1
|
Wen Z, Luo S, Liu J, Huang Y, Chen G, Cai H. Polyallylamine Hydrochloride-Modified Bovine Serum Albumin Nanoparticles Loaded with α-Solanine for Chemotherapy of Pancreatic Cancer. Int J Nanomedicine 2025; 20:4235-4255. [PMID: 40225222 PMCID: PMC11988199 DOI: 10.2147/ijn.s508936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction α-Solanine (α-Sol) shows promise for pancreatic cancer (PC) treatment by inhibiting PC cell proliferation, migration, and invasion. However, its clinical application is hindered by poor tumor targeting, significant toxicity, and undesirable pharmacokinetics. To address these issues, this study developed a nanoparticle delivery system (PBSO NPs) using bovine serum albumin as a carrier, with polyallylamine hydrochloride surface modification to enhance α-Sol delivery. Methods PBSO NPs were characterized using transmission electron microscopy, dynamic light scattering, nanoparticle size analyzers, and Fourier-transform infrared spectroscopy. Their in vitro drug release profile and cellular uptake capabilities were evaluated. Furthermore, in vitro experiments were conducted using mouse pancreatic cancer cells (Panc02) to investigate the effects of PBSO NPs on Panc02 cell viability, migration, invasion, and apoptosis. Additionally, a pancreatic cancer xenograft tumor model was established for in vivo experiments to explore the impact of PBSO NPs on tumor growth. Results This study successfully developed PBSO NPs with favorable morphology and physiological stability, capable of enhancing cellular uptake. In vitro experiments demonstrated that PBSO NPs significantly inhibited the viability, migration, and invasion of Panc02 cells while promoting apoptosis. Moreover, PBSO NPs enhanced the inhibitory effects of α-Sol on Panc02 cells. In vivo experiments further confirmed that PBSO NPs improved the therapeutic efficacy of α-Sol against PC while partially reducing its toxicity. Additionally, PBSO NPs exhibited good biocompatibility. Discussion PBSO NPs enhance the therapeutic efficacy of α-Sol against PC by inhibiting the viability, migration, and invasion of PC cells while promoting apoptosis, thereby suppressing the progression of PC. This provides a promising therapeutic strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Zhengde Wen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Shan Luo
- Wenzhou Key Laboratory of Perioperative Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Department of Anaesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Juntao Liu
- Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yufan Huang
- Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Gang Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Huajie Cai
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Aulifa DL, Amarilis B, Ichsani LN, Maharani DS, Shabrina AM, Hanifah H, Wulandari RP, Rusdin A, Subra L, Budiman A. A Comprehensive Review: Mesoporous Silica Nanoparticles Greatly Improve Pharmacological Effectiveness of Phytoconstituent in Plant Extracts. Pharmaceuticals (Basel) 2024; 17:1684. [PMID: 39770526 PMCID: PMC11677945 DOI: 10.3390/ph17121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Medicinal plants are increasingly being explored due to their possible pharmacological properties and minimal adverse effects. However, low bioavailability and stability often limit efficacy, necessitating high oral doses to achieve therapeutic levels in the bloodstream. Mesoporous silica nanoparticles (MSNs) offer a potential solution to these limitations. Due to their large surface area, substantial pore volume, and ability to precisely control pore size. MSNs are also capable of efficiently incorporating a wide range of therapeutic substances, including herbal plant extracts, leading to potential use for drug containment and delivery systems. Therefore, this review aimed to discuss and summarize the successful developments of herbal plant extracts loaded into MSN, focusing on preparation, characterization, and the impact on efficacy. Data were collected from publications on Scopus, PubMed, and Google Scholar databases using the precise keywords "mesoporous silica nanoparticle" and "herbal extract". The results showed that improved phytoconstituent bioavailability, modified release profiles, increased stability, reduced dose and toxicity are the primary benefits of this method. This review offers insights on the significance of integrating MSNs into therapeutic formulations to improve pharmacological characteristics and effectiveness of medicinal plant extracts. Future prospects show favorable potential for therapeutic applications using MSNs combined with herbal medicines for clinical therapy.
