1
|
Lorek JK, Isaksson M, Nilsson B. Chromatography in Downstream Processing of Recombinant Adeno-Associated Viruses: A Review of Current and Future Practises. Biotechnol Bioeng 2025; 122:1067-1086. [PMID: 39905691 PMCID: PMC11975191 DOI: 10.1002/bit.28932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
Recombinant adeno-associated virus (rAAV) has emerged as an attractive gene delivery vector platform to treat both rare and pervasive diseases. With more and more rAAV-based therapies entering late-stage clinical trials and commercialization, there is an increasing pressure on the rAAV manufacturing process to accelerate drug development, account for larger trials, and commercially provide high doses. Still, many of the pre-clinical and clinical manufacturing processes are tied to outdated technologies, which results in substantial production expenses. Those processes face challenges including low productivity and difficult scalability, which limits its ability to provide for required dosages which in turn influences the accessibility of the drug. And as upstream efforts are expected to increase productivities, the downstream part needs to adapt with more scalable and efficient technologies. In this review, both traditional and novel rAAV downstream technologies are presented and discussed. Traditional rAAV downstream processes are based on density gradient ultracentrifugation and have been shown to effectively purify rAAVs with high yields and purities. However, those processes lack scalability and efficiency, which is why novel rAAV downstream processes based on column-chromatography have emerged as an attractive alternative and show potential for integration in continuous processes, following the principle of next-generation manufacturing.
Collapse
Affiliation(s)
| | - Madelène Isaksson
- Department of Process and Life Science EngineeringLund UniversityLundSweden
| | - Bernt Nilsson
- Department of Process and Life Science EngineeringLund UniversityLundSweden
| |
Collapse
|
2
|
Rodriguez A, Banazadeh A, Ali A, Singh R, Zhou C. Limitation of anion exchange chromatography and potential application of hydrophobic interaction chromatography for monitoring AAV9 capsid degradation upon thermal stress. J Pharm Sci 2025; 114:983-989. [PMID: 39551236 DOI: 10.1016/j.xphs.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Adeno-Associated Virus (AAV) is often selected as the vector of choice for gene therapy due to its superior clinical performance compared to other gene delivery systems. Currently the characterization of AAV degradation, especially the chemical degradation of capsid, has been limited due to lack of suitable methods. Our study using AAV9 as a model molecule shows that anion exchange chromatography (AEX) as a charge-based separation method has limitations in monitoring the chemical degradation of AAV9 capsid due to a confounding effect from DNA cargo ejection. We developed a hydrophobic interaction chromatography (HIC) method, free from DNA interference, that could serve as a quick and reliable alternative to resource-demanding peptide mapping method for monitoring AAV capsid chemical degradation. Compared with brief thermal stress at 75 °C, AAV9 capsid exhibited much higher levels of chemical degradation but slower capsid titer loss upon extended exposure for 4 weeks at 40 °C.
Collapse
Affiliation(s)
- Antonela Rodriguez
- Biologics Drug Product Development, AbbVie Bioresearch Center, Worcester, MA 01605, United States
| | - Ali Banazadeh
- Analytical Development, Product Development Science & Technology, AbbVie Bioresearch Center, Worcester, MA 01605, United States
| | - Amr Ali
- Analytical Development, Product Development Science & Technology, AbbVie Bioresearch Center, Worcester, MA 01605, United States
| | - Rajeeva Singh
- Biologics Drug Product Development, AbbVie Bioresearch Center, Worcester, MA 01605, United States
| | - Chen Zhou
- Biologics Drug Product Development, AbbVie Bioresearch Center, Worcester, MA 01605, United States.
| |
Collapse
|
3
|
Fu XQ, Leong HY, Qiao LZ, Zhou JN, Hu W, Yao SJ, Lin DQ. Application of aqueous two-phase extraction for separation and purification of various adeno-associated viruses. Biotechnol Lett 2025; 47:16. [PMID: 39777562 DOI: 10.1007/s10529-024-03555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE Adeno-associated viruses (AAVs) are widely used as gene therapy vectors due to their safety, stability, and long-term expression characteristics. The objective of this work is to develop an aqueous two-phase system (ATPS) as a universal platform for the separation and purification of AAVs. RESULTS This study utilized polyethylene glycol (PEG)/salt ATPSs to separate and purify various AAV serotypes, including AAV5, AAV8, and AAV9, which focusing on serotype-specific performance and partial empty capsid removal. The results showed that all the AAV serotypes were mainly enriched in the interphase of ATPS, with achieving high recovery (> 95%) and impurity removal (> 95%). The PEG/sodium citrate ATPS was serotype-independent, but the process optimization of component concentrations for each serotype was necessary to attain the best performance. Notably, a single-step aqueous two-phase extraction also demonstrated the ability to remove some amount of empty capsids from the crude cell lysate, with removal rate ranging from 4 to 25%. CONCLUSIONS The results demonstrated the practical applicability of PEG/sodium citrate ATPS in separating and purifying different AAV serotypes, which addressing key challenges in gene therapy vector production.
Collapse
Affiliation(s)
- Xiao-Qian Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liang-Zhi Qiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Nan Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wei Hu
- Hangzhou Jiayin Biotech Ltd., Hangzhou, 310018, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Mulagapati SHR, Parupudi A, Witkos T, Bond N, Chen X, Linke T, Xi G, Schmelzer AE, Xu W. Size-exclusion chromatography as a multi-attribute method for process and product characterization of adeno-associated virus. Mol Ther Methods Clin Dev 2024; 32:101382. [PMID: 39687733 PMCID: PMC11647602 DOI: 10.1016/j.omtm.2024.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Adeno-associated viruses (AAVs) have recently emerged as a leading platform for gene therapy. Due to the complex manufacturing process and structural features of AAVs, extensive process and product characterization studies are required to better understand product quality and batch-to-batch variability. It is, therefore, critical to develop a fast and reliable analytical method to monitor different product quality attributes (PQAs) of AAVs. In this study, we developed a multiple-attribute monitoring (MAM) method for the characterization of AAV PQAs. The MAM method was developed using the separation capability of size-exclusion chromatography (SEC) in connection with multiple in-line detectors: ultraviolet (UV), fluorescence (FLD), multi-angle light scattering (MALS), and refractive index (RI). We demonstrate that our SEC-based MAM method can be used to measure different PQAs, including genome and capsid titer, purity, aggregation, and full/empty capsid ratios in a single assay. Our SEC-based MAM method achieves similar results when compared side by side with orthogonal, individual assays such as quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), and anion-exchange chromatography (AEX). Moreover, here we demonstrate that a simple, label-free, cost-effective, minimum sample requirement, and a high-throughput method can be applied to support process development, product characterization, release, and stability testing.
