1
|
Chauhan A, Salwa, Shedgaonkar GG, Kumar L, Karmakar A, Khajuria S, Raghavendra AP, Verma R. Antioxidant and anticancer activities of hesperetin and its novel formulations in KB cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5213-5236. [PMID: 39531045 DOI: 10.1007/s00210-024-03581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to formulate the hesperetin nanostructured lipid carriers (NLCs) containing oro-mucosal gel for its activity assessment on the KB cell line. NLCs were prepared with glyceryl monostearate, oleic acid, and lecithin using a modified constant-temperature emulsification technique. The particle size analysis, in vitro drug release studies, etc., of prepared NLCs were evaluated. The formulated gels were analyzed with respect to spreadability, extrudability, swelling index, texture analysis, etc. The particle size, polydispersity index, zeta potential, and drug entrapment of nanocarriers were recorded to be 221.733 ± 61.536 nm, 0.381 ± 0.091, - 51.433 ± 4.143 mV, and 89.29%, respectively. The optimized NLCs in 24 h released 87.14 ± 6.62% of the drug. The round shape of NLCs was noticed with scanning electron microscopy. The pH, spreadability, extrudability, swelling index, content uniformity, and drug release studies of hesperetin NLCs-containing gel (HNG) were found to be 6.81 ± 0.04, 2.49 ± 0.04 cm.mg/s, 539.04 ± 32.88 g/cm2, 4.27 ± 0.47, 107.98 ± 1.93%, and 90.17 ± 6.67% (in 48 h), respectively. The developed formulations showed promising in vitro anticancer and antioxidant activities. HNP results authorize that the formulation may be beneficial for the treatment of oral cancer.
Collapse
Affiliation(s)
- Arunima Chauhan
- Faculty of Dentistry, Melaka-Manipal Medical College, Manipal Academy of Higher Education, Manipal, India
- Faculty of Dentistry, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka, Malaysia
| | - Salwa
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Gayatri Gopal Shedgaonkar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur 844 102, Vaishali, Bihar, India.
| | - Arka Karmakar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur 844 102, Vaishali, Bihar, India
| | - Salil Khajuria
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Hajipur 844 102, Vaishali, Bihar, India
| | | | - Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Azhari H, Ng SF, Mohd Razali R, Loo HL. The use of essential oils in atopic dermatitis: a review. Curr Med Res Opin 2024; 40:753-763. [PMID: 38625386 DOI: 10.1080/03007995.2024.2340734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Atopic dermatitis (AD) has become a common childhood disease that affects a large number of children worldwide and has become a chronic skin disease that causes huge economical and psychological damage to the whole family. Despite the use of steroids, immunosuppressants, and various topical preparation, the prognosis is still poor. Hence, this review aimed to explore the potential of using essential oils (EO) as an active ingredient in managing AD. The review was completed by using Pubmed, Scopus, and Medline to search for relevant articles that study the pathophysiology of AD, the properties of EO, the use of EO in managing AD, and the suitable advanced formulation to incorporate EO. From the review conducted, it was concluded that EO have huge potential in managing AD and can be used as complimentary therapeutic agents in AD treatment. Scientists and industries should venture into commercializing more topical products with EO to help manage AD more effectively.
Collapse
Affiliation(s)
- Hanisah Azhari
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Razifah Mohd Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Hooi Leong Loo
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Yong J, Shu H, Zhang X, Yang K, Luo G, Yu L, Li J, Huang H. Natural Products-Based Inhaled Formulations for Treating Pulmonary Diseases. Int J Nanomedicine 2024; 19:1723-1748. [PMID: 38414528 PMCID: PMC10898359 DOI: 10.2147/ijn.s451206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Given the unique physiological and pathological characteristics of the lung, the direct, inhalable route is more conducive to pulmonary drug delivery and disease control than traditional systemic drug delivery, significantly circumventing drug loss, off-target effects, systemic and organ toxicity, etc., and is widely regarded as the preferred regimen for pulmonary drug delivery. However, very few lung diseases are currently treated with the preferred inhaled formulations, such as asthma, chronic obstructive pulmonary disease and pulmonary hypertension. And there is a lack of appropriate inhaled formulations for other critical lung diseases, such as lung cancer and pulmonary fibrosis, due to the fact that the physicochemical properties of the drugs and their pharmacokinetic profiles do not match the physiology of the lung, and conventional inhalation devices are unable to deliver them to the specific parts of the lung. Phytochemicals of natural origin, due to their wide availability and clear safety profile, hold great promise for the preparation of inhalable formulations to improve the current dilemma in the treatment of lung diseases. In particular, the preparation of inhalable formulations based on nano- and microparticulate carriers for drug delivery to deep lung tissues, which overcome the shortcomings of conventional inhalation therapies while targeting the drug activity directly to a specific part of the lung, may be the best approach to change the current dilemma of lung disease treatment. In this review, we discuss recent advances in nano- and micron-carrier-based inhalation formulations for the delivery of natural products for the treatment of pulmonary diseases, which may represent an opportunity for practical clinical translation of natural products.