Collapse
Affiliation(s)
- Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (R.P.W.); (A.R.)
| | - Bunga Amarilis
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (B.A.); (L.N.I.); (D.S.M.); (A.M.S.); (H.H.)
| | - Luthfia Nur Ichsani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (B.A.); (L.N.I.); (D.S.M.); (A.M.S.); (H.H.)
| | - Devita Salsa Maharani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (B.A.); (L.N.I.); (D.S.M.); (A.M.S.); (H.H.)
| | - Ayunda Myela Shabrina
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (B.A.); (L.N.I.); (D.S.M.); (A.M.S.); (H.H.)
| | - Hanifah Hanifah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (B.A.); (L.N.I.); (D.S.M.); (A.M.S.); (H.H.)
| | - Rizky Prasiska Wulandari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (R.P.W.); (A.R.)
| | - Agus Rusdin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (R.P.W.); (A.R.)
| | - Laila Subra
- Department of Pharmacy, Faculty of Bioeconomic, Food and Health Sciences, Universiti Geomatika Malaysia, Kuala Lumpur 54200, Malaysia;
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (B.A.); (L.N.I.); (D.S.M.); (A.M.S.); (H.H.)
| |
Collapse
|
3
|
Ma C, Gao L, Song K, Gu B, Wang B, Pu W, Chen H. Exploring the therapeutic potential of diterpenes in gastric cancer: Mechanisms, efficacy, and clinical prospects. BIOMOLECULES & BIOMEDICINE 2024; 25:1-15. [PMID: 39151097 PMCID: PMC11647260 DOI: 10.17305/bb.2024.10887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/18/2024]
Abstract
Gastric cancer (GC) remains a significant global health challenge, particularly prevalent in East Asia. Despite advancements in various treatment modalities, the prognosis for patients, especially those in advanced stages, remains poor, highlighting the need for innovative therapeutic approaches. This review explores the promising potential of diterpenes, naturally occurring compounds with robust anticancer properties, derived from diverse sources such as plants, marine organisms, and fungi. Diterpenes have shown the ability to influence reactive oxygen species (ROS) generation, ferroptosis, and autophagy, positioning them as attractive candidates for novel cancer therapies. This review explores the mechanisms of action of diterpenes and their clinical implications for the treatment of GC. Additionally, it addresses the challenges in translating these compounds from preclinical studies to clinical applications, emphasizing the need for further research to enhance their therapeutic profiles and minimize potential side effects. The discussion underscores the importance of diterpenes in future anticancer strategies, particularly in the fight against gastric cancer.
Collapse
Affiliation(s)
- Chenhui Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Lei Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Kewei Song
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Baohong Gu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Weigao Pu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
4
|
Nguyen QM, Hutchison P, Palombo E, Yu A, Kingshott P. Antibiofilm Activity of Eugenol-Loaded Chitosan Coatings against Common Medical-Device-Contaminating Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:918-935. [PMID: 38275187 DOI: 10.1021/acsabm.3c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The formation of pathogenic biofilms on medical devices is a major public health concern accounting for over 65% of healthcare-associated infections and causing high infection morbidity, mortality, and a great burden to patients and the healthcare system due to its resistance to treatment. In this study, we developed a chitosan-based antimicrobial coating with embedded mesoporous silica nanoparticles (MSNs) to load and deliver eugenol, an essential oil component, to inhibit the biofilm formation of common bacteria in medical-device-related infections. The eugenol-loaded MSNs were dispersed in a chitosan solution, which was then cross-linked with glutaraldehyde and drop-casted to obtain coatings. The MSNs and coatings were characterized by dynamic light scattering, Brunauer-Emmett-Teller analysis, attenuated-total-reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, 3D optical profilometry, and scanning electron microscopy. The release behavior of eugenol-loaded MSNs and coatings and the antibiofilm and antimicrobial activity of the coatings against adherent Staphylococcus aureus, methicillin-resistant S. aureus, and Pseudomonas aeruginosa were investigated. Eugenol was released from the MSNs and coatings in aqueous conditions in a controlled manner with an initial low release, followed by a peak release, a decrease, and a plateau. While the chitosan coatings alone or with unloaded MSNs demonstrated limited antimicrobial effects and still supported biofilm formation after 24 h, the coating containing eugenol not only reduced biofilm formation but also killed the majority of the attached bacteria. It also showed biocompatibility in indirect contact with NIH/3T3 fibroblasts and a high percentage of live cells in direct contact. However, further investigations into cell proliferation in direct contact are recommended. The findings indicated that the chitosan-based coating with eugenol-loaded MSNs could be developed into an effective strategy to inhibit biofilm formation on medical devices.
