1
|
Moosavi SG, Rahiman N, Jaafari MR, Arabi L. Lipid nanoparticle (LNP) mediated mRNA delivery in neurodegenerative diseases. J Control Release 2025; 381:113641. [PMID: 40120689 DOI: 10.1016/j.jconrel.2025.113641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Neurodegenerative diseases (NDD) are characterized by the progressive loss of neurons and the impairment of cellular functions. Messenger RNA (mRNA) has emerged as a promising therapy for treating NDD, as it can encode missing or dysfunctional proteins and anti-inflammatory cytokines or neuroprotective proteins to halt the progression of these diseases. However, effective mRNA delivery to the central nervous system (CNS) remains a significant challenge due to the limited penetration of the blood-brain barrier (BBB). Lipid nanoparticles (LNPs) offer an efficient solution by encapsulating and protecting mRNA, facilitating transfection and intracellular delivery. This review discusses the pathophysiological mechanisms of neurological disorders, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), Huntington's disease (HD), ischemic stroke, spinal cord injury, and Friedreich's ataxia. Additionally, it explores the potential of LNP-mediated mRNA delivery as a therapeutic strategy for these diseases. Various approaches to overcoming BBB-related challenges and enhancing the delivery and efficacy of mRNA-LNPs are discussed, including non-invasive methods with strong potential for clinical translation. With advancements in artificial intelligence (AI)-guided mRNA and LNP design, targeted delivery, gene editing, and CAR-T cell therapy, mRNA-LNPs could significantly transform the treatment landscape for NDD, paving the way for future clinical applications.
Collapse
Affiliation(s)
- Seyedeh Ghazal Moosavi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Pedder JH, Sonabend AM, Cearns MD, Michael BD, Zakaria R, Heimberger AB, Jenkinson MD, Dickens D. Crossing the blood-brain barrier: emerging therapeutic strategies for neurological disease. Lancet Neurol 2025; 24:246-260. [PMID: 39862873 DOI: 10.1016/s1474-4422(24)00476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/20/2024] [Accepted: 11/12/2024] [Indexed: 01/27/2025]
Abstract
The blood-brain barrier is a physiological barrier that can prevent both small and complex drugs from reaching the brain to exert a pharmacological effect. For treatment of neurological diseases, drug concentrations at the target site are a fundamental parameter for therapeutic effect; thus, the blood-brain barrier is a major obstacle to overcome. Novel strategies have been developed to circumvent the blood-brain barrier, including CSF delivery, intracranial delivery, ultrasound-based methods, membrane transporters, receptor-mediated transcytosis, and nanotherapeutics. These approaches each have their advantages and disadvantages. CSF delivery and intracranial delivery are direct but invasive techniques that have not yet shown efficacy in clinical trials, although development of novel delivery devices might improve these approaches. Ultrasound-based disruption has shown some efficacy in clinical trials, but it can require invasive procedures. Approaches using membrane transporters and receptor-mediated transcytosis are less invasive than are other techniques, but they can have off-target effects. Nanotherapeutics have shown promise, but these strategies are in early stages of development. Advancements in drug delivery across the blood-brain barrier will require appropriately designed and powered clinical studies, with a focus on the timing of treatment, demographic and genetic considerations, head-to-head comparison with other treatment strategies (rather than a placebo), and relevant primary and secondary outcome measures.
Collapse
Affiliation(s)
- Josephine H Pedder
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Adam M Sonabend
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael D Cearns
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Benedict D Michael
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Rasheed Zakaria
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Amy B Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael D Jenkinson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - David Dickens
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
3
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2025; 33:185-205. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
4
|
Chuang CF, Phan TN, Fan CH, Vo Le TT, Yeh CK. Advancements in ultrasound-mediated drug delivery for central nervous system disorders. Expert Opin Drug Deliv 2025; 22:15-30. [PMID: 39625732 DOI: 10.1080/17425247.2024.2438188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Central nervous system (CNS) disorders present major therapeutic challenges due to the presence of the blood - brain barrier (BBB) and disease heterogeneity. The BBB impedes most therapeutic agents, which restricts conventional treatments. Focused ultrasound (FUS) -assisted delivery offers a novel solution by temporarily disrupting the BBB and thereby enhancing drug delivery to the CNS. AREAS COVERED This review outlines the fundamental principles of FUS-assisted drug delivery technology, with an emphasis on its role in enhancing the spatial precision of therapeutic interventions and its molecular effects on the cellular composition of the BBB. Recent promising clinical studies are surveyed, and a comparative analysis of current US-assisted delivery system is provided. Additionally, the latest advancements and challenges of this technology are discussed. EXPERT OPINION FUS-mediated drug delivery shows promise, but the clinical translation of research findings is challenging. Key issues include safety, dosage optimization, and balancing efficacy with the risk of tissue damage. Continued research is crucial to address these challenges and bridge the gap between preclinical and clinical applications, and could transform treatments of CNS disorders.
Collapse
Affiliation(s)
- Chi-Fen Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Thanh-Thuy Vo Le
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Tonk M, Singh I, Sharma RJ, Chauhan SB. A Revolutionary Approach for Combating Efflux Transporter-mediated Resistant Epilepsy: Advanced Drug Delivery Systems. Curr Pharm Des 2025; 31:95-106. [PMID: 39279709 DOI: 10.2174/0113816128332345240823111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
Epilepsy is a persistent neurological condition that affects 60 million individuals globally, with recurrent spontaneous seizures affecting 80% of patients. Antiepileptic drugs (AEDs) are the main course of therapy for approximately 65% of epileptic patients, and the remaining 35% develop resistance to medication, which leads to drug-resistant epilepsy (DRE). DRE continues to be an important challenge in clinical epileptology. There are several theories that attempt to explain the neurological causes of pharmacoresistance in epilepsy. The theory that has been studied the most is the transporter hypothesis. Therefore, it is believed that upregulation of multidrug efflux transporters at the blood-brain barrier (BBB), such as P-glycoprotein (P-gp), which extrudes AEDs from their target location, is the major cause, leading to pharmacoresistance in epilepsy. The most effective strategies for managing this DRE are peripheral and central inhibition of P-gp and maintaining an effective concentration of the drug in the brain parenchyma. Presently, no medicinal product that inhibits Pgp is being used in clinical practice. In this review, several innovative and promising treatment methods, including gene therapy, intracranial injections, Pgp inhibitors, nanocarriers, and precision medicine, are discussed. The primary goal of this work is to review the P-gp transporter, its substrates, and the latest novel treatment methods for the management of DRE.