Collapse
Affiliation(s)
- Sri Hari Raju Mulagapati
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Arun Parupudi
- Drug Product and Formulation Sciences, GSK Vaccines, Rockville, MD 20850, USA
| | - Tomasz Witkos
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Nick Bond
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Xiaoyu Chen
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Thomas Linke
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Guoling Xi
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Albert Ethan Schmelzer
- Viral Vector Product Development, Process Development and Clinical Supply, Alexion, Boston, MA, USA
| | - Wei Xu
- Process and Analytical Sciences, BioPharmaceuticals Development (BPD), R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
5
|
Soth S, Takakura M, Suekawa M, Onishi T, Hirohata K, Hashimoto T, Maruno T, Fukuhara M, Tsunaka Y, Torisu T, Uchiyama S. Quantification of full and empty particles of adeno-associated virus vectors via a novel dual fluorescence-linked immunosorbent assay. Mol Ther Methods Clin Dev 2024; 32:101291. [PMID: 39070291 PMCID: PMC11283060 DOI: 10.1016/j.omtm.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The adeno-associated virus (AAV) vector is one of the most advanced platforms for gene therapy because of its low immunogenicity and non-pathogenicity. The concentrations of both AAV vector empty particles, which do not contain DNA and do not show any efficacy, and AAV vector full particles (FPs), which contain DNA, are important quality attributes. In this study, a dual fluorescence-linked immunosorbent assay (dFLISA), which uses two fluorescent dyes to quantify capsid and genome titers in a single analysis, was established. In dFLISA, capture of AAV particles, detection of capsid proteins, and release and detection of the viral genome are performed in the same well. We demonstrated that the capsid and genomic titers determined by dFLISA were comparable with those of analytical ultracentrifugation. The FP ratios determined by dFLISA were in good agreement with the expected values. In addition, we showed that dFLISA can quantify the genomic and capsid titers of crude samples. dFLISA can be easily modified for measuring other AAV vector serotypes and AAV vectors with different genome lengths. These features make dFLISA a valuable tool for the future development of AAV-based gene therapies.
Collapse
Affiliation(s)
- Sereirath Soth
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mikako Takakura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Suekawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Onishi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiichi Hirohata
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tamami Hashimoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Maruno
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Fukuhara
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsunaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
6
|
Liu X, Jean-Gilles R, Baginski J, Cai C, Yan R, Zhang L, Lance K, van der Loo JC, Davidson BL. Evaluation of a rapid multi-attribute combinatorial high-throughput UV-Vis/DLS/SLS analytical platform for rAAV quantification and characterization. Mol Ther Methods Clin Dev 2024; 32:101298. [PMID: 39170800 PMCID: PMC11338085 DOI: 10.1016/j.omtm.2024.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Recombinant adeno-associated virus (rAAV)-based gene therapies are expanding in their application. Despite progress in manufacturing, current analytical methods for product quantification and characterization remain largely unchanged. Although critical for product and process development, in-process testing, and batch release, current analytical methods are labor-intensive, costly, and hampered by extended turnaround times and low throughput. The field requires more efficient, cost-effective analytical techniques capable of handling large sample quantities to accelerate product and process development. Here, we evaluated Stunner from Unchained Labs for quantifying and characterizing rAAVs and compared it with established analytical methods. Stunner is a combinatorial analytic technology platform that interpolates ultraviolet-visible (UV-Vis) absorption with static and dynamic light scattering (SLS/DLS) analysis to determine capsid and genomic titer, empty and full capsid ratio, and assess vector size and polydispersity. The platform offers empirical measurements with minimal sample requirements. Upon testing hundreds of rAAV vectors, comprising various serotypes and transgenes, the data show a strong correlation with established analytical methods and exhibit high reproducibility and repeatability. Some analyses can be applied to in-process samples from different purification stages and processes, fulfilling the demand for rapid, high-throughput analysis during development. In sum, the pipeline presented streamlines small- and large-batch analytics.
Collapse
Affiliation(s)
- Xueyuan Liu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | | | - Julia Baginski
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christina Cai
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ruilan Yan
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lili Zhang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Johannes C.M. van der Loo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly L. Davidson
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Sripada SA, Hosseini M, Ramesh S, Wang J, Ritola K, Menegatti S, Daniele MA. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol Adv 2024; 74:108391. [PMID: 38848795 DOI: 10.1016/j.biotechadv.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Mahshid Hosseini
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Junhyeong Wang
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Kimberly Ritola
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center, North Carolina State University, 890 Main Campus Dr, Raleigh, NC 27695, USA.