Collapse
Affiliation(s)
- Quang Minh Nguyen
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter Hutchison
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Enzo Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
5
|
Dayani L, Biganeh H, Rahimi R. Nanotechnology in the Formulation and Delivery of Natural Products for Cancer. HANDBOOK OF ONCOBIOLOGY: FROM BASIC TO CLINICAL SCIENCES 2024:1347-1369. [DOI: 10.1007/978-981-99-6263-1_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Santin Y, Formoso K, Haidar F, Fuentes MDPO, Bourgailh F, Hifdi N, Hnia K, Doghri Y, Resta J, Champigny C, Lechevallier S, Détrait M, Cousin G, Bisserier M, Parini A, Lezoualc'h F, Verelst M, Mialet-Perez J. Inhalation of acidic nanoparticles prevents doxorubicin cardiotoxicity through improvement of lysosomal function. Theranostics 2023; 13:5435-5451. [PMID: 37908733 PMCID: PMC10614672 DOI: 10.7150/thno.86310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/04/2023] [Indexed: 11/02/2023] Open
Abstract
Doxorubicin (Dox) is an effective anticancer molecule, but its clinical efficacy is limited by strong cardiotoxic side effects. Lysosomal dysfunction has recently been proposed as a new mechanism of Dox-induced cardiomyopathy. However, to date, there is a paucity of therapeutic approaches capable of restoring lysosomal acidification and function in the heart. Methods: We designed novel poly(lactic-co-glycolic acid) (PLGA)-grafted silica nanoparticles (NPs) and investigated their therapeutic potential in the primary prevention of Dox cardiotoxicity in cardiomyocytes and mice. Results: We showed that NPs-PLGA internalized rapidly in cardiomyocytes and accumulated inside the lysosomes. Mechanistically, NPs-PLGA restored lysosomal acidification in the presence of doxorubicin or bafilomycin A1, thereby improving lysosomal function and autophagic flux. Importantly, NPs-PLGA mitigated Dox-related mitochondrial dysfunction and oxidative stress, two main mechanisms of cardiotoxicity. In vivo, inhalation of NPs-PLGA led to effective and rapid targeting of the myocardium, which prevented Dox-induced adverse remodeling and cardiac dysfunction in mice. Conclusion: Our findings demonstrate a pivotal role for lysosomal dysfunction in Dox-induced cardiomyopathy and highlight for the first time that pulmonary-driven NPs-PLGA administration is a promising strategy against anthracycline cardiotoxicity.