Collapse
Affiliation(s)
- Megha Tonk
- Raj Kumar Goel Institute of Technology (Pharmacy), 5-Km, Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh 201017, India
| | - Indu Singh
- Amity Institute of Pharmacy, Amity University, Noida 201301, India
| | - Ram Jee Sharma
- Indian Herbs Specialities Pvt. Ltd., Nawada Road, Saharanpur (U.P.) 247001, India
| | | |
Collapse
|
6
|
Gu J, Shao W, Liu L, Wang Y, Yang Y, Zhang Z, Wu Y, Xu Q, Gu L, Zhang Y, Shen Y, Zhao H, Zeng C, Zhang H. Challenges and future directions of SUDEP models. Lab Anim (NY) 2024; 53:226-243. [PMID: 39187733 DOI: 10.1038/s41684-024-01426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with epilepsy, causing a global public health burden. The underlying mechanisms of SUDEP remain elusive, and effective prevention or treatment strategies require further investigation. A major challenge in current SUDEP research is the lack of an ideal model that maximally mimics the human condition. Animal models are important for revealing the potential pathogenesis of SUDEP and preventing its occurrence; however, they have potential limitations due to species differences that prevent them from precisely replicating the intricate physiological and pathological processes of human disease. This Review provides a comprehensive overview of several available SUDEP animal models, highlighting their pros and cons. More importantly, we further propose the establishment of an ideal model based on brain-computer interfaces and artificial intelligence, hoping to offer new insights into potential advancements in SUDEP research. In doing so, we hope to provide valuable information for SUDEP researchers, offer new insights into the pathogenesis of SUDEP and open new avenues for the development of strategies to prevent SUDEP.
Collapse
Affiliation(s)
- JiaXuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - WeiHui Shao
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Liu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YuLing Wang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Yang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ZhuoYue Zhang
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - YaXuan Wu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qing Xu
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - LeYuan Gu
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - YuanLi Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Shen
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - HaiTing Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chang Zeng
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - HongHai Zhang
- Department of Anesthesiology, the Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Ashley CN, Broni E, Wood CM, Okuneye T, Ojukwu MPT, Dong Q, Gallagher C, Miller WA. Identifying potential monkeypox virus inhibitors: an in silico study targeting the A42R protein. Front Cell Infect Microbiol 2024; 14:1351737. [PMID: 38500508 PMCID: PMC10945028 DOI: 10.3389/fcimb.2024.1351737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Monkeypox (now Mpox), a zoonotic disease caused by the monkeypox virus (MPXV) is an emerging threat to global health. In the time span of only six months, from May to October 2022, the number of MPXV cases breached 80,000 and many of the outbreaks occurred in locations that had never previously reported MPXV. Currently there are no FDA-approved MPXV-specific vaccines or treatments, therefore, finding drugs to combat MPXV is of utmost importance. The A42R profilin-like protein of the MPXV is involved in cell development and motility making it a critical drug target. A42R protein is highly conserved across orthopoxviruses, thus A42R inhibitors may work for other family members. This study sought to identify potential A42R inhibitors for MPXV treatment using computational approaches. The energy minimized 3D structure of the A42R profilin-like protein (PDB ID: 4QWO) underwent virtual screening using a library of 36,366 compounds from Traditional Chinese Medicine (TCM), AfroDb, and PubChem databases as well as known inhibitor tecovirimat via AutoDock Vina. A total of seven compounds comprising PubChem CID: 11371962, ZINC000000899909, ZINC000001632866, ZINC000015151344, ZINC000013378519, ZINC000000086470, and ZINC000095486204, predicted to have favorable binding were shortlisted. Molecular docking suggested that all seven proposed compounds have higher binding affinities to A42R (-7.2 to -8.3 kcal/mol) than tecovirimat (-6.7 kcal/mol). This was corroborated by MM/PBSA calculations, with tecovirimat demonstrating the highest binding free energy of -68.694 kJ/mol (lowest binding affinity) compared to the seven shortlisted compounds that ranged from -73.252 to -97.140 kJ/mol. Furthermore, the 7 compounds in complex with A42R demonstrated higher stability than the A42R-tecovirimat complex when subjected to 100 ns molecular dynamics simulations. The protein-ligand interaction maps generated using LigPlot+ suggested that residues Met1, Glu3, Trp4, Ile7, Arg127, Val128, Thr131, and Asn133 are important for binding. These seven compounds were adequately profiled to be potential antivirals via PASS predictions and structural similarity searches. All seven potential lead compounds were scored Pa > Pi for antiviral activity while ZINC000001632866 and ZINC000015151344 were predicted as poxvirus inhibitors with Pa values of 0.315 and 0.215, and Pi values of 0.052 and 0.136, respectively. Further experimental validations of the identified lead compounds are required to corroborate their predicted activity. These seven identified compounds represent solid footing for development of antivirals against MPXV and other orthopoxviruses.
Collapse
Affiliation(s)
- Carolyn N. Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| | - Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| | - Chanyah M. Wood
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
| | - Tunmise Okuneye
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Biology, Lincoln University, Lincoln, PA, United States
| | - Mary-Pearl T. Ojukwu
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
- College of Pharmacy, University of Florida, Orlando, FL, United States
| | - Qunfeng Dong
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Center for Biomedical Informatics, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Carla Gallagher
- Department of Chemistry and Physics, Lincoln University, Lincoln, PA, United States
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
8
|
Dussold C, Zilinger K, Turunen J, Heimberger AB, Miska J. Modulation of macrophage metabolism as an emerging immunotherapy strategy for cancer. J Clin Invest 2024; 134:e175445. [PMID: 38226622 PMCID: PMC10786697 DOI: 10.1172/jci175445] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Immunometabolism is a burgeoning field of research that investigates how immune cells harness nutrients to drive their growth and functions. Myeloid cells play a pivotal role in tumor biology, yet their metabolic influence on tumor growth and antitumor immune responses remains inadequately understood. This Review explores the metabolic landscape of tumor-associated macrophages, including the immunoregulatory roles of glucose, fatty acids, glutamine, and arginine, alongside the tools used to perturb their metabolism to promote antitumor immunity. The confounding role of metabolic inhibitors on our interpretation of myeloid metabolic phenotypes will also be discussed. A binary metabolic schema is currently used to describe macrophage immunological phenotypes, characterizing inflammatory M1 phenotypes, as supported by glycolysis, and immunosuppressive M2 phenotypes, as supported by oxidative phosphorylation. However, this classification likely underestimates the variety of states in vivo. Understanding these nuances will be critical when developing interventional metabolic strategies. Future research should focus on refining drug specificity and targeted delivery methods to maximize therapeutic efficacy.
Collapse
|
9
|
MacKeigan D, Feja M, Gernert M. Chronic intermittent convection-enhanced delivery of vigabatrin to the bilateral subthalamic nucleus in an acute rat seizure model. Epilepsy Res 2024; 199:107276. [PMID: 38091904 DOI: 10.1016/j.eplepsyres.2023.107276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Targeted intracerebral drug delivery is an attractive experimental approach for the treatment of drug-resistant epilepsies. In this regard, the subthalamic nucleus (STN) represents a focus-independent target involved in the remote modulation and propagation of seizure activity. Indeed, acute and chronic pharmacological inhibition of the STN with vigabatrin (VGB), an irreversible inhibitor of GABA transaminase, has been shown to produce antiseizure effects. This effect, however, is lost over time as tolerance develops with chronic, continuous intracerebral pharmacotherapy. Here we investigated the antiseizure effects of chronic intermittent intra-STN convection-enhanced delivery of VGB in an acute rat seizure model focusing on circumventing tolerance development and preventing adverse effects. Timed intravenous pentylenetetrazol (PTZ) seizure threshold testing was conducted before and after implantation of subcutaneous drug pumps and bilateral intra-STN cannulas. Drug pumps infused vehicle or VGB twice daily (0.4 µg) or once weekly (2.5 µg, 5 µg) over three weeks. Putative adverse effects were evaluated and found to be prevented by intermittent compared to previous continuous VGB delivery. Clonic seizure thresholds were more clearly raised by intra-STN VGB compared to myoclonic twitch. Both twice daily and once weekly intra-STN VGB significantly elevated clonic seizure thresholds depending on dose and time point, with responder rates of up to 100% observed at tolerable doses. However, tolerance could not be completely avoided, as tolerance rates of 40-75% were observed with chronic VGB treatment. Results indicate that the extent of tolerance development after intermittent intra-STN VGB delivery varies depending on infusion dose and regimen.