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA.
| |
Collapse
|
8
|
Soni H, Lako I, Placidi M, Cramer SM. Implications of AAV affinity column reuse and vector stability on product quality attributes. Biotechnol Bioeng 2024; 121:2449-2465. [PMID: 37485847 DOI: 10.1002/bit.28500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
In this work, the implications of AAV9 capsid design and column reuse on AAV9 vector product quality were assessed with POROS CaptureSelect (PCS) AAVX and AAV9 resins using sf9 insect cell-derived model AAV9 vectors with varying viral protein (VP) ratios. Chromatographic experiments with purified drug substance AAV9 model feeds indicated consistent vector elution profiles, independent of adeno-associated virus (AAV) VP ratio, or cycle number. In contrast, the presence of process impurities in the clarified lysate feeds resulted in clear changes in the elution patterns. This included increased aggregate content in the vector eluates over multiple cycles as well as clear differences in the performance of these affinity resin systems. The AAV9-serotype specific PCS AAV9 column, with lower vector elution pH, resulted in higher aggregate content over multiple cycles as compared to the serotype-independent PCS AAVX column. Further, the results with vectors of varying VP ratio indicated that while one vector type eluate displayed higher aggregation in both affinity columns over column reuse, the eluate with the other vector type did not exhibit changes in the aggregation profile. Interestingly, vector aggregates in the affinity eluates also contained double-stranded DNA impurities and histone proteins, with similar trends to the aggregate levels. This behavior upon column reuse indicates that these host cell impurities are likely carried over to subsequent runs due to incomplete clean-in-place (CIP). These results indicate that feed impurities, affinity resin characteristics, elution pH, column CIP, and vector stability can impact the reusability of AAV affinity columns and product quality.
Collapse
Affiliation(s)
- Harshal Soni
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ira Lako
- Voyager Therapeutics, Cambridge, Massachusetts, USA
| | | | - Steven M Cramer
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
9
|
Suk Lee Y, Lee J, Fang K, Gee GV, Rogers B, McNally D, Yoon S. Separation of full, empty, and partial adeno-associated virus capsids via anion-exchange chromatography with continuous recycling and accumulation. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1242:124206. [PMID: 38908134 DOI: 10.1016/j.jchromb.2024.124206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
The field of recombinant adeno-associated virus (rAAV) gene therapy has attracted increasing attention over decades. Within the ongoing challenges of rAAV manufacturing, the co-production of impurities, such as empty and partial capsids containing no or truncated transgenes, poses a significant challenge. Due to their potential impact on drug efficacy and clinical safety, it is imperative to conduct comprehensive monitoring and characterization of these impurities prior to the release of the final gene therapy product. Nevertheless, existing analytical techniques encounter notable limitations, encompassing low throughput, long turnaround times, high sample consumption, and/or complicated data analysis. Chromatography-based analytical methods are recognized for their current Good Manufacturing Practice (cGMP) alignment, high repeatability, reproducibility, low limit of detection, and rapid turnaround times. Despite these advantages, current anion exchange high pressure liquid chromatography (AEX-HPLC) methods struggle with baseline separation of partial capsids from full and empty capsids, resulting in inaccurate full-to-empty capsid ratio, as partial capsids are obscured within peaks corresponding to empty and full capsids. In this study, we present a unique analytical AEX method designed to characterize not only empty and full capsids but also partial capsids. This method utilizes continuous N-Rich chromatography with recycling between two identical AEX columns for the accumulation and isolation of partial capsids. The development process is comprehensively discussed, covering the preparation of reference materials representing full (rAAV-LacZ), partial (rAAV-GFP), and empty (rAAV-empty) capsids, N-rich method development, fraction analysis, determination of fluorescence response factors between capsid variants, and validation through comparison with other comparative techniques.
Collapse
Affiliation(s)
- Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Jaeweon Lee
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Kun Fang
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Gretchen V Gee
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Benjamin Rogers
- MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - David McNally
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA; MassBiologics, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
10
|
Song JY, Farkas T. Adeno-associated virus analysis by size exclusion chromatography within 3 minutes using short bio-inert columns made with 3 µm particles operated at high flowrates. J Chromatogr A 2024; 1718:464684. [PMID: 38350350 DOI: 10.1016/j.chroma.2024.464684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Adeno-associated virus (AAV) analytical characterization is crucial to the well-defined and reproducible production of human gene therapies utilizing the AAV vector modality. The establishment of analytical methods based upon technology platforms currently widely used by bio-therapeutic manufacturers, namely HPLC, will assist efforts to produce high quality AAV reproducibly and decrease chemical manufacturing and control challenges in method portability and reliability. AAV analysis by size exclusion chromatography (SEC) is currently practiced with columns and mobile phase conditions traditional to SEC of proteins. Here, an improved method to measure multiple AVV critical quality attributes (CQA) rapidly by SEC is explored. The use of short columns made with small particles at high flow rates resulted in up to 80 % reduction in analysis time and 66 % in sample consumption while maintaining reliable quantitation of AAV aggregate or high molecular weight (HMW) content. These results were demonstrated across four different AAV serotypes. Furthermore, critical AAV sample handling learnings are shared.
Collapse
Affiliation(s)
- James Y Song
- Phenomenex Inc., 411 Madrid Avenue, Torrance, CA 90501, USA
| | - Tivadar Farkas
- Phenomenex Inc., 411 Madrid Avenue, Torrance, CA 90501, USA.
| |
Collapse
|
11
|
Chen DP, Wei JY, Warren JC, Huang C. Tuning mobile phase properties to improve empty and full particle separation in adeno-associated virus productions by anion exchange chromatography. Biotechnol J 2024; 19:e2300063. [PMID: 37997557 DOI: 10.1002/biot.202300063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/29/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
In the past decade, recombinant adeno-associated virus (rAAV) has gained increased attention as a prominent gene therapy technology to treat monogenetic diseases. One of the challenges in rAAV production is the enrichment of full rAAV particles containing the gene of interest (GOI) payload. By adjusting the mobile phase properties of anion-exchange chromatography (AEX), it was demonstrated that empty and full separation of rAAV was improved in monolith based preparative AEX chromatography. When compared to the baseline method using NaCl, the use of tetraethylammonium acetate (TEA-Ac) in the AEX mobile phase resulted in enhanced resolution from 0.75 to 1.23 between "Empty" and "Full" peaks by salt linear gradient elution, as well as increased the percentage of full rAAV particles from 20% to 36% and genome recovery from 59% to 62%. Furthermore, a dual wash plus step elution AEX method was developed. Wherein, the first wash step harnesses TEA-Ac to separate empty and full capsids, which is followed by a second wash step that ensures no TEA-Ac salt is carried over into AEX eluate. The resulting optimized AEX purification method has the potential to be adapted for manufacturing and purification processes involving various rAAV production platforms that experience empty and full rAAV separation challenges.
