based on the growth rate, phenotype and biomass. Three types of Luria-Bertani cultures were tested, including a standard culture containing distilled water, an air ultrafine bubble culture, and a hydrogen ultrafine bubble culture. The UFBs were generated via ultrasonic cavitation and stabilized by 50 μM SDS, which was proven to have negligible effects on bacterial growth. By comparing among the three cultivation conditions, the bacterial growth rates were observed to be the highest in exposure to HUFBs. The results also signified that UFBs had an enhancement on cell proliferation. On the other hand, while proposing an increase in cell density, bacteria cultured in HUFB media have their sizes decreased uniformly and significantly (p-value < 0.05). This study confirmed that bacterial growth was promoted by UFBs; and better effects recorded were due to the HUFB present in the culture media. However, the average morphological size of bacteria was in negative correlation with their population size.
Collapse
Affiliation(s)
- Mai Phuong Vu
- School of Biotechnology, International University, Vietnam National University Ho Chi Minh City 700000 Vietnam +84 28 3724 4271 +84 28 3724 4270
| | - Nguyen Le Hanh Tran
- School of Biotechnology, International University, Vietnam National University Ho Chi Minh City 700000 Vietnam +84 28 3724 4271 +84 28 3724 4270
| | - Thien Quang Lam
- School of Biotechnology, International University, Vietnam National University Ho Chi Minh City 700000 Vietnam +84 28 3724 4271 +84 28 3724 4270
| | - Anh Thi Quynh Tran
- School of Biotechnology, International University, Vietnam National University Ho Chi Minh City 700000 Vietnam +84 28 3724 4271 +84 28 3724 4270
| | - Thu Phan Anh Le
- School of Biotechnology, International University, Vietnam National University Ho Chi Minh City 700000 Vietnam +84 28 3724 4271 +84 28 3724 4270
| | - Khoi Tan Nguyen
- School of Biotechnology, International University, Vietnam National University Ho Chi Minh City 700000 Vietnam +84 28 3724 4271 +84 28 3724 4270
| |
Collapse
|
11
|
Lin S, Zhu L, Li Z, Yue S, Wang Z, Xu Y, Zhang Y, Gao Q, Chen J, Yin T, Niu L, Geng J. Ultrasound-responsive glycopolymer micelles for targeted dual drug delivery in cancer therapy. Biomater Sci 2023; 11:6149-6159. [PMID: 37548310 DOI: 10.1039/d3bm01101a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Controlled drug release of nanoparticles was achieved by irreversibly disrupting polymer micelles through high-intensity focused ultrasound (HIFU) induction. An ultrasound-responsive block copolymer was synthesized, comprising an end-functional Eosin Y fluorophore, 2-tetrahydropyranyl acrylate (THPA), and acrylate mannose (MAN). The block copolymer was then self-assembled to produce micelles. The chemotherapy drug dasatinib (DAS) and the sonodynamic therapy agent methylene blue (MB) were encapsulated by the self-assembly of the block copolymer. This targeted nanoparticle enables sonodynamic therapy through high-intensity focused ultrasound while triggering nanoparticle disassembly for controlled drug release. The ultrasound-mediated, non-invasive strategy provides external spatiotemporal control for targeted tumour treatment.
Collapse
Affiliation(s)
- Shanmeng Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Zhu
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiying Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Siyuan Yue
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Zhaohan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Youwei Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yichuan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Quan Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jie Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ting Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Lili Niu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Li C, Yan Y, Fang Z, Luo X, Wang X, Zhou P. Effects of bubbles on particle dynamic behavior and concentration distribution in High-viscosity liquid under negative pressure. J Colloid Interface Sci 2023; 644:315-324. [PMID: 37120880 DOI: 10.1016/j.jcis.2023.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
The vacuum method is a widely adopted technique for eliminating bubbles from polymers containing particles. To investigate the influence of bubbles on the behavior of particles and the concentration distribution in high-viscosity liquids under negative pressure, experimental and numerical methods have been employed. The experimental findings demonstrated a positive correlation between the diameter and rising velocity of bubbles and the negative pressure. As the negative pressure increased from - 10 kPa to - 50 kPa, the position of the region where the particles were concentrated in the vertical direction was elevated. Furthermore, when the negative pressure exceeded - 50 kPa, the particle distribution became sparse and layered locally. The Lattice Boltzmann method (LBM) integrated with the discrete phase model (DPM) was utilized to investigate the phenomenon, and the outcomes revealed that rising bubbles have an inhibitory effect on particle sedimentation, and the extent of inhibition was determined by the negative pressure. In addition, vortexes generated by differences in the rising velocity between bubbles resulted in a particle distribution that was sparse and layered locally. This research provides a reference for achieving desired particle distributions using a vacuum defoaming approach and should be further studied to extend its applicability to suspensions containing particles with different viscosities.
