1
|
Pöttgen S, Mazurek-Budzyńska M, Wischke C. The role of porosity in polyester microparticles for drug delivery. Int J Pharm 2025; 672:125340. [PMID: 39954970 DOI: 10.1016/j.ijpharm.2025.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Polymer microparticles are a cornerstone in the field of injectable sustained delivery systems: They allow the entrapment of various types of hydrophobic or hydrophilic drugs including biopharmaceuticals. Microparticles can be prepared from the material of choice and tailored to specific target sizes. Importantly, they can retain the drug at the local administration site to achieve a sustained drug release for long-term therapeutic effects. This review focuses on the role of porosity of microparticles as a tremendously important property. Principles to prepare porous carriers via different techniques and additives are discussed, emphasizing that porosity is not a static property but can be dynamic, e.g., for particles from polylactide or poly(lactide-co-glycolide). Considering the contribution of porosity in the overall assessment of drug carrier systems, as well as their manipulation/alteration post-production such as by pore closing, will enlarge the understanding of polymer microparticles as an important class of modern pharmaceutical dosage forms.
Collapse
Affiliation(s)
- Simon Pöttgen
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany
| | | | - Christian Wischke
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3 06120 Halle, Germany.
| |
Collapse
|
2
|
Ralbovsky NM, Zhang Y, Williams DM, McKelvey CA, Smith JP. Machine Learning and Hyperspectral Imaging for Analysis of Human Papillomaviruses (HPV) Vaccine Self-Healing Particles. Anal Chem 2024; 96:17118-17127. [PMID: 39413009 DOI: 10.1021/acs.analchem.4c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Human papillomaviruses (HPV) are known to cause a variety of diseases, including cervical cancer and genital warts. HPV is a highly prevalent virus and is considered the most common sexually transmitted disease. Because of the risks associated with HPV, Gardasil, a quadrivalent recombinant vaccine, was developed by Merck & Co., Inc., Rahway, NJ, USA, and approved by the Food and Drug Administration (FDA) in 2006. The second generation of the vaccine, Gardasil9, was subsequently approved by the FDA in 2014, providing significant protection against HPV. The HPV vaccine may be given as 2 or 3 doses; however, vaccine administration as a single dose with a sustained release mechanism may potentially offer benefits to meet emerging health needs. To explore this, HPV vaccines were formulated within microporous self-healing particles (SHPs) to enable potential controlled release of HPV virus-like particle (VLP) antigen. Machine learning, in the form of multivariate curve resolution-alternating least-squares (MCR-ALS), with Raman hyperspectral imaging was used to determine the molecular identity and spatial distribution of all relevant species within this HPV vaccine formulation. The results indicate that machine learning with Raman hyperspectral imaging was able to spatially resolve HPV VLP antigens within SHP vaccines for the first time, providing crucial information necessary for vaccine development.
Collapse
Affiliation(s)
- Nicole M Ralbovsky
- Analytical Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yingyue Zhang
- Vaccine Drug Product Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Donna M Williams
- Vaccine Drug Product Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Craig A McKelvey
- Vaccine Drug Product Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Joseph P Smith
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
3
|
Yang S, Wu H, Peng C, He J, Pu Z, Lin Z, Wang J, Hu Y, Su Q, Zhou B, Yong X, Lan H, Hu N, Hu X. From the microspheres to scaffolds: advances in polymer microsphere scaffolds for bone regeneration applications. BIOMATERIALS TRANSLATIONAL 2024; 5:274-299. [PMID: 39734699 PMCID: PMC11681185 DOI: 10.12336/biomatertransl.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 12/31/2024]
Abstract
The treatment and repair of bone tissue damage and loss due to infection, tumours, and trauma are major challenges in clinical practice. Artificial bone scaffolds offer a safer, simpler, and more feasible alternative to bone transplantation, serving to fill bone defects and promote bone tissue regeneration. Ideally, these scaffolds should possess osteoconductive, osteoinductive, and osseointegrative properties. However, the current first-generation implants, represented by titanium alloys, have shown poor bone-implant integration performance and cannot meet the requirements for bone tissue repair. This has led to increased research on second and third generation artificial bone scaffolds, which focus on loading bioactive molecules and cells. Polymer microspheres, known for their high specific surface areas at the micro- and nanoscale, exhibit excellent cell and drug delivery behaviours. Additionally, with their unique rigid structure, microsphere scaffolds can be constructed using methods such as thermal sintering, injection, and microsphere encapsulation. These scaffolds not only ensure the excellent cell drug loading performance of microspheres but also exhibit spatial modulation behaviour, aiding in bone repair within a three-dimensional network structure. This article provides a summary and discussion of the use of polymer microsphere scaffolds for bone repair, focusing on the mechanisms of bone tissue repair and the current status of clinical bone grafts, aimed at advancing research in bone repair.