Collapse
Affiliation(s)
- Dennis P Chen
- Pharmaceutical Development, Ultragenyx Pharmaceutical Inc., Woburn, Massachusetts, USA
| | - Julie Y Wei
- Pharmaceutical Development, Ultragenyx Pharmaceutical Inc., Woburn, Massachusetts, USA
| | - James C Warren
- Pharmaceutical Development, Ultragenyx Pharmaceutical Inc., Woburn, Massachusetts, USA
| | - Chao Huang
- Pharmaceutical Development, Ultragenyx Pharmaceutical Inc., Woburn, Massachusetts, USA
| |
Collapse
|
12
|
Khanal O, Kumar V, Jin M. Adeno-associated viral capsid stability on anion exchange chromatography column and its impact on empty and full capsid separation. Mol Ther Methods Clin Dev 2023; 31:101112. [PMID: 37868210 PMCID: PMC10585339 DOI: 10.1016/j.omtm.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/13/2023] [Indexed: 10/24/2023]
Abstract
Recombinant adeno-associated viral vector (rAAV) mediated gene therapy is gaining traction in treating genetic disorders. Current rAAV production systems yield a mixture of capsids largely devoid of the transgene (empty capsid) compared with the desired therapeutic product (full capsid). Anion exchange chromatography (AEX) is an attractive method for separating empty and full AAV capsids because of its scalability. Resin types and buffer composition are key considerations for AEX and must support capsid stability to be suitable for downstream processing. We examined the impact of binding durations (0-8 h) using various binding ionic strengths (15-75 mM), pH (7.5-9.0), resin chemistry (POROS XQ, POROS HQ, POROS I, and BIA QA monolith), and proprietary Q resins with different ligand densities for effects on capsid stability. Empty capsids were altered upon extended binding, leading to retention time shifts and loss of resolution between empty and full capsids. Viral capsid protein analysis reveals that full capsids have more viral capsid protein 3 (VP3) proteins than empty capsids. Analytical hydrophilic liquid chromatography showed that empty capsid retention time shift is accompanied by changes to the empty capsid's native VP3 protein. Among the potential stabilizing additives considered, magnesium chloride was the most effective at reducing negative impacts caused by extended binding.
Collapse
Affiliation(s)
- Ohnmar Khanal
- Technology Development, Spark Therapeutics, Inc., Philadelphia, PA, USA
| | - Vijesh Kumar
- Technology Development, Spark Therapeutics, Inc., Philadelphia, PA, USA
| | - Mi Jin
- Technology Development, Spark Therapeutics, Inc., Philadelphia, PA, USA
| |
Collapse
|
13
|
Lam AK, Mulcrone PL, Frabutt D, Zhang J, Chrzanowski M, Arisa S, Munoz M, Li X, Biswas M, Markusic D, Herzog RW, Xiao W. Comprehensive Comparison of AAV Purification Methods: Iodixanol Gradient Centrifugation vs. Immuno-Affinity Chromatography. ADVANCES IN CELL AND GENE THERAPY 2023; 2023:2339702. [PMID: 38130431 PMCID: PMC10735247 DOI: 10.1155/2023/2339702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as a widely used gene delivery platform for both basic research and human gene therapy. To ensure and improve the safety profile of AAV vectors, substantial efforts have been dedicated to the vector production process development using suspension HEK293 cells. Here, we studied and compared two downstream purification methods, iodixanol gradient ultracentrifugation versus immuno-affinity chromatography (POROS™ CaptureSelect™ AAVX column). We tested multiple vector batches that were separately produced (including AAV5, AAV8, and AAV9 serotypes). To account for batch-to-batch variability, each batch was halved for subsequent purification by either iodixanol gradient centrifugation or affinity chromatography. In parallel, purified vectors were characterized, and transduction was compared both in vitro and in vivo in mice (using multiple transgenes: Gaussia luciferase, eGFP, and human factor IX). Each purification method was found to have its own advantages and disadvantages regarding purity, viral genome (vg) recovery, and relative empty particle content. Differences in transduction efficiency were found to reflect batch-to-batch variability rather than disparities between the two purification methods, which were similarly capable of yielding potent AAV vectors.
Collapse
Affiliation(s)
- Anh K. Lam
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Patrick L. Mulcrone
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dylan Frabutt
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Junping Zhang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matthew Chrzanowski
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sreevani Arisa
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Maite Munoz
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xin Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Moanaro Biswas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Leskovec M, Raspor A, Fujs V, Mihevc A, Štrancar A. Preferential exclusion chromatography as a capture step for extracellular AAV harvest from adherent and suspension productions. Electrophoresis 2023; 44:1934-1942. [PMID: 37599280 DOI: 10.1002/elps.202300038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/22/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Preferential exclusion chromatography (PXC) sometimes described as hydrophobic interaction chromatography is a well-known, but not widely used technique for purification of Adeno-associated viruses. It employs high molarity of preferentially excluded cosolvent (salt in our case). The downside of this method is that high molarity of salt can lead to aggregation and precipitation of different compounds from the sample. In the case of viruses that are excreted to medium, the concentration of impurities is much lower compared to cell lysates, and PXC can be used as a first chromatographic, serotype independent step to concentrate and purify adeno-associated virus (AAV). Here, we explored PXC for adherent and suspension harvests using monolithic chromatographic columns (CIMmultus). Suspension extracellular adeno-associated virus, serotype 9 (AAV9) harvest had more impurities compared to adherent harvest, therefore it required higher input regarding method development. Final conditions for suspension harvest included higher molarity of binding salt and using more open channel format of chromatographic column (6 µm channel size). Vector genome analysis with droplet digital polymerase chain reaction (ddPCR) revealed 84% and 97% recovery for suspension and adherent AAV9 harvest, respectively. After PXC capture step, adherent AAV9 was purified by already described ion exchange techniques. Overall process vector genome recovery, from clarified harvest to anion exchange elution fraction, was 54% measured by ddPCR. Residual host cell DNA was measured at 40 ng per 1E13 vector genome, and empty AAV was below 5% in final anion exchange chromatography fraction.