Collapse
Affiliation(s)
- Yohan Santin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Karina Formoso
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Fraha Haidar
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Maria Del Pilar Oreja Fuentes
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Florence Bourgailh
- Center for Electron Microscopy Applied to Biology (CMEAB), Université de Toulouse, Faculté de Médecine, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Nesrine Hifdi
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Karim Hnia
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Yosra Doghri
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jessica Resta
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Camille Champigny
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Séverine Lechevallier
- Center for Materials Development and Structural Studies (CEMES), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Maximin Détrait
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Grégoire Cousin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- Department of Cardiology, Rangueil University Hospital, Toulouse, France
| | - Malik Bisserier
- New York Medical College, New York, Department of Cell Biology and Anatomy, and of Physiology, Valhalla, New York, United States
| | - Angelo Parini
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Frank Lezoualc'h
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Marc Verelst
- Center for Materials Development and Structural Studies (CEMES), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jeanne Mialet-Perez
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
7
|
Budiman A, Rusdin A, Subra L, Aulifa DL. How Key Alterations of Mesoporous Silica Nanoparticles Affect Anti-Lung Cancer Therapy? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:5473-5493. [PMID: 37791322 PMCID: PMC10542112 DOI: 10.2147/ijn.s426120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
In 2020, there were 2.21 million new instances of lung cancer, making it the top cause of mortality globally, responsible for close to 10 million deaths. The physicochemical problems of chemotherapy drugs are the primary challenge that now causes a drug's low effectiveness. Solubility is a physicochemical factor that has a significant impact on a drug's biopharmaceutical properties, starting with the rate at which it dissolves and extending through how well it is absorbed and bioavailable. One of the most well-known methods for addressing a drug's solubility is mesoporous silica, which has undergone excellent development due to the conjugation of polymers and ligands that increase its effectiveness. However, there are still very few papers addressing the success of this discovery, particularly those addressing its molecular pharmaceutics and mechanism. Our study's objectives were to explore and summarize the effects of targeting mediator on drug development using mesoporous silica with and without functionalized polymer. We specifically focused on highlighting the molecular pharmaceutics and mechanism in this study's innovative findings. Journals from the Scopus, PubMed, and Google Scholar databases that were released during the last ten years were used to compile this review. According to inclusion and exclusion standards adjusted. This improved approach produced very impressive results, a very significant change in the characteristics of mesoporous silica that can affect effectiveness. Mesoporous silica approaches have the capacity to greatly enhance a drug's physicochemical issues, boost therapeutic efficacy, and acquire superb features.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Agus Rusdin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Laila Subra
- Department of Pharmacy, faculty of Bioeconomic, Food and Health Sciences, Universiti Geomatika Malaysia, Kuala Lumpur, Malaysia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| |
Collapse
|
8
|
Chen J, Liao X, Gan J. Review on the protective activity of osthole against the pathogenesis of osteoporosis. Front Pharmacol 2023; 14:1236893. [PMID: 37680712 PMCID: PMC10481961 DOI: 10.3389/fphar.2023.1236893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
Osteoporosis (OP), characterized by continuous bone loss and increased fracture risk, has posed a challenge to patients and society. Long-term administration of current pharmacological agents may cause severe side effects. Traditional medicines, acting as alternative agents, show promise in treating OP. Osthole, a natural coumarin derivative separated from Cnidium monnieri (L.) Cusson and Angelica pubescens Maxim. f., exhibits protective effects against the pathological development of OP. Osthole increases osteoblast-related bone formation and decreases osteoclast-related bone resorption, suppressing OP-related fragility fracture. In addition, the metabolites of osthole may exhibit pharmacological effectiveness against OP development. Mechanically, osthole promotes osteogenic differentiation by activating the Wnt/β-catenin and BMP-2/Smad1/5/8 signaling pathways and suppresses RANKL-induced osteoclastogenesis and osteoclast activity. Thus, osthole may become a promising agent to protect against OP development. However, more studies should be performed due to, at least in part, the uncertainty of drug targets. Further pharmacological investigation of osthole in OP treatment might lead to the development of potential drug candidates.