Collapse
Affiliation(s)
- Shuhao Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Haoming Wu
- School of Preclinical Medicine of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Chao Peng
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Jian He
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Zhengguang Pu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Zhidong Lin
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jun Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yingkun Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Qiao Su
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Bingnan Zhou
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province, China
| | - Hai Lan
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Hanaki A, Ogawa K, Tagami T, Ozeki T. Fabrication and Characterization of Antibody-Loaded Cationic Porous PLGA Microparticles for Sustained Antibody Release. AAPS J 2023; 25:92. [PMID: 37740072 DOI: 10.1208/s12248-023-00859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023] Open
Abstract
Poly lactic-co-glycolic acid (PLGA) microparticles have been formulated to allow the sustained release of numerous drugs, including antibodies. It is well-known that antibodies are susceptible to chemical and physical stress; therefore, it is necessary to be loaded on PLGA microparticles under mild conditions. In the present study, we constructed cationic porous PLGA microparticles that could be electrostatically adsorbed with infliximab as a model antibody. Cationic porous PLGA microparticles were prepared using the double emulsion method by adding polyethyleneimine and ammonium bicarbonate. After antibody loading, surface pores closure was achieved by mild heating. The size of the optimized formulation was approximately 5 μm, exhibiting a positive charge. The loaded antibody was gradually released from the formulation over 56 days. Based on a tumor necrosis factor (TNF)-α inhibition assay, the released infliximab maintained its pharmacological activity. Collectively, we successfully loaded antibodies into PLGA microparticles while maintaining activity and demonstrating long-acting properties.
Collapse
Affiliation(s)
- Ayaka Hanaki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Koki Ogawa
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
5
|
Delbreil P, Banquy X, Brambilla D. Template-Based Porous Hydrogel Microparticles as Carriers for Therapeutic Proteins. ACS BIO & MED CHEM AU 2023; 3:252-260. [PMID: 37363081 PMCID: PMC10288498 DOI: 10.1021/acsbiomedchemau.3c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
Hydrogels have been extensively researched for over 60 years for their limitless applications in biomedical research. In this study, porous hydrogel microparticles (PHMPs) made of poly(ethylene glycol) diacrylamide were investigated for their potential as a delivery platform for therapeutic proteins. These particles are made using hard calcium carbonate (CaCO3) templates, which can easily be dissolved under acidic conditions. After optimization of the synthesis processes, both CaCO3 templates and PHMPs were characterized using a wide range of techniques. Then, using an array of proteins with different physicochemical properties, the encapsulation efficiency of proteins in PHMPs was evaluated under different conditions. Strategies to enhance protein encapsulation via modulation of particle surface charge to increase electrostatic interactions and conjugation using EDC/NHS chemistry were also investigated. Conjugation of bovine serum albumin to PHMPs showed increased encapsulation and diminished release over time, highlighting the potential of PHMPs as a versatile delivery platform for therapeutic proteins such as enzymes or antibodies.
Collapse
|
6
|
Di J, Wang J, Wang S, Ma M, Zhang H, Liu N, Zheng A, Gao X, Liu B, Gao J. Self-Boosting Vaccination Based on Pulsatile Antigen Release from Core-Shell Microparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207892. [PMID: 36732845 DOI: 10.1002/smll.202207892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Indexed: 05/04/2023]
Abstract
Vaccination is among the most effective ways to prevent infectious diseases. Subunit vaccines are safe but usually require multiple booster shots, which may lead to immunity loss and economic consume. In this study, a self-boosting vaccine is developed based on the pulsatile release of antigen from the core-shell microparticle after single-injection immunization. Self-healing technology applied to form an "antigen core" can avoid organic solvents from destroying the spatial structure of the antigen. The "antigen shell" is built-up by self-assemble of the antigen with the opposite charged polypeptide. Primary immunization occurs with the self-assembled film disintegration, and the booster comes with the microparticle degradation. The changing of antigen-specific antibodies after immunization with the core-shell microparticle vaccine is consistent with that caused by the two shots of immunization. The immune effect and safety evaluation results support the translational potential of this self-boosting core-shell microparticle vaccine.
Collapse
Affiliation(s)
- Jinwei Di
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Jinyue Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Shan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Ming Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| | - Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing, 100071, P. R. China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, P. R. China
| |
Collapse
|
7
|
Li X, Zhang Z, Harris A, Yang L. Bridging the gap between fundamental research and product development of long acting injectable PLGA microspheres. Expert Opin Drug Deliv 2022; 19:1247-1264. [PMID: 35863759 DOI: 10.1080/17425247.2022.2105317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Long acting Injectable PLGA microspheres have gained more and more interest and attention in the field of life cycle management of pharmaceutical products due to their biocompatibility and biodegradability. So far, a multitude of trial-and-error experiments at lab scale have been used for establishing the correlation relationship between critical process parameters, critical material attributes and critical quality attributes. However, few published studies have elaborated on the development of PLGA microspheres from an industrial perspective. AREAS COVERED In this review, the scale-up feasibility of translational technologies of PLGA microspheres manufacturing have been evaluated. Additionally, state-of-the-art of technologies and facilities in PLGA development have been summarized. Meanwhile, the industrial knowledge matrix of PLGA microspheres development and research are establishing which provide comprehensive insight for understanding properties of PLGA microspheres as controlled/sustained release vehicle. EXPERT OPINION There is still big gap between fundamental research in academic institute and product development in pharmaceuticals. Therefore, the difference and connection between them should be identified gradually for better understanding of PLGA microspheres development.
Collapse
Affiliation(s)
- Xun Li
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| | - Zhanpeng Zhang
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| | - Alan Harris
- Global R&D life cycle management department, Ferring International Center SA, St-Prex, Switzerland
| | - Lin Yang
- Ferring Product Development China, Global R&D life cycle management department, Ferring Pharmaceuticals (Asia) Company Limited, Beijing China
| |
Collapse
|
8
|
Lin A, Liu S, Xiao L, Fu Y, Liu C, Li Y. Controllable preparation of bioactive open porous microspheres for tissue engineering. J Mater Chem B 2022; 10:6464-6471. [DOI: 10.1039/d2tb01198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biodegradable microspheres have been widely applied as cell carriers for tissue engineering and regenerative medicine. However, most cell carriers only have simple planar structure and show poor biological activity and...
Collapse
|