Collapse
Affiliation(s)
- Jiangyan Yong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Hongli Shu
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Xiao Zhang
- Department of Clinical Laboratory, Chengdu Children Special Hospital, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Kun Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Guining Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Lu Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Jiaqi Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Hong Huang
- Department of Clinical Laboratory, the People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, People’s Republic of China
| |
Collapse
|
4
|
Nascimento T, Gomes D, Simões R, da Graça Miguel M. Tea Tree Oil: Properties and the Therapeutic Approach to Acne-A Review. Antioxidants (Basel) 2023; 12:1264. [PMID: 37371994 DOI: 10.3390/antiox12061264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Acne vulgaris is an inflammatory dermatological pathology that affects mostly young people. However, it can also appear in adulthood, mainly in women. It has a high psychosocial impact, not only at the time of active lesions but also due to the consequences of lesions such as scarring and hyperpigmentation. Several factors are involved in the physiopathology of acne and the constant search for active ingredients is a reality, namely phytotherapeutic ingredients. Tea tree oil is an essential oil extracted from Melaleuca alternifolia (Maiden & Betch) Cheel with known antibacterial, anti-inflammatory, and antioxidant properties, making it a candidate for the treatment of acne. This review aims to describe the various properties of tea tree oil that make it a possible ingredient to use in the treatment of acne and to present several human studies that have evaluated the efficacy and safety of using tea tree oil in the treatment of acne. It can be concluded that tea tree oil has good antibacterial, anti-inflammatory, and antioxidant properties that result in a decrease in the number of inflammatory lesions, mainly papules, and pustules. However, given the diversity of study designs, it is not possible to draw concrete conclusions on the efficacy and safety of this oil in the treatment of acne.
Collapse
Affiliation(s)
- Tânia Nascimento
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), Campus de Gambelas, Edifício 2, 8005-139 Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, Edifício 2, 8005-139 Faro, Portugal
| | - Diana Gomes
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ricardo Simões
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria da Graça Miguel
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Mediterranean Institute for Agriculture, Environment and Development, Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
5
|
Kong J, Ge X, Sun Y, Mao M, Yu H, Chu R, Wang Y. Multi-functional pH-sensitive active and intelligent packaging based on highly cross-linked zein for the monitoring of pork freshness. Food Chem 2023; 404:134754. [DOI: 10.1016/j.foodchem.2022.134754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/03/2022] [Accepted: 10/23/2022] [Indexed: 11/04/2022]
|
6
|
Development and Optimization of Erythromycin Loaded Transethosomes Cinnamon Oil Based Emulgel for Antimicrobial Efficiency. Gels 2023; 9:gels9020137. [PMID: 36826307 PMCID: PMC9956959 DOI: 10.3390/gels9020137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Erythromycin (EM) is a macrolide antibiotic that is frequently used to treat skin bacterial infections. It has a short half-life (1-1.5 h), instability in stomach pH, and a low oral bioavailability. These foregoing factors limit its oral application; therefore, the development of topical formulations loaded with erythromycin is an essential point to maximize the drug's concentration at the skin. Accordingly, the current study's goal was to boost the antimicrobial activity of EM by utilizing the advantages of natural oils such as cinnamon oil. Erythromycin-loaded transethosomes (EM-TE) were generated and optimized using a Box-Behnken design employing, phospholipid concentration (A), surfactant concentration (B), and ethanol content (C) as independent variables. Their effects on entrapment efficiency, EE, (Y1) and the total amount of erythromycin that penetrated the skin after 6 h, Q6h (Y2), were assessed. The optimized transethosome showed a particle size of 256.2 nm, EE of 67.96 ± 0.59%, and Q6h of 665.96 ± 5.87 (µg/cm2) after 6 h. The TEM analysis revealed that, the vesicles are well-known packed structures with a spherical shape. The optimized transethosomes formulation was further transformed into a cinnamon oil-based emulgel system using HPMC as a gelling agent. The generated EM-TE-emulgel was characterized by its physical features, in vitro, ex vivo studies, and antimicrobial activities. The formulation showed sufficient characteristics for effective topical application, and demonstrated a great stability. Additionally, EM-TE-Emulgel had the highest transdermal flux (120.19 μg/cm2·h), and showed considerably (p < 0.05) greater antimicrobial activity, than EM-TE-gel and placebo TE-Emulgel. The action of EM was subsequently augmented with cinnamon oil, which eventually showed a notable effect against bacterial growth. Finally, these results demonstrate that the transethosomes-loaded cinnamon oil-based emulgel is an alternative way to deliver erythromycin for the treatment of topical bacterial infections.