Collapse
Affiliation(s)
- Devlin MacKeigan
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| |
Collapse
|
10
|
Grover S, Narang RK, Singh S. GABA-transaminase: A Key Player and Potential Therapeutic Target for Neurological Disorders. Cent Nerv Syst Agents Med Chem 2024; 24:57-67. [PMID: 38243961 DOI: 10.2174/0118715249267700231116053516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 01/22/2024]
Abstract
Neurological disorders such as epilepsy, autism, Huntington's disease, multiple sclerosis, and Alzheimer's disease alter brain functions like cognition, mood, movements, and language, severely compromising the well-being of persons, suffering from their negative effects. The neurotransmitters (GABA, glutamate, norepinephrine, dopamine) are found to be involved in neuronal signaling and neurotransmission. GABA, a "commanding neurotransmitter" is directly or indirectly associated with various neurological disorders. GABA is metabolized to succinic semialdehyde by a mitochondrial gamma-aminobutyric acid-transaminase (GABA-T) enzyme. Therefore, the alterations in the GABA performance in the distinct regions of the brain via GABA-T overstimulation or inhibition would play a vital role in the pathogenesis of various neurological disorders. This review emphasizes the leading participation of GABA-T in neurological disorders like Huntington's disease, epilepsy, autism, Alzheimer's disease, and multiple sclerosis. In Huntington's disease, epilepsy, and multiple sclerosis, the surfeited performance of GABA-T results in diminished levels of GABA, whereas in autism, the subsidence of GABA-T activity causes the elevation in GABA contents, which is responsible for behavioral changes in these disorders. Therefore, GABA-T inhibitors (in Huntington's disease, epilepsy, and multiple sclerosis) or agonists (in autism) can be used therapeutically. In the context of Alzheimer's disease, some researchers favor the stimulation of GABA-T activity whereas some disagree with it. Therefore, the activity of GABA-T concerning Alzheimer's disease is still unclear. In this way, studies of GABA-T enzymatic activity in contrast to neurological disorders could be undertaken to understand and be considered a therapeutic target for several GABA-ergic CNS diseases.
Collapse
Affiliation(s)
- Sania Grover
- Department of Pharmacology, Indo Soviet Friendship College of Pharmacy, Moga, Punjab, India
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga-142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga-142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga-142001, Punjab, India
| |
Collapse
|
11
|
Tuma J, Chen YJ, Collins MG, Paul A, Li J, Han H, Sharma R, Murthy N, Lee HY. Lipid Nanoparticles Deliver mRNA to the Brain after an Intracerebral Injection. Biochemistry 2023; 62:3533-3547. [PMID: 37729550 PMCID: PMC10760911 DOI: 10.1021/acs.biochem.3c00371] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Neurological disorders are often debilitating conditions with no cure. The majority of current therapies are palliative rather than disease-modifying; therefore, new strategies for treating neurological disorders are greatly needed. mRNA-based therapeutics have great potential for treating such neurological disorders; however, challenges with delivery have limited their clinical potential. Lipid nanoparticles (LNPs) are a promising delivery vector for the brain, given their safer toxicity profile and higher efficacy. Despite this, very little is known about LNP-mediated delivery of mRNA into the brain. Here, we employ MC3-based LNPs and successfully deliver Cre mRNA and Cas9 mRNA/Ai9 sgRNA to the adult Ai9 mouse brain; greater than half of the entire striatum and hippocampus was found to be penetrated along the rostro-caudal axis by direct intracerebral injections of MC3 LNP mRNAs. MC3 LNP Cre mRNA successfully transfected cells in the striatum (∼52% efficiency) and hippocampus (∼49% efficiency). In addition, we demonstrate that MC3 LNP Cas9 mRNA/Ai9 sgRNA edited cells in the striatum (∼7% efficiency) and hippocampus (∼3% efficiency). Further analysis demonstrates that MC3 LNPs mediate mRNA delivery to multiple cell types including neurons, astrocytes, and microglia in the brain. Overall, LNP-based mRNA delivery is effective in brain tissue and shows great promise for treating complex neurological disorders.
Collapse
Affiliation(s)
- Jan Tuma
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00 Plzen, Czech Republic
| | - Yu-Ju Chen
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| | - Michael G. Collins
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| | - Abhik Paul
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| | - Jie Li
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Hesong Han
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Rohit Sharma
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, California, CA 94720, USA
- The Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California, CA 94704, USA
| | - Hye Young Lee
- The Department of Cellular and Integrative Physiology, the University of Texas Health Science Center at San Antonio, San Antonio, Texas, TX 78229, USA
| |
Collapse
|
12
|
Wu Y, Angelova A. Recent Uses of Lipid Nanoparticles, Cell-Penetrating and Bioactive Peptides for the Development of Brain-Targeted Nanomedicines against Neurodegenerative Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3004. [PMID: 38063700 PMCID: PMC10708303 DOI: 10.3390/nano13233004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2024]
Abstract
The lack of effective treatments for neurodegenerative diseases (NDs) is an important current concern. Lipid nanoparticles can deliver innovative combinations of active molecules to target the various mechanisms of neurodegeneration. A significant challenge in delivering drugs to the brain for ND treatment is associated with the blood-brain barrier, which limits the effectiveness of conventional drug administration. Current strategies utilizing lipid nanoparticles and cell-penetrating peptides, characterized by various uptake mechanisms, have the potential to extend the residence time and bioavailability of encapsulated drugs. Additionally, bioactive molecules with neurotropic or neuroprotective properties can be delivered to potentially mediate the ND targeting pathways, e.g., neurotrophin deficiency, impaired lipid metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, accumulation of misfolded proteins or peptide fragments, toxic protein aggregates, oxidative stress damage, and neuroinflammation. This review discusses recent advancements in lipid nanoparticles and CPPs in view of the integration of these two approaches into nanomedicine development and dual-targeted nanoparticulate systems for brain delivery in neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France;
| |
Collapse
|
13
|
Gunasekera CL, Sirven JI, Feyissa AM. The evolution of antiseizure medication therapy selection in adults: Is artificial intelligence -assisted antiseizure medication selection ready for prime time? J Cent Nerv Syst Dis 2023; 15:11795735231209209. [PMID: 37868934 PMCID: PMC10586013 DOI: 10.1177/11795735231209209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Antiseizure medications (ASMs) are the mainstay of symptomatic epilepsy treatment. The primary goal of pharmacotherapy with ASMs in epilepsy is to achieve complete seizure remission while minimizing therapy-related adverse events. Over the years, more ASMs have been introduced, with approximately 30 now in everyday use. With such a wide variety, much guidance is needed in choosing ASMs for initial therapy, subsequent replacement monotherapy, or adjunctive therapy. The specific ASMs are typically tailored by the patient's related factors, including epilepsy syndrome, age, sex, comorbidities, and ASM characteristics, including the spectrum of efficacy, pharmacokinetic properties, safety, and tolerability. Weighing these key clinical variables requires experience and expertise that may be limited. Furthermore, with this approach, patients may endure multiple trials of ineffective treatments before the most appropriate ASM is found. A more reliable way to predict response to different ASMs is needed so that the most effective and tolerated ASM can be selected. Soon, alternative approaches, such as deep machine learning (ML), could aid the individualized selection of the first and subsequent ASMs. The recognition of epilepsy as a network disorder and the integration of personalized epilepsy networks in future ML platforms can also facilitate the prediction of ASM response. Augmenting the conventional approach with artificial intelligence (AI) opens the door to personalized pharmacotherapy in epilepsy. However, more work is needed before these models are ready for primetime clinical practice.