Collapse
Affiliation(s)
- Maja Leskovec
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Andrej Raspor
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Veronika Fujs
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Andrej Mihevc
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Ajdovščina, Slovenia
| |
Collapse
|
15
|
Bažec K, Krašna M, Mihevc A, Leskovec M, Štrancar A, Tajnik Sbaizero M. Optimization of rAAV capture step purification using SO3 monolith chromatography. Electrophoresis 2023; 44:1943-1952. [PMID: 37603380 DOI: 10.1002/elps.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Adeno-associated virus (AAV) vectors are crucial tools for gene therapy applications. As AAVs are administered in vivo, stringent purity requirements must be met, necessitating the development of various downstream processing strategies in accordance with regulatory guidelines. In this context, we focus on the non-affinity serotype-independent recombinant AAV (rAAV) capture step, which involves the use of Convective Interaction Media (CIM) cation-exchange SO3 monoliths. We analyzed differentially pretreated viral samples obtained from the Sf9 cell line and applied these samples to the capture SO3 chromatography step. We conducted screening experiments using CIM SO3 0.05 mL monolithic 96-well plates with buffers of varying pH, sodium chloride concentrations, and the inclusion of poloxamer 188, aiming to select the optimal binding mobile phase. Dynamic binding capacity was defined for different pretreatments and the optimal conditions were subsequently retested using the industrial purification CIMmultus line. The results demonstrated a high overall vector recovery (51%) and a significant reduction in impurities (99.98% for protein reduction and 99.25% for DNA reduction) using the selected capture step parameters, thereby confirming the successful optimization of the rAAV capture step in the downstream process using monoliths.
Collapse
Affiliation(s)
- Kaja Bažec
- Process Development for Viral Vectors and Vaccines, Sartorius BIA Separations, Ajdovščina, Slovenia
| | - Mirjam Krašna
- Process Development for Viral Vectors and Vaccines, Sartorius BIA Separations, Ajdovščina, Slovenia
| | - Andrej Mihevc
- Process Development for Viral Vectors and Vaccines, Sartorius BIA Separations, Ajdovščina, Slovenia
| | - Maja Leskovec
- Process Development for Viral Vectors and Vaccines, Sartorius BIA Separations, Ajdovščina, Slovenia
| | - Aleš Štrancar
- Process Development for Viral Vectors and Vaccines, Sartorius BIA Separations, Ajdovščina, Slovenia
| | - Mojca Tajnik Sbaizero
- Process Development for Viral Vectors and Vaccines, Sartorius BIA Separations, Ajdovščina, Slovenia
| |
Collapse
|
16
|
Kilgore R, Minzoni A, Shastry S, Smith W, Barbieri E, Wu Y, LeBarre JP, Chu W, O'Brien J, Menegatti S. The downstream bioprocess toolbox for therapeutic viral vectors. J Chromatogr A 2023; 1709:464337. [PMID: 37722177 DOI: 10.1016/j.chroma.2023.464337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Will Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Juliana O'Brien
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
17
|
Fu Q, Polanco A, Lee YS, Yoon S. Critical challenges and advances in recombinant adeno-associated virus (rAAV) biomanufacturing. Biotechnol Bioeng 2023; 120:2601-2621. [PMID: 37126355 DOI: 10.1002/bit.28412] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Gene therapy is a promising therapeutic approach for genetic and acquired diseases nowadays. Among DNA delivery vectors, recombinant adeno-associated virus (rAAV) is one of the most effective and safest vectors used in commercial drugs and clinical trials. However, the current yield of rAAV biomanufacturing lags behind the necessary dosages for clinical and commercial use, which embodies a concentrated reflection of low productivity of rAAV from host cells, difficult scalability of the rAAV-producing bioprocess, and high levels of impurities materialized during production. Those issues directly impact the price of gene therapy medicine in the market, limiting most patients' access to gene therapy. In this context, the current practices and several critical challenges associated with rAAV gene therapy bioprocesses are reviewed, followed by a discussion of recent advances in rAAV-mediated gene therapy and other therapeutic biological fields that could improve biomanufacturing if these advances are integrated effectively into the current systems. This review aims to provide the current state-of-the-art technology and perspectives to enhance the productivity of rAAV while reducing impurities during production of rAAV.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Biomedical Engineering and Biotechnology, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Ashli Polanco
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, The University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
18
|
Nam YR, Ju HH, Lee J, Lee D, Kim Y, Lee SJ, Kim HK, Jang JH, Lee H. Distinguishing between DNA-Loaded Full and Empty Capsids of Adeno-Associated Virus with Atomic Force Microscopy Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6740-6747. [PMID: 37130261 DOI: 10.1021/acs.langmuir.3c00241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recently, miraculous therapy approaches involving adeno-associated virus (AAV) for incurable diseases such as spinal muscular atrophy and inherited retinal dysfunction have been introduced. Nonreplicative, nonpathogenic, low rates of chromosome insertional properties and the existence of neutralizing antibodies are main safety reasons why the FDA approved its use in gene delivery. To date, AAV production always results in a mixture of nontherapeutic (empty) and therapeutic (DNA-loaded) full capsids (10-98%). Such existence of empty viral particles inevitably increases viral doses to human. Thus, the rapid monitoring of empty capsids and reducing the empty-to-full ratio are critical in AAV science. However, transmission electron microscopy (TEM) is the primary tool for distinguishing between empty and full capsids, which creates a research bottleneck because of instrument accessibility and technical difficulty. Herein, we demonstrate that atomic force microscopy (AFM) can be an alternative tool to TEM. The simple, noncontact-mode imaging of AAV particles allows the distinct height difference between full capsids (∼22 nm) and empty capsids (∼16 nm). The sphere-to-ellipsoidal morphological distortion observed for empty AAV particles clearly distinguishes them from full AAV particles. Our study indicates that AFM imaging can be an extremely useful, quality-control tool in AAV particle monitoring, which is beneficial for the future development of AAV-based gene therapy.