Collapse
|
7
|
Md S, Rahman Mahrous HA, Alhakamy NA, Shaik RA, Eid BG. Protective effect of statistically designed and optimized Icariin nanoemulsion on doxorubicin-induced cardiotoxicity: Inhibition of oxidative stress, inflammation, and apoptosis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Raj DS, Dhamodharan D, Thanigaivel S, Vickram AS, Byun HS. Nanoemulsion as an Effective Inhibitor of Biofilm-forming Bacterial Associated Drug Resistance: An Insight into COVID Based Nosocomial Infections. BIOTECHNOL BIOPROC E 2022; 27:543-555. [PMID: 36092682 PMCID: PMC9449957 DOI: 10.1007/s12257-022-0055-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Antibiotic overuse has resulted in the microevolution of drug-tolerant bacteria. Understandably it has become one of the most significant obstacles of the current century for scientists and researchers to overcome. Bacteria have a tendency to form biofilm as a survival mechanism. Biofilm producing microorganism become far more resistant to antimicrobial agents and their tolerance to drugs also increases. Prevention of biofilm development and curbing the virulency factors of these multi drug resistant or tolerant bacterial pathogens is a newly recognised tactic for overcoming the challenges associated with such bacterial infections and has become a niche to be addressed. In order to inhibit virulence and biofilm from planktonic bacteria such as, Pseudomonas aeruginosa, Acinetobacter baumannii, and others, stable nanoemulsions (NEs) of essential oils (EOs) and their bioactive compounds prove to be an interesting solution. These NEs demonstrated significantly greater anti-biofilm and anti-virulence activity than commercial antibiotics. The EO reduces disease-causing gene expression, which is required for pathogenicity, biofilm formation and attachment to the surfaces. Essential NE and NE-loaded hydrogel surface coatings demonstrates superior antibiofilm activity which can be employed in healthcare-related equipments like glass, plastic, and metal chairs, hospital beds, ventilators, catheters, and tools used in intensive care units. Thus, anti-virulence and anti-biofilm forming strategies based on NEs-loaded hydrogel may be used as coatings to combat biofilm-mediated infection on solid surfaces.
Collapse
Affiliation(s)
- Deena Santhana Raj
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Thandalam, Chennai, Tamil Nadu 602105 India
| | - Duraisami Dhamodharan
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, 59626 Korea
| | - S. Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Thandalam, Chennai, Tamil Nadu 602105 India
| | - A. S. Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Saveetha University, Thandalam, Chennai, Tamil Nadu 602105 India
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University, Yeosu, 59626 Korea
| |
Collapse
|
9
|
Antiparasitic Activity of Tea Tree Oil (TTO) and Its Components against Medically Important Ectoparasites: A Systematic Review. Pharmaceutics 2022; 14:pharmaceutics14081587. [PMID: 36015213 PMCID: PMC9416580 DOI: 10.3390/pharmaceutics14081587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Ectoparasites are pathogens that can infect the skin and cause immense pain, discomfort, and disease. They are typically managed with insecticides. However, the fast-emerging antimicrobial resistance and the slow rate of development of new bio-actives combined with environmental and health concerns over the continued use of neurotoxic insecticides warrant newer and alternative methods of control. Tea tree oil (TTO), as an alternative agent, has shown remarkable promise against ectoparasites in recent studies. To our knowledge, this is the first systematic review to assess preclinical and clinical studies exploring the antiparasitic activity of TTO and its components against clinically significant ectoparasites, such as Demodex mites, scabies mites, house dust mites, lice, fleas, chiggers, and bed bugs. We systematically searched databases, including PubMed, MEDLINE (EBSCOhost), Embase (Scopus), CENTRAL, Cochrane Library, CINAHL, ScienceDirect, Web of Science, SciELO, and LILACS in any language from inception to 4 April 2022. Studies exploring the therapeutic activity of TTO and its components against the ectoparasites were eligible. We used the ToxRTool (Toxicological data reliability assessment) tool, the Joanna Briggs Institute (JBI) critical appraisal tools, and the Jadad scale to assess the methodological qualities of preclinical (in vitro and in vivo) studies, non-randomised controlled trials (including cohort, case series, and case studies), and randomised controlled trials, respectively. Of 497 identified records, 71 studies were included in this systematic review, and most (66%) had high methodological quality. The findings of this review revealed the promising efficacy of TTO and its components against ectoparasites of medical importance. Most importantly, the compelling in vitro activity of TTO against ectoparasites noted in this review seems to have translated well into the clinical environment. The promising outcomes observed in clinical studies provide enough evidence to justify the use of TTO in the pharmacotherapy of ectoparasitic infections.