Collapse
Affiliation(s)
- Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People’s Hospital, Ganzhou, China
| | - Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
9
|
Shoaib A, Javed S, Wahab S, Azmi L, Tabish M, Sultan MH, Abdelsalam K, Alqahtani SS, Ahmad MF. Cellular, Molecular, Pharmacological, and Nano-Formulation Aspects of Thymoquinone-A Potent Natural Antiviral Agent. Molecules 2023; 28:5435. [PMID: 37513307 PMCID: PMC10383476 DOI: 10.3390/molecules28145435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The goal of an antiviral agent research is to find an antiviral drug that reduces viral growth without harming healthy cells. Transformations of the virus, new viral strain developments, the resistance of viral pathogens, and side effects are the current challenges in terms of discovering antiviral drugs. The time has come and it is now essential to discover a natural antiviral agent that has the potential to destroy viruses without causing resistance or other unintended side effects. The pharmacological potency of thymoquinone (TQ) against different communicable and non-communicable diseases has been proven by various studies, and TQ is considered to be a safe antiviral substitute. Adjunctive immunomodulatory effects in addition to the antiviral potency of TQ makes it a major compound against viral infection through modulating the production of nitric oxide and reactive oxygen species, decreasing the cytokine storm, and inhibiting endothelial dysfunction. Nevertheless, TQ's low oral bioavailability, short half-life, poor water solubility, and conventional formulation are barriers to achieving its optimal pharmacologic benefits. Nano-formulation proposes numerous ways to overcome these obstacles through a small particle size, a big surface area, and a variety of surface modifications. Nano-based pharmaceutical innovations to combat viral infections using TQ are a promising approach to treating surmounting viral infections.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit (PPRU), College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226007, India
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Muhammad H Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Karim Abdelsalam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Pharmacy Practice Research Unit (PPRU), College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saad S Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
10
|
Liu H, Han J, Lv Y, Zhao Z, Zheng S, Sun Y, Sun T. Isorhamnetin and anti-PD-L1 antibody dual-functional mesoporous silica nanoparticles improve tumor immune microenvironment and inhibit YY1-mediated tumor progression. J Nanobiotechnology 2023; 21:208. [PMID: 37408047 DOI: 10.1186/s12951-023-01967-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND The immune checkpoint inhibitor (ICI) anti-PD-L1 monoclonal antibody can inhibit the progress of hepatocellular carcinoma (HCC). Epithelial-mesenchymal transformation (EMT) can promote tumor migration and the formation of immune-suppression microenvironment, which affects the therapeutic effect of ICI. Yin-yang-1 (YY1) is an important transcription factor regulating proliferation, migration and EMT of tumor cells. This work proposed a drug-development strategy that combined the regulation of YY1-mediated tumor progression with ICIs for the treatment of HCC. METHODS We first studied the proteins that regulated YY1 expression by using pull-down, co-immunoprecipitation, and duo-link assay. The active compound regulating YY1 content was screened by virtual screening and cell-function assay. Isorhamnetin (ISO) and anti-PD-L1 antibody dual-functional mesoporous silica nanoparticles (HMSN-ISO@ProA-PD-L1 Ab) were prepared as an antitumor drug to play a synergistic anti-tumor role. RESULTS YY1 can specifically bind with the deubiquitination enzyme USP7. USP7 can prevent YY1 from ubiquitin-dependent degradation and stabilize YY1 expression, which can promote the proliferation, migration and EMT of HCC cells. Isorhamnetin (ISO) were screened out, which can target USP7 and promote YY1 ubiquitin-dependent degradation. The cell experiments revealed that the HMSN-ISO@ProA-PD-L1 Ab nanoparticles can specifically target tumor cells and play a role in the controlled release of ISO. HMSN-ISO@ProA-PD-L1 Ab nanoparticles inhibited the growth of Hepa1-6 transplanted tumors and the effect was better than that of PD-L1 Ab treatment group and ISO treatment group. HMSN-ISO@ProA-PD-L1 Ab nanoparticles also exerted a promising effect on reducing MDSC content in the tumor microenvironment and promoting T-cell infiltration in tumors. CONCLUSIONS The isorhamnetin and anti-PD-L1 antibody dual-functional nanoparticles can improve tumor immune microenvironment and inhibit YY1-mediated tumor progression. This study demonstrated the possibility of HCC treatment strategies based on inhibiting USP7-mediated YY1 deubiquitination combined with anti-PD-L1 monoclonal Ab.