Collapse
Affiliation(s)
- Yu Ri Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Helen H Ju
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeehee Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daiheon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yoojin Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sung Jin Lee
- R&D Center, GluGene Therapeutics Inc., Seoul 34028, Republic of Korea
| | - Hong Kee Kim
- R&D Center, GluGene Therapeutics Inc., Seoul 34028, Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
- R&D Center, GluGene Therapeutics Inc., Seoul 34028, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- R&D Center, GluGene Therapeutics Inc., Seoul 34028, Republic of Korea
| |
Collapse
|
19
|
Rebula L, Raspor A, Bavčar M, Štrancar A, Leskovec M. CIM monolithic chromatography as a useful tool for endotoxin reduction and purification of bacteriophage particles supported with PAT analytics. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123606. [PMID: 36724647 DOI: 10.1016/j.jchromb.2023.123606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Bacteriophages represent immense potential as therapeutic agents. Many of the most compelling applications of bacteriophages involve human therapy, some pertinent to gene therapy, others involving antibiotic replacement. Phages themselves are considered safe for humans. However, phage lysates may contain many kinds of harmful by-products, especially endotoxins of gram-negative bacteria and protein toxins produced by many pathogenic bacterial species. In bacteriophage research and therapy, most applications ask for highly purified phage suspensions, as such it is crucial to reduce proteins, endotoxins, DNA and other contaminants. In this article we present an efficient two-step chromatographic purification method for P. aeruginosa bacteriophage PP-01, using Convective Interaction Media (CIM®) monoliths, that is cGMP compliant and easy to scale-up for most stringent production of the therapeutic phage. First chromatographic step on CIMmultus OH resulted in 100% bacteriophage recovery with a reduction of 98 % protein and more than 99 % DNA content. Polishing was conducted using three different column options, CIMmultus with QA, H-Bond and PrimaS ligands. For PP-01 bacteriophage all three different options worked, but multimodal ligands H-Bond and PrimaS outperformed traditional QA in endotoxin removal (7 log step reduction). Additionally, an HPLC analytical method was developed to estimate phage concentration and impurity profile in different in-process samples. The HPLC method shows good correlation with drop assay titration, provides useful insights and can be run very fast with just 20 min per sample analysis.
Collapse
Affiliation(s)
- Lucija Rebula
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Andrej Raspor
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Mojca Bavčar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Maja Leskovec
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia.
| |
Collapse
|
20
|
Wagner C, Innthaler B, Lemmerer M, Pletzenauer R, Birner-Gruenberger R. Biophysical Characterization of Adeno-Associated Virus Vectors Using Ion-Exchange Chromatography Coupled to Light Scattering Detectors. Int J Mol Sci 2022; 23:12715. [PMID: 36361506 PMCID: PMC9655919 DOI: 10.3390/ijms232112715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 09/06/2023] Open
Abstract
Ion-exchange chromatography coupled to light scattering detectors represents a fast and simple analytical method for the assessment of multiple critical quality attributes (CQA) in one single measurement. The determination of CQAs play a crucial role in Adeno-Associated Virus (AAV)-based gene therapies and their applications in humans. Today, several different analytical techniques, including size-exclusion chromatography (SEC), analytical ultracentrifugation (AUC), qPCR or ELISA, are commonly used to characterize the gene therapy product regarding capsid titer, packaging efficiency, vector genome integrity, aggregation content and other process-related impurities. However, no universal method for the simultaneous determination of multiple CQAs is currently available. Here, we present a novel robust ion-exchange chromatography method coupled to multi-angle light scattering detectors (IEC-MALS) for the comprehensive characterization of empty and filled AAVs concerning capsid titer, full-to-total ratio, absolute molar mass of the protein and nucleic acid, and the size and polydispersity without baseline-separation of both species prior to data analysis. We demonstrate that the developed IEC-MALS assay is applicable to different serotypes and can be used as an orthogonal method to other established analytical techniques.
Collapse
Affiliation(s)
- Christina Wagner
- Analytical Development Europe, Takeda Vienna, 1220 Vienna, Austria
| | - Bernd Innthaler
- Gene Therapy Process Development, Takeda Orth an der Donau, 2304 Orth an der Donau, Austria
| | - Martin Lemmerer
- Analytical Development Europe, Takeda Vienna, 1220 Vienna, Austria
| | - Robert Pletzenauer
- Gene Therapy Process Development, Takeda Orth an der Donau, 2304 Orth an der Donau, Austria
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria
| |
Collapse
|
21
|
Deng JZ, Rustandi RR, Barbacci D, Swartz AR, Gulasarian A, Loughney JW. Reverse-Phase Ultra-Performance Chromatography Method for Oncolytic Coxsackievirus Viral Protein Separation and Empty to Full Capsid Quantification. Hum Gene Ther 2022; 33:765-775. [PMID: 35387488 PMCID: PMC9347376 DOI: 10.1089/hum.2022.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Oncolytic virus immunotherapy is emerging as a novel therapeutic approach for cancer treatment. Immunotherapy clinical drug candidate V937 is currently in phase I/II clinical trials and consists of a proprietary formulation of Coxsackievirus A21 (CVA21), which specifically infects and lyses cells with overexpressed ICAM-1 receptors in a range of tumors. Mature Coxsackievirus virions, consisting of four structural virion proteins, (VPs) VP1, VP2, VP3, and VP4, and the RNA genome, are the only viral particles capable of being infectious. In addition to mature virions, empty procapsids with VPs, VP0, VP1, and VP3, and other virus particles are produced in V937 production cell culture. Viral protein VP0 is cleaved into VP2 and VP4 after RNA genome encapsidation to form mature virions. Clearance of viral particles containing VP0, and quantification of viral protein distribution are important in V937 downstream processing. Existing analytical methods for the characterization of viral proteins and particles may lack sensitivity or are low throughput. We developed a sensitive and robust reverse-phase ultra-performance chromatography method to separate, identify, and quantify all five CVA21 VPs. Quantification of virus capsid concentration and empty/full capsid ratio was achieved with good linearity, accuracy, and precision. ClinicalTrials.gov ID: NCT04521621 and NCT04152863.