Collapse
Affiliation(s)
- Chenghang Li
- State Key Laboratory of High-performance Precision Manufacturing, Department of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ying Yan
- State Key Laboratory of High-performance Precision Manufacturing, Department of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Zikeng Fang
- State Key Laboratory of High-performance Precision Manufacturing, Department of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiang Luo
- State Key Laboratory of High-performance Precision Manufacturing, Department of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuyue Wang
- State Key Laboratory of High-performance Precision Manufacturing, Department of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ping Zhou
- State Key Laboratory of High-performance Precision Manufacturing, Department of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Hansen HHWB, Cha H, Ouyang L, Zhang J, Jin B, Stratton H, Nguyen NT, An H. Nanobubble technologies: Applications in therapy from molecular to cellular level. Biotechnol Adv 2023; 63:108091. [PMID: 36592661 DOI: 10.1016/j.biotechadv.2022.108091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Nanobubbles are gaseous entities suspended in bulk liquids that have widespread beneficial usage in many industries. Nanobubbles are already proving to be versatile in furthering the effectiveness of disease treatment on cellular and molecular levels. They are functionalized with biocompatible and stealth surfaces to aid in the delivery of drugs. At the same time, nanobubbles serve as imaging agents due to the echogenic properties of the gas core, which can also be utilized for controlled and targeted delivery. This review provides an overview of the biomedical applications of nanobubbles, covering their preparation and characterization methods, discussing where the research is currently focused, and how they will help shape the future of biomedicine.
Collapse
Affiliation(s)
- Helena H W B Hansen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Lingxi Ouyang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Bo Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
14
|
Rudakovskaya PG, Barmin RA, Kuzmin PS, Fedotkina EP, Sencha AN, Gorin DA. Microbubbles Stabilized by Protein Shell: From Pioneering Ultrasound Contrast Agents to Advanced Theranostic Systems. Pharmaceutics 2022; 14:1236. [PMID: 35745808 PMCID: PMC9227336 DOI: 10.3390/pharmaceutics14061236] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022] Open
Abstract
Ultrasound is a widely-used imaging modality in clinics as a low-cost, non-invasive, non-radiative procedure allowing therapists faster decision-making. Microbubbles have been used as ultrasound contrast agents for decades, while recent attention has been attracted to consider them as stimuli-responsive drug delivery systems. Pioneering microbubbles were Albunex with a protein shell composed of human serum albumin, which entered clinical practice in 1993. However, current research expanded the set of proteins for a microbubble shell beyond albumin and applications of protein microbubbles beyond ultrasound imaging. Hence, this review summarizes all-known protein microbubbles over decades with a critical evaluation of formulations and applications to optimize the safety (low toxicity and high biocompatibility) as well as imaging efficiency. We provide a comprehensive overview of (1) proteins involved in microbubble formulation, (2) peculiarities of preparation of protein stabilized microbubbles with consideration of large-scale production, (3) key chemical factors of stabilization and functionalization of protein-shelled microbubbles, and (4) biomedical applications beyond ultrasound imaging (multimodal imaging, drug/gene delivery with attention to anticancer treatment, antibacterial activity, biosensing). Presented critical evaluation of the current state-of-the-art for protein microbubbles should focus the field on relevant strategies in microbubble formulation and application for short-term clinical translation. Thus, a protein bubble-based platform is very perspective for theranostic application in clinics.
Collapse
Affiliation(s)
- Polina G. Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| | - Roman A. Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| | - Pavel S. Kuzmin
- Institute of Materials for Modern Energy and Nanotechnology, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia;
| | - Elena P. Fedotkina
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina Str. 4, 117198 Moscow, Russia; (E.P.F.); (A.N.S.)
| | - Alexander N. Sencha
- Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, Akademika Oparina Str. 4, 117198 Moscow, Russia; (E.P.F.); (A.N.S.)