Collapse
|
10
|
Shrivastava N, Parikh A, Dewangan RP, Biswas L, Verma AK, Mittal S, Ali J, Garg S, Baboota S. Solid Self-Nano Emulsifying Nanoplatform Loaded with Tamoxifen and Resveratrol for Treatment of Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14071486. [PMID: 35890384 PMCID: PMC9318459 DOI: 10.3390/pharmaceutics14071486] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
The solid self-nanoemulsifying drug delivery system (s-SNEDDS) is a growing platform for the delivery of drugs via oral route. In the present work, tamoxifen (TAM) was loaded in SNEDDS with resveratrol (RES), which is a potent chemotherapeutic, antioxidant, anti-inflammatory and P-gp inhibitor for enhancing bioavailability and to obtain synergistic anti-cancer effect against breast cancer. SNEDDS were developed using capmul MCM as oil, Tween 80 as surfactant and transcutol-HP as co-surfactant and optimized by central composite rotatable design. Neusilin US2 concentration was optimized for adsorption of liquid SNEDDS to prepare s-SNEDDS. The developed formulation was characterized and investigated for various in vitro and cell line comparative studies. Optimized TAM-RES-s-SNEDDS showed spherical droplets of a size less than 200 nm. In all in vitro studies, TAM-RES-s-SNEDDS showed significantly improved (p ˂ 0.05) release and permeation across the dialysis membrane and intestinal lumen. Moreover, TAM-RES-s-SNEDDS possessed significantly greater therapeutic efficacy (p < 0.05) and better internalization on the MCF-7 cell line as compared to the conventional formulation. Additionally, oral bioavailability of TAM from SNEDDS was 1.63 folds significantly higher (p < 0.05) than that of combination suspension and 4.16 folds significantly higher (p < 0.05) than TAM suspension. Thus, findings suggest that TAM- RES-s-SNEDDS can be the future delivery system that potentially delivers both drugs to cancer cells for better treatment.
Collapse
Affiliation(s)
- Nupur Shrivastava
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
| | - Ankit Parikh
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Largee Biswas
- Nano Biotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, New Delhi 110007, India; (L.B.); (A.K.V.)
| | - Anita Kamra Verma
- Nano Biotech Lab, Department of Zoology, Kirori Mal College, University of Delhi, New Delhi 110007, India; (L.B.); (A.K.V.)
| | - Saurabh Mittal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
| | - Sanjay Garg
- Pharmaceutical Innovation and Development (PIDG) Group, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
- Correspondence: (S.G.); (S.B.)
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (N.S.); (S.M.); (J.A.)
- Correspondence: (S.G.); (S.B.)