Collapse
Affiliation(s)
- James Z. Deng
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Richard R. Rustandi
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Damon Barbacci
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Andrew R. Swartz
- Vaccine Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Amanda Gulasarian
- Vaccine Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - John W. Loughney
- Vaccine Analytical Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
22
|
Abstract
This work presents an overview of the modern approaches embracing advanced equipment and validation parameters of both liquid and gas chromatography techniques, including thin-layer chromatography (TLC), column liquid chromatography (CLC), and gas chromatography (GC), suitable for the identification and quantitative determination of various bioactive compounds occurring in pharmaceutical products and medicinal plants in the time from 2020 to 2021 (November). This review confirmed that HPLC is an incredibly universal tool, especially when combined with different detectors, such as UV-Visible spectroscopy, mass spectrometry (MS), and fluorescence detection for numerous active ingredients in different pharmaceutical formulations without interferences from other excipients. TLC, in combination with densitometry, is a very efficient tool for the determination of biologically active substances present in pharmaceutical preparations. In addition, TLC coupled to densitometry and mass spectrometry could be suitable for preliminary screening and determination of the biological activity (e.g., antioxidant properties, thin layer chromatography (TLC) by 2,2-diphenyl-1-picrylhydrazyl (DPPH) method) of plant materials. Gas chromatography, coupled with a mass spectrometer (GC-MS, GC-MS/MS), is of particular importance in the testing of any volatile substances, such as essential oils. LC, coupled to NMR and MS, is the best solution for identifying and studying the structure of unknown components from plant extracts, as well as degradation products (DPs). Thanks to size-exclusion chromatography, coupled to multi-angle light scattering, the quality control of biological pharmaceuticals is possible.
Collapse
|
23
|
Escandell JM, Pais DA, Carvalho SB, Vincent K, Gomes-Alves P, Alves PM. Leveraging rAAV bioprocess understanding and next generation bioanalytics development. Curr Opin Biotechnol 2022; 74:271-277. [PMID: 35007989 DOI: 10.1016/j.copbio.2021.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Recombinant adeno-associated (rAAV) vector-based gene therapy has been the focus of intense research driven by the safety profile and several recent clinical breakthroughs. As of April 2021, there are two rAAV-based gene therapies approved and more than two-hundred active clinical trials (approximately thirty in Phase III). However, the expected increase in demand for rAAV vectors still poses several challenges. Discussed herein are key aspects related to R&D needs and Chemistry, Manufacturing and Control (CMC) efforts required to attend this growing demand. Authors provide their perspective on strategic topics for rAAV-based therapies success: scalability and productivity; improved safety; increased process understanding combined with development of orthogonal bioanalytics that are able to identify, monitor and control Critical Quality Attributes (CQAs) during bioprocessing.
Collapse
Affiliation(s)
- Jose M Escandell
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Daniel Am Pais
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Karen Vincent
- SANOFI, 49 New York Avenue, Framingham, MA 01701, USA
| | - Patrícia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, 2780-901, Portugal; ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, Oeiras, 2780-157, Portugal.
| |
Collapse
|
24
|
Particles in Biopharmaceutical Formulations, Part 2: An Update on Analytical Techniques and Applications for Therapeutic Proteins, Viruses, Vaccines and Cells. J Pharm Sci 2021; 111:933-950. [PMID: 34919969 DOI: 10.1016/j.xphs.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022]
Abstract
Particles in biopharmaceutical formulations remain a hot topic in drug product development. With new product classes emerging it is crucial to discriminate particulate active pharmaceutical ingredients from particulate impurities. Technical improvements, new analytical developments and emerging tools (e.g., machine learning tools) increase the amount of information generated for particles. For a proper interpretation and judgment of the generated data a thorough understanding of the measurement principle, suitable application fields and potential limitations and pitfalls is required. Our review provides a comprehensive overview of novel particle analysis techniques emerging in the last decade for particulate impurities in therapeutic protein formulations (protein-related, excipient-related and primary packaging material-related), as well as particulate biopharmaceutical formulations (virus particles, virus-like particles, lipid nanoparticles and cell-based medicinal products). In addition, we review the literature on applications, describe specific analytical approaches and illustrate advantages and drawbacks of currently available techniques for particulate biopharmaceutical formulations.
Collapse
|
25
|
Dome K, Akimenko Z, Bychkov A, Kalambet Y, Lomovsky O. On the Applicability of Electrophoresis for Protein Quantification. Polymers (Basel) 2021; 13:polym13223971. [PMID: 34833270 PMCID: PMC8625784 DOI: 10.3390/polym13223971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
Polyacrylamide gel electrophoresis is widely used for studying proteins and protein-containing objects. However, it is employed most frequently as a qualitative method rather than a quantitative one. This paper shows the feasibility of routine digital image acquisition and mathematical processing of electropherograms for protein quantification when using vertical gel electrophoresis and Chrom & Spec software. Both the well-studied model protein molecules (bovine serum albumin) and more complex real-world protein-based products (casein-containing isolate for sports nutrition), which were subjected to mechanical activation in a planetary ball mill to obtain samples characterized by different protein denaturation degrees, were used as study objects. Protein quantification in the mechanically activated samples was carried out. The degree of destruction of individual protein was shown to be higher compared to that of the protein-containing mixture after mechanical treatment for an identical amount of time. The methodological approach used in this study can serve as guidance for other researchers who would like to use electrophoresis for protein quantification both in individual form and in protein mixtures. The findings prove that photographic imaging of gels followed by mathematical data processing can be applied for analyzing the electrophoretic data as an affordable, convenient and quick tool.