Collapse
|
14
|
MacKeigan D, Feja M, Meller S, Deking L, Javadova A, Veenhuis A, Felmy F, Gernert M. Long-lasting antiseizure effects of chronic intrasubthalamic convection-enhanced delivery of valproate. Neurobiol Dis 2023; 187:106321. [PMID: 37832796 DOI: 10.1016/j.nbd.2023.106321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Intracerebral drug delivery is an experimental approach for the treatment of drug-resistant epilepsies that allows for pharmacological intervention in targeted brain regions. Previous studies have shown that targeted pharmacological inhibition of the subthalamic nucleus (STN) via modulators of the GABAergic system produces antiseizure effects. However, with chronic treatment, antiseizure effects are lost as tolerance develops. Here, we report that chronic intrasubthalamic microinfusion of valproate (VPA), an antiseizure medication known for its wide range of mechanisms of action, can produce long-lasting antiseizure effects over three weeks in rats. In the intravenous pentylenetetrazole seizure-threshold test, seizure thresholds were determined before and during chronic VPA application (480 μg/d, 720 μg/d, 960 μg/d) to the bilateral STN. Results indicate a dose-dependent variation in VPA-induced antiseizure effects with mean increases in seizure threshold of up to 33%, and individual increases of up to 150%. The lowest VPA dose showed a complete lack of tolerance development with long-lasting antiseizure effects. Behavioral testing with all doses revealed few, acceptable adverse effects. VPA concentrations were high in STN and low in plasma and liver. In vitro electrophysiology with bath applied VPA revealed a reduction in spontaneous firing rate, increased background membrane potential, decreased input resistance and a significant reduction in peak NMDA, but not AMPA, receptor currents in STN neurons. Our results suggest an advantage of VPA over purely GABAergic modulators in preventing tolerance development with chronic intrasubthalamic drug delivery and provide first mechanistic insights in intracerebral pharmacotherapy targeting the STN.
Collapse
Affiliation(s)
- Devlin MacKeigan
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| | - Sebastian Meller
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Lillian Deking
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Amina Javadova
- Center for Systems Neuroscience, 30559 Hannover, Germany; Institute for Zoology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Alva Veenhuis
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Felix Felmy
- Center for Systems Neuroscience, 30559 Hannover, Germany; Institute for Zoology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
15
|
Li B, Lu G, Liu W, Liao L, Ban J, Lu Z. Formulation and Evaluation of PLGA Nanoparticulate-Based Microneedle System for Potential Treatment of Neurological Diseases. Int J Nanomedicine 2023; 18:3745-3760. [PMID: 37457799 PMCID: PMC10348379 DOI: 10.2147/ijn.s415728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The tight structure of the blood-brain barrier severely limits the level of drug therapy for central nervous system disorders. In this study, a novel composite delivery system combining nanocarrier and microneedle technology was prepared to explore the possibility of transdermal delivery of drugs to work in the brain. Methods Nanoparticle solutions containing paroxetine and rhodamine-B were prepared using PLGA as a carrier by the emulsification-solvent volatilization method. Then, they were mixed with hyaluronic acid and the PLGA nanoparticulate-based microneedle system (Rh-NPs-DMNs) was prepared by a multi-step decompression-free diffusion method. The particle size, zeta potential, and micromorphology of the nano solution were measured; the appearance, mechanical strength, dissolution properties, and puncture effect of the Rh-NPs-DMNs were evaluated; also, it was evaluated for in vivo live imaging properties and in vitro skin layer transport and distribution properties. Results The mean particle size of Rh-NPs was 96.25 ± 2.26 nm; zeta potential of 15.89 ± 1.97 mV; PDI of 0.120 ± 0.079. Rh-NPs-DMNs had a high needle content of 96.11 ± 1.27% and a tip height of 651.23 ± 1.28 μm, with excellent mechanical properties (fracture force of 299.78 ± 1.74 N). H&E skin tissue staining showed that Rh-NPs-DMNs produced micron-sized mechanical pores approximately 550 μm deep immediately after drug administration, allowing for efficient circulation of the drug; and the results of in vivo imaging showed that Rh-B NPs DMNs had a faster transport rate than Rh-B DMNs, with strong fluorescent signals in both brain (P<0.01) and hippocampus (P<0.05) 48 h after drug administration. Conclusion Nanoparticles can prolong blood circulation time and intracerebral retention time and have certain brain-targeting properties due to their excellent physical properties. The use of microneedle technology combined with nanocarriers provides new ideas for delivery systems for the treatment of central neurological diseases.
Collapse
Affiliation(s)
- Baohua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Geng Lu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Wenbin Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Liqi Liao
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Zhufen Lu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
16
|
Yonesi M, Ramos M, Ramirez-Castillejo C, Fernández-Serra R, Panetsos F, Belarra A, Chevalier M, Rojo FJ, Pérez-Rigueiro J, Guinea GV, González-Nieto D. Resistance to Degradation of Silk Fibroin Hydrogels Exposed to Neuroinflammatory Environments. Polymers (Basel) 2023; 15:polym15112491. [PMID: 37299290 DOI: 10.3390/polym15112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Central nervous system (CNS) diseases represent an extreme burden with significant social and economic costs. A common link in most brain pathologies is the appearance of inflammatory components that can jeopardize the stability of the implanted biomaterials and the effectiveness of therapies. Different silk fibroin scaffolds have been used in applications related to CNS disorders. Although some studies have analyzed the degradability of silk fibroin in non-cerebral tissues (almost exclusively upon non-inflammatory conditions), the stability of silk hydrogel scaffolds in the inflammatory nervous system has not been studied in depth. In this study, the stability of silk fibroin hydrogels exposed to different neuroinflammatory contexts has been explored using an in vitro microglial cell culture and two in vivo pathological models of cerebral stroke and Alzheimer's disease. This biomaterial was relatively stable and did not show signs of extensive degradation across time after implantation and during two weeks of in vivo analysis. This finding contrasted with the rapid degradation observed under the same in vivo conditions for other natural materials such as collagen. Our results support the suitability of silk fibroin hydrogels for intracerebral applications and highlight the potentiality of this vehicle for the release of molecules and cells for acute and chronic treatments in cerebral pathologies.