| |
Collapse
|
11
|
Asfour HZ, Alhakamy NA, Alam MS, Al-Rabia MW, Md S. Design of Experiment Navigated Methodical Development of Neem Oil Nanoemulsion Containing Tea Tree Oil for Dual Effect Against Dermal Illness: Ex Vivo Dermatokinetic and In Vivo. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Formulation and characterization of propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride for wound healing: In-vitro and in-vivo wound healing assessment. Saudi Pharm J 2021; 29:1238-1249. [PMID: 34819785 PMCID: PMC8596291 DOI: 10.1016/j.jsps.2021.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/09/2021] [Indexed: 01/08/2023] Open
Abstract
This study aimed to develop propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride to heal wound effectively. Nanoemulsion formulae were prepared and characterized by droplet size analysis, zeta potential, viscosity, ex-vivo permeation, and skin deposition. The optimal formula was evaluated in terms of morphology, cytotoxicity, and in-vitro wound healing assay. Also, the efficacy of the optimal formula was evaluated by in-vivo wound healing and histopathological studies. The optimal formula (F3) was composed of 9% tea tree oil and 0.4% propolis extracts with mean droplet size 19.42 ± 1.7 nm, zeta potential value −24.5 ± 0.2 mV, and viscosity 69.4 ± 1.8 mP. Furthermore, the optimal formula showed the highest skin deposition value 550.00 ± 4.9 µg/cm2 compared to other formulae. The TEM micrograph of the optimal formula showed that the nanoemulsion droplet has an almost spherical shape. Also, the optimal formula did not show noticeable toxicity to the human skin fibroblast cells. The in-vitro and in-vivo wound healing assay showed unexpected results that the un-loaded drug nanoemulsion formula had a comparable wound healing efficacy to the drug-loaded nanoemulsion formula. These results were confirmed with histopathological studies. Our results showed that the propolis and tea tree oil nanoemulsion, whether loaded or unloaded with an antibiotic, is an efficient local therapy for wound healing.
Collapse
|
13
|
Shakeel F, Salem-Bekhit MM, Haq N, Alshehri S. Nanoemulsification Improves the Pharmaceutical Properties and Bioactivities of Niaouli Essential Oil ( Melaleuca quinquenervia L.). Molecules 2021; 26:4750. [PMID: 34443336 PMCID: PMC8401722 DOI: 10.3390/molecules26164750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
We develop a suitable delivery system for niaouli essential oil (NEO) using a nanoemulsification method for acne vulgaris. Prepared nanoemulsions (NEs) were characterized for droplet dimension, rheology, surface charge, and stability. The ability of NEO formulations against Propionibacterium acnes and Staphylococcus epidermidis was investigated and all formulations showed antiacne potential in vitro. Ex vivo permeation studies indicated significant improvement in drug permeations and steady state flux of all NEO-NEs compared to the neat NEO (p < 0.05). On the basis of the studied pharmaceutical parameters, enhanced ex vivo skin permeation, and marked effect on acne pathogens, formulation NEO-NE4 was found to be the best (oil (NEO; 10% v/v); Kolliphor EL (9.25% v/v), Carbitol (27.75% v/v), and water (53% v/v)). Concisely, the in vitro and ex vivo results revealed that nanoemulsification improved the delivery as well as bioactivities of NEO significantly.
Collapse
Affiliation(s)
| | | | | | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.S.); (M.M.S.-B.); (N.H.)
| |
Collapse
|
14
|
Nanostructured lipid carriers containing chitosan or sodium alginate for co-encapsulation of antioxidants and an antimicrobial agent for potential application in wound healing. Int J Biol Macromol 2021; 183:668-680. [PMID: 33930450 DOI: 10.1016/j.ijbiomac.2021.04.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 12/23/2022]
Abstract
The high incidence and costs of chronic wounds in the elderly have motivated the search for innovations to improve product performance and the healing process while reducing costs. In this study, bioadhesive nanostructured lipid carriers (NLC) were developed for the co-encapsulation of compounds with antioxidant (α-tocopherol and quercetin) and antimicrobial (tea tree oil) activity for management of wounds. The NLC was produced with shea butter and argan oil, and modified with sodium alginate or chitosan to confer bioadhesive properties. Spherical nanoparticles of ~307-330 nm and zeta potential varying from -21.2 to +11.8 mV were obtained. Thermal analysis demonstrated that the lipid matrix reduced tea tree oil thermal loss (~1.8-fold). Regardless of the type of polysaccharide employed, the NLCs promoted cutaneous localization of antioxidants in damaged (subjected to incision) skin, with a ~74 to 180-fold higher delivery into the skin compared to percutaneous delivery. This result is consistent with the similar bioadhesive properties of chitosan or sodium alginate-modified NLC. Nanoencapsulation of tea tree oil did not preclude its antimicrobial effects against susceptible and resistant strains of S. aureus and P. aeruginosa, while co-encapsulation of antioxidants increased the NLC-induced fibroblasts migration, supporting their potential usefulness for management of wounds.
Collapse
|