| | - Dmitry A. Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Nobel Str. 3, 121205 Moscow, Russia;
| |
Collapse
|
15
|
Zheng X, Wang X, Zhang Y, Zhang Y. A single oscillating bubble in liquids with high Mach number. ULTRASONICS SONOCHEMISTRY 2022; 85:105985. [PMID: 35344862 PMCID: PMC8958539 DOI: 10.1016/j.ultsonch.2022.105985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 05/10/2023]
Abstract
The oscillation characteristics of a single bubble and its induced radiation pressure and the dissipated power are essential for a wide range of applications. For bubble oscillations with high Mach number, the influence of the liquid compressibility is significantly strong and should be fully considered. In the present paper, the bubble wall motion equation with the second-order Mach number is employed for investigating a free oscillating bubble in the liquid with numerical and experimental verifications. For the purpose of comparisons, the revised Keller-Miksis equation up to the first-order Mach number is solved with the same conditions (e.g. the initial conditions and the ambient pressure). Through our simulations, comparing with the predictions by the first-order equation, we find that: (1) The bubble radius, the bubble wall radial velocity and the bubble wall radial acceleration predicted by the second-order equation with high Mach number are significantly different respectively, and the dimensionless differences increase with the increase of the Mach number. (2) The valid prediction range of the second-order equation is much larger. (3) The dissipated power predicted by the second-order equation with high Mach number is smaller.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- Key Laboratory of Power Station Energy Transfer Conversion and System (Ministry of Education), School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaoyu Wang
- Key Laboratory of Power Station Energy Transfer Conversion and System (Ministry of Education), School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuning Zhang
- Key Laboratory of Power Station Energy Transfer Conversion and System (Ministry of Education), School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yuning Zhang
- College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing 102249, China; Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
16
|
Verification of Blood-Brain Barrier Disruption Based on the Clinical Validation Platform Using a Rat Model with Human Skull. Brain Sci 2021; 11:brainsci11111429. [PMID: 34827428 PMCID: PMC8615862 DOI: 10.3390/brainsci11111429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
Methods to improve drug delivery efficiency through blood-brain barrier disruption (BBBD) based on microbubbles and focused ultrasound (FUS) are continuously being studied. However, most studies are being conducted in preclinical trial environments using small animals. The use of the human skull shows differences between the clinical and preclinical trials. BBBD results from preclinical trials are difficult to represent in clinical trials because various distortions of ultrasound by the human skull are excluded in the former. Therefore, in our study, a clinical validation platform based on a preclinical trial environment, using a human skull fragment and a rat model, was developed to induce BBBD under conditions similar to clinical trials. For this, a human skull fragment was inserted between the rat head and a 250 kHz FUS transducer, and optimal ultrasound parameters for the free field (without human skull fragment) and human skull (with human skull fragment) were derived by 300 mVpp and 700 mVpp, respectively. BBBD was analyzed according to each case using magnetic resonance images, Evans blue dye, cavitation, and histology. Although it was confirmed using magnetic resonance images and Evans blue dye that a BBB opening was induced in each case, multiple BBB openings were observed in the brain tissues. This phenomenon was analyzed by numerical simulation, and it was confirmed to be due to standing waves owing to the small skull size of the rat model. The stable cavitation doses (SCDh and SCDu) in the human skull decreased by 13.6- and 5.3-fold, respectively, compared to those in the free field. Additionally, the inertial cavitation dose in the human skull decreased by 1.05-fold compared to that of the free field. For the histological analysis, although some extravasated red blood cells were observed in each case, it was evaluated as recoverable based on our previous study results. Therefore, our proposed platform can help deduct optimal ultrasound parameters and BBBD results for clinical trials in the preclinical trials with small animals because it considers variables relevant to the human skull.
Collapse
|
17
|
Yu J, Jeon YR, Kim YH, Jung EB, Choi SJ. Characterization and Determination of Nanoparticles in Commercial Processed Foods. Foods 2021; 10:2020. [PMID: 34574130 PMCID: PMC8465140 DOI: 10.3390/foods10092020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
A wide variety of foods manufactured by nanotechnology are commercially available on the market and labeled as nanoproducts. However, it is challenging to determine the presence of nanoparticles (NPs) in complex food matrices and processed foods. In this study, top-down-approach-produced (TD)-NP products and nanobubble waters (NBWs) were chosen as representative powdered and liquid nanoproducts, respectively. The characterization and determination of NPs in TD-NP products and NBWs were carried out by measuring constituent particle sizes, hydrodynamic diameters, zeta potentials, and surface chemistry. The results show that most NBWs had different characteristics compared with those of conventional sparkling waters, but nanobubbles were unstable during storage. On the other hand, powdered TD-NP products were found to be highly aggregated, and the constituent particle sizes less than 100 nm were remarkably observed after dispersion compared with counterpart conventional bulk-sized products by scanning electron microscopy at low acceleration voltage and cryogenic transmission electron microscopy. The differences in chemical composition and chemical state between TD-NPs and their counterpart conventional bulk products were also found by X-ray photoelectron spectroscopy. These findings will provide basic information about the presence of NPs in nano-labeled products and be useful to understand and predict the potential toxicity of NPs applied to the food industry.
Collapse
Affiliation(s)
| | | | | | | | - Soo-Jin Choi
- Division of Applied Food System, Major of Food Science & Technology, Seoul Women’s University, Seoul 01797, Korea; (J.Y.); (Y.-R.J.); (Y.-H.K.); (E.-B.J.)
| |
Collapse
|