Collapse
Affiliation(s)
- Mahdi Yonesi
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Milagros Ramos
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Ramirez-Castillejo
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Rocío Fernández-Serra
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
| | - Fivos Panetsos
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
- Bioactive Surfaces SL, Puerto de Navacerrada 18. Galapagar, 28260 Madrid, Spain
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - Adrián Belarra
- Laboratorio Micro-CT UCM, Departamento de Radiología, Rehabilitación y Fisioterapia, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Margarita Chevalier
- Laboratorio Micro-CT UCM, Departamento de Radiología, Rehabilitación y Fisioterapia, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco J Rojo
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
- Bioactive Surfaces SL, Puerto de Navacerrada 18. Galapagar, 28260 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
- Bioactive Surfaces SL, Puerto de Navacerrada 18. Galapagar, 28260 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
- Bioactive Surfaces SL, Puerto de Navacerrada 18. Galapagar, 28260 Madrid, Spain
- Biomaterials and Regenerative Medicine Group, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Silk Biomed SL, Calle Navacerrada 18, Urb. Puerto Galapagar, 28260 Madrid, Spain
- Bioactive Surfaces SL, Puerto de Navacerrada 18. Galapagar, 28260 Madrid, Spain
| |
Collapse
|
17
|
Campelo SN, Lorenzo MF, Partridge B, Alinezhadbalalami N, Kani Y, Garcia J, Saunier S, Thomas SC, Hinckley J, Verbridge SS, Davalos RV, Rossmeisl JH. High-frequency irreversible electroporation improves survival and immune cell infiltration in rodents with malignant gliomas. Front Oncol 2023; 13:1171278. [PMID: 37213298 PMCID: PMC10196182 DOI: 10.3389/fonc.2023.1171278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Background Irreversible electroporation (IRE) has been previously investigated in preclinical trials as a treatment for intracranial malignancies. Here, we investigate next generation high-frequency irreversible electroporation (H-FIRE), as both a monotherapy and a combinatorial therapy, for the treatment of malignant gliomas. Methods Hydrogel tissue scaffolds and numerical modeling were used to inform in-vivo H-FIRE pulsing parameters for our orthotopic tumor-bearing glioma model. Fischer rats were separated into five treatment cohorts including high-dose H-FIRE (1750V/cm), low-dose H-FIRE (600V/cm), combinatorial high-dose H-FIRE + liposomal doxorubicin, low-dose H-FIRE + liposomal doxorubicin, and standalone liposomal doxorubicin groups. Cohorts were compared against a standalone tumor-bearing sham group which received no therapeutic intervention. To further enhance the translational value of our work, we characterize the local and systemic immune responses to intracranial H-FIRE at the study timepoint. Results The median survival for each cohort are as follows: 31 days (high-dose H-FIRE), 38 days (low-dose H-FIRE), 37.5 days (high-dose H-FIRE + liposomal doxorubicin), 27 days (low-dose H-FIRE + liposomal doxorubicin), 20 days (liposomal doxorubicin), and 26 days (sham). A statistically greater overall survival fraction was noted in the high-dose H-FIRE + liposomal doxorubicin (50%, p = 0.044), high-dose H-FIRE (28.6%, p = 0.034), and the low-dose H-FIRE (20%, p = 0.0214) compared to the sham control (0%). Compared to sham controls, brain sections of rats treated with H-FIRE demonstrated significant increases in IHC scores for CD3+ T-cells (p = 0.0014), CD79a+ B-cells (p = 0.01), IBA-1+ dendritic cells/microglia (p = 0.04), CD8+ cytotoxic T-cells (p = 0.0004), and CD86+ M1 macrophages (p = 0.01). Conclusions H-FIRE may be used as both a monotherapy and a combinatorial therapy to improve survival in the treatment of malignant gliomas while also promoting the presence of infiltrative immune cells.
Collapse
Affiliation(s)
- Sabrina N. Campelo
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Melvin F. Lorenzo
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Brittanie Partridge
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Nastaran Alinezhadbalalami
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Yukitaka Kani
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Josefa Garcia
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Sofie Saunier
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Sean C. Thomas
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Jonathan Hinckley
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Scott S. Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Bioelectromechanical Systems Laboratory, Virginia Tech, Blacksburg, VA, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, United States
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
18
|
Sánchez-Dengra B, González-Álvarez I, Bermejo M, González-Álvarez M. Access to the CNS: Strategies to overcome the BBB. Int J Pharm 2023; 636:122759. [PMID: 36801479 DOI: 10.1016/j.ijpharm.2023.122759] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
The blood-brain barrier (BBB) limits the access of substances to the central nervous system (CNS) which hinders the treatment of pathologies affecting the brain and the spinal cord. Nowadays, research is focus on new strategies to overcome the BBB and can treat the pathologies affecting the CNS are needed. In this review, the different strategies that allow and increase the access of substances to the CNS are analysed and extended commented, not only invasive strategies but also non-invasive ones. The invasive techniques include the direct injection into the brain parenchyma or the CSF and the therapeutic opening of the BBB, while the non-invasive techniques include the use of alternative routes of administration (nose-to-brain route), the inhibition of efflux transporters (as it is important to prevent the drug efflux from the brain and enhance the therapeutic efficiency), the chemical modification of the molecules (prodrugs and chemical drug delivery systems (CDDS)) and the use of nanocarriers. In the future, knowledge about nanocarriers to treat CNS diseases will continue to increase, but the use of other strategies such as drug repurposing or drug reprofiling, which are cheaper and less time consuming, may limit its transfer to society. The main conclusion is that the combination of different strategies may be the most interesting approach to increase the access of substances to the CNS.
Collapse
Affiliation(s)
- Bárbara Sánchez-Dengra
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| | - Isabel González-Álvarez
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain.
| | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| | - Marta González-Álvarez
- Pharmacokinetics and Pharmaceutical Technology Area, Department of Engineering, Miguel Hernandez University, 03550 Alicante, Spain
| |
Collapse
|
19
|
Miao YB, Zhao W, Renchi G, Gong Y, Shi Y. Customizing delivery nano-vehicles for precise brain tumor therapy. J Nanobiotechnology 2023; 21:32. [PMID: 36707835 PMCID: PMC9883977 DOI: 10.1186/s12951-023-01775-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/29/2023] Open
Abstract
Although some tumor has become a curable disease for many patients, involvement of the central nervous system (CNS) is still a major concern. The blood-brain barrier (BBB), a special structure in the CNS, protects the brain from bloodborne pathogens via its excellent barrier properties and hinders new drug development for brain tumor. Recent breakthroughs in nanotechnology have resulted in various nanovehicless (NPs) as drug carriers to cross the BBB by different strategys. Here, the complex compositions and special characteristics of causes of brain tumor formation and BBB are elucidated exhaustively. Additionally, versatile drug nanovehicles with their recent applications and their pathways on different drug delivery strategies to overcome the BBB obstacle for anti-brain tumor are briefly discussed. Customizing nanoparticles for brain tumor treatments is proposed to improve the efficacy of brain tumor treatments via drug delivery from the gut to the brain. This review provides a broad perspective on customizing delivery nano-vehicles characteristics facilitate drug distribution across the brain and pave the way for the creation of innovative nanotechnology-based nanomaterials for brain tumor treatments.