Collapse
Affiliation(s)
- Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Ying Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zihan Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Shaoting Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yu Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
11
|
Kerdmuanglek F, Chomtong T, Boonsith S, Chutimasakul T, Iemsam-Arng J, Thepwatee S. Non-ionic surfactant-assisted controlled release of oxyresveratrol on dendritic fibrous silica for topical applications. J Colloid Interface Sci 2023; 646:342-353. [PMID: 37201462 DOI: 10.1016/j.jcis.2023.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
We present a simple and eco-friendly method for controlled drug release using a surfactant-assisted method. Oxyresveratrol (ORES) was co-loaded with a non-ionic surfactant onto KCC-1, a dendritic fibrous silica, using an ethanol evaporation technique. The carriers were characterized using FE-SEM, TEM, XRD, N2 adsorption-desorption, FTIR, and Raman spectroscopy, and the loading and encapsulation efficiencies were assessed using TGA and DSC techniques. Contact angle and zeta potential were used to determine the surfactant arrangement and the particle charges. To investigate the effects of different surfactants (Tween 20, Tween 40, Tween 80, Tween 85, and Span 80) on ORES release, we conducted experiments under different pH and temperature conditions. Results showed that the types of surfactants, drug loading content, pH, and temperature significantly affected the drug release profile. The percentage of drug loading efficiency of the carriers was in the range of 80 %-100 %, and the release of ORES was in the order of M/KCC-1 > M/K/S80 > M/K/T40 > M/K/T20 > MK/T80 > M/K/T85 at 24 h. Furthermore, the carriers provided excellent protection for ORES against UVA and maintained its antioxidant activity. KCC-1 and Span 80 enhanced the cytotoxicity to HaCaT cells, while Tween 80 suppressed the cytotoxicity.
Collapse
Affiliation(s)
- Fonkaeo Kerdmuanglek
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| | - Thitikorn Chomtong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Suthida Boonsith
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand.
| | - Threeraphat Chutimasakul
- Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology, Nakhon Nayok 26120, Thailand.
| | - Jayanant Iemsam-Arng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Sukanya Thepwatee
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand; Research Group of Bioactive Product Design, Cosmetics and Health Care Innovation (BioCos), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| |
Collapse
|
12
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Preparation of rutin-loaded mesoporous silica nanoparticles and evaluation of its physicochemical, anticancer, and antibacterial properties. Mol Biol Rep 2023; 50:203-213. [PMID: 36319783 DOI: 10.1007/s11033-022-07953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The studies have shown that rutin has great potential as an anticancer and antimicrobial plant base agent; nevertheless, poor bioavailability and low aqueous solubility of rutin limit its application. One of the beneficial routes to increase the solubility and bioavailability of rutin is the development of nanoparticulate material. This study aimed to assess the anticancer and antibacterial effects of rutin-loaded mesoporous silica nanoparticles (RUT-MSNs). METHODS RUT-MSNs were prepared and physicochemically characterized. The cytotoxicity of RUT-MSNs on the HN5 cells as head and neck cancer cells was evaluated. The expression level of apoptosis-related genes such as Bcl-2 and Bax genes were evaluated. In addition, ROS production of RUT-MSNs treated cells was assessed. In addition, minimum inhibitory concentration (MIC), biofilm, and attachment inhibitory effects of RUT-MSNs compared with free rutin were assessed against different bacterial strains. RESULTS Transmission electron microscopy (TEM) showed mesoporous rod-shaped nanoparticles with an average particle size of less than 100 nm. RUT-MSNs displayed the cytotoxic effect with IC50 of 20.23 µM in 48 h of incubation time (p < 0.05). The elevation in the ratio of Bax/Bcl-2 was displayed within the IC50 concentration of RUT-MSNs in 48 h (p < 0.05). The antibacterial action of rutin was improved by loading rutin in MSNs to the nano-sized range in the MIC test. CONCLUSION The anticancer and antibacterial effects of RUT-MSNs were considerably more than rutin. RUT-MSNs inhibited the growth of HN5 cells by inducing apoptosis and producing ROS. These results suggest that RUT-MSNs may be useful in the treatment of cancers and infections.