Collapse
Affiliation(s)
- Karina Dome
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, 630128 Novosibirsk, Russia; (Z.A.); (A.B.); (O.L.)
- Correspondence: ; Tel.: +79-(60)-7908772
| | - Zoya Akimenko
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, 630128 Novosibirsk, Russia; (Z.A.); (A.B.); (O.L.)
| | - Aleksey Bychkov
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, 630128 Novosibirsk, Russia; (Z.A.); (A.B.); (O.L.)
- Department of Business, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | | | - Oleg Lomovsky
- Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of Sciences, 630128 Novosibirsk, Russia; (Z.A.); (A.B.); (O.L.)
| |
Collapse
|
26
|
Černigoj U, Vidič J, Ferjančič A, Sinur U, Božič K, Mencin N, Martinčič Celjar A, Gagnon P, Štrancar A. Guanidine improves DEAE anion exchange-based analytical separation of plasmid DNA. Electrophoresis 2021; 42:2619-2625. [PMID: 34569093 DOI: 10.1002/elps.202100210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 11/10/2022]
Abstract
Elution of strong and weak anion exchangers with sodium chloride gradients is commonly employed for analysis of sample mixtures containing different isomers of plasmid DNA. Gradient elution of a weak anion exchanger (diethylaminoethyl) in the presence of guanidine hydrochloride (Gdn) roughly doubles resolution between open-circular (oc) and supercoiled (sc) isomers. It also improves resolution among sc, linear, and multimeric/aggregated forms. Sharper elution peaks with less tailing increase sensitivity about 30%. However, elution with an exclusively Gdn gradient to 900 mM causes more than 10% loss of plasmid. Elution with a sodium chloride gradient while maintaining Gdn at a level concentration of 300 mM achieves close to 100% recovery of sc plasmid while maintaining the separation improvements achieved by exclusively Gdn elution. Corresponding improvements in separation performance are not observed on a strong (quaternary amine) anion exchanger. Other chaotropic salts do not produce a favorable result on either exchanger, nor does the inclusion of surfactants or EDTA. Selectivity of the diethylaminoethyl-Gdn method is orthogonal to electrophoresis, but with better quantification than agarose electrophoresis, better quantitative accuracy than CE, and resolution approaching CE.
Collapse
Affiliation(s)
- Urh Černigoj
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Jana Vidič
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Ana Ferjančič
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Urša Sinur
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Klemen Božič
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Nina Mencin
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | | | - Pete Gagnon
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| | - Aleš Štrancar
- BIA Separations d.o.o., a Sartorius company, Ajdovščina, Slovenia
| |
Collapse
|
27
|
Khatwani SL, Pavlova A, Pirot Z. Anion-exchange HPLC assay for separation and quantification of empty and full capsids in multiple adeno-associated virus serotypes. Mol Ther Methods Clin Dev 2021; 21:548-558. [PMID: 33997103 PMCID: PMC8099603 DOI: 10.1016/j.omtm.2021.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022]
Abstract
Gene therapy has entered a new era where numerous therapies for severe and rare diseases are generating robust and compelling clinical results. The rapid improvements in gene therapies over the past few years can be attributed to better scientific understanding of the critical quality attributes that contribute to a safe and efficacious product, as well as a better understanding of the manufacturing processes that are required to yield consistent products, which routinely meet the quality standards required for clinical studies. Of particular concern is the need for an effective, quality control (QC)-compatible, and versatile test method for the quantification of empty and full capsids in recombinant adeno-associated virus (rAAV) samples from multiple serotypes. In that regard, we describe the development of a QC-compatible anion-exchange chromatography method consisting of a modular discontinuous gradient to achieve full baseline peak separation and quantification of empty and full AAV capsids. Using an rAAV6 vector, our assay was shown to be precise, linear, robust, and accurate-correlating well with orthogonal methods such as analytical ultracentrifugation (AUC) and cryogenic transmission electron microscopy (Cryo-TEM). Additionally, we demonstrate the versatility of our approach by adapting the method to separate and quantify empty/full capsids in samples from several rAAV serotypes.
Collapse
Affiliation(s)
| | - Anna Pavlova
- Sangamo Therapeutics, Inc., 7000 Marina Blvd., Brisbane, CA 94005, USA
| | - Zhu Pirot
- Sangamo Therapeutics, Inc., 7000 Marina Blvd., Brisbane, CA 94005, USA
| |
Collapse
|
28
|
Removal of empty capsids from adeno-associated virus preparations by multimodal metal affinity chromatography. J Chromatogr A 2021; 1649:462210. [PMID: 34034104 DOI: 10.1016/j.chroma.2021.462210] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 02/02/2023]
Abstract
Separation of empty and full adeno-associated virus capsids by multimodal metal affinity chromatography was investigated using a positively charged metal affinity ligand. A subpopulation of empty capsids eluted first, followed by full capsids, and later by more empty capsids and debris. Empty and full capsid composition of chromatography fractions was evaluated by cesium chloride density gradient centrifugation followed by stratigraphic flow analysis of the centrifuge tube contents, monitored by intrinsic fluorescence. Columns charged with barium, calcium, magnesium, zinc, manganese, and ferric ions gave similar results with respect to capsid separation. Charging with cupric ions maintained resolution between early-eluting empty capsids and full capsids but caused them to elute at lower conductivity. Empty and full capsids were fractionated with Tris-borate gradients, sodium chloride gradients, and magnesium chloride gradients. Recovery of full serotype 9 capsids was 100% with complete elimination of empty capsids. All metal ions bound contaminant subsets that required sodium hydroxide for removal. Columns charged with ferric iron and manganese bound more contaminants than all other metals. Columns charged with calcium, magnesium, barium, and copper bound the least. Contaminant binding on zinc-charged columns was intermediate between the two groups.
Collapse
|