Collapse
Affiliation(s)
- Yang-Bao Miao
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Wang Zhao
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Gao Renchi
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Ying Gong
- grid.263901.f0000 0004 1791 7667School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China ,grid.9227.e0000000119573309Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, 610072 Sichuan China ,grid.410646.10000 0004 1808 0950Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610072 Sichuan China
| |
Collapse
|
20
|
Godbout K, Tremblay JP. Delivery of RNAs to Specific Organs by Lipid Nanoparticles for Gene Therapy. Pharmaceutics 2022; 14:pharmaceutics14102129. [PMID: 36297564 PMCID: PMC9611171 DOI: 10.3390/pharmaceutics14102129] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Gene therapy holds great promise in the treatment of genetic diseases. It is now possible to make DNA modifications using the CRISPR system. However, a major problem remains: the delivery of these CRISPR-derived technologies to specific organs. Lipid nanoparticles (LNPs) have emerged as a very promising delivery method. However, when delivering LNPs intravenously, most of the cargo is trapped by the liver. Alternatively, injecting them directly into organs, such as the brain, requires more invasive procedures. Therefore, developing more specific LNPs is crucial for their future clinical use. Modifying the composition of the lipids in the LNPs allows more specific deliveries of the LNPs to some organs. In this review, we have identified the most effective compositions and proportions of lipids for LNPs to target specific organs, such as the brain, lungs, muscles, heart, liver, spleen, and bones.
Collapse
Affiliation(s)
- Kelly Godbout
- Centre de Recherche du CHU de Québec, Laval University, Quebec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU de Québec, Laval University, Quebec, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
21
|
Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Int J Mol Sci 2022; 23:11244. [PMID: 36232546 PMCID: PMC9569508 DOI: 10.3390/ijms231911244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Alexey V. Pindyurin
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
22
|
Intrathecal application of ethosuximide is highly efficient in suppressing seizures in a genetic model of absence epilepsy. Epilepsy Res 2022; 184:106967. [DOI: 10.1016/j.eplepsyres.2022.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
|
23
|
Jiménez-Morales JM, Hernández-Cuenca YE, Reyes-Abrahantes A, Ruiz-García H, Barajas-Olmos F, García-Ortiz H, Orozco L, Quiñones-Hinojosa A, Reyes-González J, Del Carmen Abrahantes-Pérez M. MicroRNA delivery systems in glioma therapy and perspectives: A systematic review. J Control Release 2022; 349:712-730. [PMID: 35905783 DOI: 10.1016/j.jconrel.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Gliomas are the deadliest of all primary brain tumors, and they constitute a serious global health problem. MicroRNAs (miRNAs) are gene expression regulators associated with glioma pathogenesis. Thus, miRNAs represent potential therapeutic agents for treating gliomas. However, miRNAs have not been established as part of the regular clinical armamentarium. This systemic review evaluates current molecular and pre-clinical studies with the aim of defining the most appealing supramolecular platform for administering therapeutic miRNA to patients with gliomas. An integrated analysis suggested that cationic lipid nanoparticles, functionalized with octa-arginine peptides, represent a potentially specific, practical, non-invasive intervention for treating gliomas. This supramolecular platform allows loading both hydrophilic (miRNA) and hydrophobic (anti-tumor drugs, like temozolomide) molecules. This systemic review is the first to describe miRNA delivery systems targeted to gliomas that integrate several types of molecules as active ingredients. Further experimental validation is warranted to confirm the practical value of miRNA delivery systems.
Collapse
Affiliation(s)
- José Marcos Jiménez-Morales
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Yanet Elisa Hernández-Cuenca
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Ander Reyes-Abrahantes
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Henry Ruiz-García
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Jesús Reyes-González
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico.
| | | |
Collapse
|
24
|
Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022; 10:1206. [PMID: 35625943 PMCID: PMC9138510 DOI: 10.3390/biomedicines10051206] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are essential for normal brain development and functioning. They respond to brain injury and disease through a process referred to as reactive astrogliosis, where the reactivity is highly heterogenous and context-dependent. Reactive astrocytes are active contributors to brain pathology and can exert beneficial, detrimental, or mixed effects following brain insults. Transforming growth factor-β (TGF-β) has been identified as one of the key factors regulating astrocyte reactivity. The genetic and pharmacological manipulation of the TGF-β signaling pathway in animal models of central nervous system (CNS) injury and disease alters pathological and functional outcomes. This review aims to provide recent understanding regarding astrocyte reactivity and TGF-β signaling in brain injury, aging, and neurodegeneration. Further, it explores how TGF-β signaling modulates astrocyte reactivity and function in the context of CNS disease and injury.
Collapse
Affiliation(s)
- Jian Luo
- Palo Alto Veterans Institute for Research, VAPAHCS, Palo Alto, CA 94304, USA
| |
Collapse
|
25
|
Blood-brain barrier targeted delivery of lacosamide-conjugated gold nanoparticles: Improving outcomes in absence seizures. Epilepsy Res 2022; 184:106939. [PMID: 35785634 DOI: 10.1016/j.eplepsyres.2022.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 04/06/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022]
|
26
|
Bianchi M, De Salvo A, Asplund M, Carli S, Di Lauro M, Schulze‐Bonhage A, Stieglitz T, Fadiga L, Biscarini F. Poly(3,4-ethylenedioxythiophene)-Based Neural Interfaces for Recording and Stimulation: Fundamental Aspects and In Vivo Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104701. [PMID: 35191224 PMCID: PMC9036021 DOI: 10.1002/advs.202104701] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/04/2022] [Indexed: 05/29/2023]
Abstract
Next-generation neural interfaces for bidirectional communication with the central nervous system aim to achieve the intimate integration with the neural tissue with minimal neuroinflammatory response, high spatio-temporal resolution, very high sensitivity, and readout stability. The design and manufacturing of devices for low power/low noise neural recording and safe and energy-efficient stimulation that are, at the same time, conformable to the brain, with matched mechanical properties and biocompatibility, is a convergence area of research where neuroscientists, materials scientists, and nanotechnologists operate synergically. The biotic-abiotic neural interface, however, remains a formidable challenge that prompts for new materials platforms and innovation in device layouts. Conductive polymers (CP) are attractive materials to be interfaced with the neural tissue and to be used as sensing/stimulating electrodes because of their mixed ionic-electronic conductivity, their low contact impedance, high charge storage capacitance, chemical versatility, and biocompatibility. This manuscript reviews the state-of-the-art of poly(3,4-ethylenedioxythiophene)-based neural interfaces for extracellular recording and stimulation, focusing on those technological approaches that are successfully demonstrated in vivo. The aim is to highlight the most reliable and ready-for-clinical-use solutions, in terms of materials technology and recording performance, other than spot major limitations and identify future trends in this field.