Collapse
|
14
|
Fahmy HM, Ahmed MM, Mohamed AS, Shams-Eldin E, Abd El-Daim TM, El-Feky AS, Mustafa AB, Abd Alrahman MW, Mohammed FF, Fathy MM. Novel lipid-coated mesoporous silica nanoparticles loaded with thymoquinone formulation to increase its bioavailability in the brain and organs of Wistar rats. BMC Pharmacol Toxicol 2022; 23:71. [PMID: 36163187 PMCID: PMC9511777 DOI: 10.1186/s40360-022-00616-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
AIMS The Blood-Brain Barrier (BBB) is a filter for most medications and blocks their passage into the brain. More effective drug delivery strategies are urgently needed to transport medications into the brain. This study investigated the biodistribution of thymoquinone (TQ) and the effect on enzymatic and non-enzymatic oxidative stress indicators in different brain regions, either in free form or incorporated into nanocarriers as mesoporous silica nanoparticles (MSNs). Lipid bilayer-coated MSNs. MATERIALS AND METHODS MSNs and LB-MSNs were synthesized and characterized using a transmission electron microscope and dynamic light scattering to determine the particle size and zeta potential. TQ encapsulation efficiency and TQ's release profile from LB-MSNs were also examined. The impact of loading LB-MSNs with TQ-on-TQ delivery to different brain areas was examined using chromatographic measurement. Furthermore, nitric oxide, malondialdehyde (MDA), reduced glutathione, and catalase were evaluated as oxidant and antioxidant stress biomarkers. KEY FINDINGS The LB-MSNs formulation successfully transported TQ to several areas of the brain, liver, and kidney, revealing a considerable increase in TQ delivery in the thalamus (81.74%) compared with that in the free TQ group and a considerable reduction in the cortex (-44%). The LB-MSNs formulation had no significant effect on TQ delivery in the cerebellum, striatum, liver, and kidney. SIGNIFICANCE TQ was redistributed in different brain areas after being encapsulated in LB-MSNs, indicating that LB-MSNs have the potential to be developed as a drug delivery system for selective clinical application of specific brain regions. CONCLUSIONS LB-MSNs are capable nanoplatforms that can be used to target medications precisely to specific brain regions.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Mostafa M Ahmed
- Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayman S Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Engy Shams-Eldin
- Special Food and Nutrition Department, Food Technology Research Institute, Agriculture Research Center, 9 Gamma Street, Giza, Cairo, Egypt
| | | | - Amena S El-Feky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.,School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Amira B Mustafa
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mai W Abd Alrahman
- Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Faten F Mohammed
- Pathology Department, Faculty of Veterinary, Cairo University, Giza, Egypt
| | - Mohamed M Fathy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Carucci C, Sechi G, Piludu M, Monduzzi M, Salis A. A drug delivery system based on poly-L-lysine grafted mesoporous silica nanoparticles for quercetin release. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Manzano M, Gabizón A, Vallet-Regí M. Characterization of a Mesoporous Silica Nanoparticle Formulation Loaded with Mitomycin C Lipidic Prodrug (MLP) and In Vitro Comparison with a Clinical-Stage Liposomal Formulation of MLP. Pharmaceutics 2022; 14:pharmaceutics14071483. [PMID: 35890378 PMCID: PMC9323893 DOI: 10.3390/pharmaceutics14071483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
Nanomedicines have revolutionized the treatment of certain types of cancer, as is the case of doxil, liposomal formulation with doxorubicin encapsulated, in the treatment of certain types of ovarian cancer, AIDS-related Kaposi sarcoma, and multiple myeloma. These nanomedicines can improve the performance of conventional chemotherapeutic treatments, with fewer side effects and better efficiency against cancer. Although liposomes have been used in some formulations, different nanocarriers with better features in terms of stability and adsorption capabilities are being explored. Among the available nanoparticles in the field, mesoporous silica nanoparticles (MSNP) have attracted great attention as drug delivery platforms for the treatment of different diseases. Here, a novel formulation based on MSNP loaded with a potent antitumor prodrug that works in vitro as well as in a clinically evaluated liposomal formulation has been developed. This novel formulation shows excellent prodrug encapsulation efficiency and effective release of the anticancer drug only under certain stimuli typical of tumor environments. This behavior is of capital importance for translating this nanocarrier to the clinic in the near future.