Collapse
Affiliation(s)
- Michele Bianchi
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Anna De Salvo
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Maria Asplund
- Division of Nursing and Medical TechnologyLuleå University of TechnologyLuleå971 87Sweden
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Stefano Carli
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Present address:
Department of Environmental and Prevention SciencesUniversità di FerraraFerrara44121Italy
| | - Michele Di Lauro
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
| | - Andreas Schulze‐Bonhage
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
- Epilepsy CenterFaculty of MedicineUniversity of FreiburgFreiburg79110Germany
| | - Thomas Stieglitz
- Department of Microsystems Engineering‐IMTEKUniversity of FreiburgFreiburg79110Germany
- BrainLinks‐BrainTools CenterUniversity of FreiburgFreiburg79110Germany
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Sezione di FisiologiaUniversità di Ferraravia Fossato di Mortara 17Ferrara44121Italy
| | - Fabio Biscarini
- Center for Translational Neurophysiology of Speech and CommunicationFondazione Istituto Italiano di Tecnologiavia Fossato di Mortara 17Ferrara44121Italy
- Life Science DepartmentUniversità di Modena e Reggio EmiliaVia Campi 103Modena41125Italy
| |
Collapse
|
27
|
An On-Demand Drug Delivery System for Control of Epileptiform Seizures. Pharmaceutics 2022; 14:pharmaceutics14020468. [PMID: 35214199 PMCID: PMC8879600 DOI: 10.3390/pharmaceutics14020468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/03/2023] Open
Abstract
Drug delivery systems have the potential to deliver high concentrations of drug to target areas on demand, while elsewhere and at other times encapsulating the drug, to limit unwanted actions. Here we show proof of concept in vivo and ex vivo tests of a novel drug delivery system based on hollow-gold nanoparticles tethered to liposomes (HGN-liposomes), which become transiently permeable when activated by optical or acoustic stimulation. We show that laser or ultrasound simulation of HGN-liposomes loaded with the GABAA receptor agonist, muscimol, triggers rapid and repeatable release in a sufficient concentration to inhibit neurons and suppress seizure activity. In particular, laser-stimulated release of muscimol from previously injected HGN-liposomes caused subsecond hyperpolarizations of the membrane potential of hippocampal pyramidal neurons, measured by whole cell intracellular recordings with patch electrodes. In hippocampal slices and hippocampal–entorhinal cortical wedges, seizure activity was immediately suppressed by muscimol release from HGN-liposomes triggered by laser or ultrasound pulses. After intravenous injection of HGN-liposomes in whole anesthetized rats, ultrasound stimulation applied to the brain through the dura attenuated the seizure activity induced by pentylenetetrazol. Ultrasound alone, or HGN-liposomes without ultrasound stimulation, had no effect. Intracerebrally-injected HGN-liposomes containing kainic acid retained their contents for at least one week, without damage to surrounding tissue. Thus, we demonstrate the feasibility of precise temporal control over exposure of neurons to the drug, potentially enabling therapeutic effects without continuous exposure. For future application, studies on the pharmacokinetics, pharmacodynamics, and toxicity of HGN-liposomes and their constituents, together with improved methods of targeting, are needed, to determine the utility and safety of the technology in humans.
Collapse
|
28
|
Yang N, Liu F, Zhang X, Chen C, Xia Z, Fu S, Wang J, Xu J, Cui S, Zhang Y, Yi M, Wan Y, Li Q, Xu S. A Hybrid Titanium-Softmaterial, High-Strength, Transparent Cranial Window for Transcranial Injection and Neuroimaging. BIOSENSORS 2022; 12:bios12020129. [PMID: 35200389 PMCID: PMC8870569 DOI: 10.3390/bios12020129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 05/04/2023]
Abstract
A transparent and penetrable cranial window is essential for neuroimaging, transcranial injection and comprehensive understanding of cortical functions. For these applications, cranial windows made from glass coverslip, polydimethylsiloxane (PDMS), polymethylmethacrylate, crystal and silicone hydrogel have offered remarkable convenience. However, there is a lack of high-strength, high-transparency, penetrable cranial window with clinical application potential. We engineer high-strength hybrid Titanium-PDMS (Ti-PDMS) cranial windows, which allow large transparent area for in vivo two-photon imaging, and provide a soft window for transcranial injection. Laser scanning and 3D printing techniques are used to match the hybrid cranial window to different skull morphology. A multi-cycle degassing pouring process ensures a good combination of PDMS and Ti frame. Ti-PDMS cranial windows have a high fracture strength matching human skull bone, excellent light transmittance up to 94.4%, and refractive index close to biological tissue. Ti-PDMS cranial windows show excellent bio-compatibility during 21-week implantation in mice. Dye injection shows that the PDMS window has a "self-sealing" to keep liquid from leaking out. Two-photon imaging for brain tissues could be achieved up to 450 µm in z-depth. As a novel brain-computer-interface, this Ti-PDMS device offers an alternative choice for in vivo drug delivery, optical experiments, ultrasonic treatment and electrophysiology recording.
Collapse
Affiliation(s)
- Nana Yang
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
| | - Fengyu Liu
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
- Correspondence: (F.L.); (S.X.)
| | - Xinyue Zhang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (X.Z.); (Q.L.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Chenni Chen
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Zhiyuan Xia
- Department of Material Science and Engineering, College of Engineering, Peking University, Beijing 100871, China;
| | - Su Fu
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jiaxin Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jingjing Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Shuang Cui
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Yong Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Ming Yi
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - You Wan
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Qing Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (X.Z.); (Q.L.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Shengyong Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
- Correspondence: (F.L.); (S.X.)
| |
Collapse
|
29
|
Łukawski K, Czuczwar SJ. Emerging therapeutic targets for epilepsy: Preclinical insights. Expert Opin Ther Targets 2022; 26:193-206. [PMID: 35130119 DOI: 10.1080/14728222.2022.2039120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Around 30% of patients with epilepsy suffer from drug-resistant seizures. Drug-resistant seizures may have significant consequences such as sudden death in epilepsy, injuries, memory disturbances, and childhood learning and developmental problems. Conventional and newer available antiepileptic drugs (AEDs) work via numerous mechanisms - mainly through inhibition of voltage-operated Na+ and/or Ca2+ channels, excitation of K+ channels, enhancement of GABA-mediated inhibition and/or blockade of glutamate-produced excitation. However, the discovery and development of novel brain targets may improve the future pharmacological management of epilepsy and hence is of pivotal importance. AREAS COVERED This article examines novel drug targets such as brain multidrug efflux transporters and inflammatory pathways; it progresses to discuss possible strategies for the management of drug-resistant seizures. Reduction of the consequences of blood brain barrier dysfunction and enhancement of anti-oxidative defense are discussed. EXPERT OPINION Novel drug targets comprise brain multidrug efflux transporters, TGF-β, Nrf2-ARE or m-TOR signaling and inflammatory pathways. Gene therapy and antagomirs seem the most promising targets. Epileptic foci may be significantly suppressed by viral-vector-mediated gene transfer, leading to an increased in situ concentration of inhibitory factors (for instance, galanin). Also, antagomirs offer a promising possibility of seizure inhibition by silencing micro-RNAs involved in epileptogenesis and possibly in seizure generation.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland.,Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland.,Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
30
|
Wang Z, Yang Z, Jiang J, Shi Z, Mao Y, Qin N, Tao TH. Silk Microneedle Patch Capable of On-Demand Multidrug Delivery to the Brain for Glioblastoma Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106606. [PMID: 34618380 DOI: 10.1002/adma.202106606] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Surgery followed by chemotherapy and radiotherapy remains the standard treatment strategy for GBM patients. However, challenges still exist when surgery is difficult or impossible to remove the tumor completely. Herein, the design, fabrication and application of a heterogenous silk fibroin microneedle (SMN) patch is reported for circumventing the blood-brain barrier and releasing multiple drugs directly to the tumor site for drug combination treatment. The biocompatible and biodegradable SMN patch can dissolve slowly over time, allowing the sustained release of multiple drugs at different doses. Furthermore, it can be triggered remotely to induce rapid drug delivery at a designated stage after implantation. In the GBM mouse models, two clinically relevant chemotherapeutic agents (thrombin and temozolomide) and targeted drug (bevacizumab) are loaded into the SMN patch with individually controlled release profiles. The drugs are spatiotemporally and sequentially delivered for hemostasis, anti-angiogenesis, and apoptosis of tumor cells. Device application is non-toxic and results in decreased tumor volume and increased survival rate in mice. The SMN patch with on-demand multidrug delivery has potential applications for the combined administration of therapeutic drugs for the clinical treatment of brain tumors when other methods are insufficient.
Collapse
Affiliation(s)
- Zijing Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, China
| | - Zhipeng Yang
- Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jianjuan Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhifeng Shi
- Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Mao
- Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Nan Qin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
31
|
Lorenzo MF, Campelo SN, Arroyo JP, Aycock KN, Hinckley J, Arena CB, Rossmeisl JH, Davalos RV. An Investigation for Large Volume, Focal Blood-Brain Barrier Disruption with High-Frequency Pulsed Electric Fields. Pharmaceuticals (Basel) 2021; 14:1333. [PMID: 34959733 PMCID: PMC8715747 DOI: 10.3390/ph14121333] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023] Open
Abstract
The treatment of CNS disorders suffers from the inability to deliver large therapeutic agents to the brain parenchyma due to protection from the blood-brain barrier (BBB). Herein, we investigated high-frequency pulsed electric field (HF-PEF) therapy of various pulse widths and interphase delays for BBB disruption while selectively minimizing cell ablation. Eighteen male Fisher rats underwent craniectomy procedures and two blunt-tipped electrodes were advanced into the brain for pulsing. BBB disruption was verified with contrast T1W MRI and pathologically with Evans blue dye. High-frequency irreversible electroporation cell death of healthy rodent astrocytes was investigated in vitro using a collagen hydrogel tissue mimic. Numerical analysis was conducted to determine the electric fields in which BBB disruption and cell ablation occur. Differences between the BBB disruption and ablation thresholds for each waveform are as follows: 2-2-2 μs (1028 V/cm), 5-2-5 μs (721 V/cm), 10-1-10 μs (547 V/cm), 2-5-2 μs (1043 V/cm), and 5-5-5 μs (751 V/cm). These data suggest that HF-PEFs can be fine-tuned to modulate the extent of cell death while maximizing peri-ablative BBB disruption. Furthermore, numerical modeling elucidated the diffuse field gradients of a single-needle grounding pad configuration to favor large-volume BBB disruption, while the monopolar probe configuration is more amenable to ablation and reversible electroporation effects.
Collapse
Affiliation(s)
- Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Sabrina N. Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Julio P. Arroyo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Kenneth N. Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - Jonathan Hinckley
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA; (J.H.); (J.H.R.J.)
| | - Christopher B. Arena
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA; (J.H.); (J.H.R.J.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (S.N.C.); (J.P.A.); (K.N.A.); (C.B.A.); (R.V.D.)
| |
Collapse
|
32
|
Bahlakeh G, Rahbarghazi R, Mohammadnejad D, Abedelahi A, Karimipour M. Current knowledge and challenges associated with targeted delivery of neurotrophic factors into the central nervous system: focus on available approaches. Cell Biosci 2021; 11:181. [PMID: 34641969 PMCID: PMC8507154 DOI: 10.1186/s13578-021-00694-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 12/23/2022] Open
Abstract
During the last decades, numerous basic and clinical studies have been conducted to assess the delivery efficiency of therapeutic agents into the brain and spinal cord parenchyma using several administration routes. Among conventional and in-progress administrative routes, the eligibility of stem cells, viral vectors, and biomaterial systems have been shown in the delivery of NTFs. Despite these manifold advances, the close association between the delivery system and regeneration outcome remains unclear. Herein, we aimed to discuss recent progress in the delivery of these factors and the pros and cons related to each modality.
Collapse
Affiliation(s)
- Gozal Bahlakeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daruosh Mohammadnejad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Bahr A, Schneider M, Francis MA, Lehmann HM, Barg I, Buschhoff AS, Wulff P, Strunskus T, Faupel F. Epileptic Seizure Detection on an Ultra-Low-Power Embedded RISC-V Processor Using a Convolutional Neural Network. BIOSENSORS 2021; 11:bios11070203. [PMID: 34201480 PMCID: PMC8301882 DOI: 10.3390/bios11070203] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 05/13/2023]
Abstract
The treatment of refractory epilepsy via closed-loop implantable devices that act on seizures either by drug release or electrostimulation is a highly attractive option. For such implantable medical devices, efficient and low energy consumption, small size, and efficient processing architectures are essential. To meet these requirements, epileptic seizure detection by analysis and classification of brain signals with a convolutional neural network (CNN) is an attractive approach. This work presents a CNN for epileptic seizure detection capable of running on an ultra-low-power microprocessor. The CNN is implemented and optimized in MATLAB. In addition, the CNN is also implemented on a GAP8 microprocessor with RISC-V architecture. The training, optimization, and evaluation of the proposed CNN are based on the CHB-MIT dataset. The CNN reaches a median sensitivity of 90% and a very high specificity over 99% corresponding to a median false positive rate of 6.8 s per hour. After implementation of the CNN on the microcontroller, a sensitivity of 85% is reached. The classification of 1 s of EEG data takes t=35 ms and consumes an average power of P≈140 μW. The proposed detector outperforms related approaches in terms of power consumption by a factor of 6. The universal applicability of the proposed CNN based detector is verified with recording of epileptic rats. This results enable the design of future medical devices for epilepsy treatment.
Collapse
Affiliation(s)
- Andreas Bahr
- Sensor System Electronics, Institute of Electrical Engineering and Information Technology, Kiel University, 24143 Kiel, Germany; (M.S.); (M.A.F.)
- Correspondence:
| | - Matthias Schneider
- Sensor System Electronics, Institute of Electrical Engineering and Information Technology, Kiel University, 24143 Kiel, Germany; (M.S.); (M.A.F.)
| | - Maria Avitha Francis
- Sensor System Electronics, Institute of Electrical Engineering and Information Technology, Kiel University, 24143 Kiel, Germany; (M.S.); (M.A.F.)
| | - Hendrik M. Lehmann
- CMOS Design, Technical University Braunschweig, 38106 Braunschweig, Germany;
| | - Igor Barg
- Multicomponent Materials, Institute for Material Science, Kiel University, 24143 Kiel, Germany; (I.B.); (T.S.); (F.F.)
| | | | - Peer Wulff
- Institute of Physiology, Kiel University, 24118 Kiel, Germany; (A.-S.B.); (P.W.)
| | - Thomas Strunskus
- Multicomponent Materials, Institute for Material Science, Kiel University, 24143 Kiel, Germany; (I.B.); (T.S.); (F.F.)
| | - Franz Faupel
- Multicomponent Materials, Institute for Material Science, Kiel University, 24143 Kiel, Germany; (I.B.); (T.S.); (F.F.)
| |
Collapse
|