Collapse
Affiliation(s)
- Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28034 Madrid, Spain
| | - Alberto Gabizón
- Oncology Institute and Nano-Oncology Research Center, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 9112102, Israel;
| | - María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain;
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28034 Madrid, Spain
- Correspondence:
| |
Collapse
|
17
|
Nanomedicine as an Emerging Technology to Foster Application of Essential Oils to Fight Cancer. Pharmaceuticals (Basel) 2022; 15:ph15070793. [PMID: 35890092 PMCID: PMC9320655 DOI: 10.3390/ph15070793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022] Open
Abstract
Natural prodrugs extracted from plants are increasingly used in many sectors, including the pharmaceutical, cosmetic, and food industries. Among these prodrugs, essential oils (EOs) are of particular importance. These biologically active volatile oily liquids are produced by medicinal and aromatic plants and characterized by a distinctive odor. EOs possess high anticancer, antibacterial, antiviral, and antioxidant potential but often are associated with low stability; high volatility; and a high risk of deterioration with exposure to heat, humidity, light, or oxygen. Furthermore, their bioavailability is limited because they are not soluble in water, and enhancements are needed to increase their potential to target specific cells or tissues, as well as for controlled release. Nanomedicine, the application of nanotechnology in medicine, may offer efficient solutions to these problems. The technology is based on creating nanostructures in which the natural prodrug is connected to or encapsulated in nanoparticles or submicron-sized capsules that ensure their solubility in water and their targeting properties, as well as controlled delivery. The potential of EOs as anticancer prodrugs is considerable but not fully exploited. This review focusses on the recent progress towards the practical application of EOs in cancer therapy based on nanotechnology applications.
Collapse
|
18
|
Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, Chénais B. Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Gao Y, Zhang Y, Hong Y, Wu F, Shen L, Wang Y, Lin X. Multifunctional Role of Silica in Pharmaceutical Formulations. AAPS PharmSciTech 2022; 23:90. [PMID: 35296944 DOI: 10.1208/s12249-022-02237-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
Due to the high surface area, adjustable surface and pore structures, and excellent biocompatibility, nano- and micro-sized silica have certainly attracted the attention of many researchers in the medical fields. This review focuses on the multifunctional roles of silica in different pharmaceutical formulations including solid preparations, liquid drugs, and advanced drug delivery systems. For traditional solid preparations, it can improve compactibility and flowability, promote disintegration, adjust hygroscopicity, and prevent excessive adhesion. As for liquid drugs and preparations, like volatile oil, ethers, vitamins, and self-emulsifying drug delivery systems, silica with adjustable pore structures is a good adsorbent for solidification. Also, silica with various particle sizes, surface characteristics, pore structure, and surface modification controlled by different synthesis methods has gained wide attention owing to its unparalleled advantages for drug delivery and disease diagnosis. We also collate the latest pharmaceutical applications of silica sorted out by formulations. Finally, we point out the thorny issues for application and survey future trends pertaining to silica in an effort to provide a comprehensive overview of its future development in the medical fields. Graphical Abstract.
Collapse
|
20
|
Chavarria V, Ortiz-Islas E, Salazar A, Pérez-de la Cruz V, Espinosa-Bonilla A, Figueroa R, Ortíz-Plata A, Sotelo J, Sánchez-García FJ, Pineda B. Lactate-Loaded Nanoparticles Induce Glioma Cytotoxicity and Increase the Survival of Rats Bearing Malignant Glioma Brain Tumor. Pharmaceutics 2022; 14:pharmaceutics14020327. [PMID: 35214059 PMCID: PMC8880216 DOI: 10.3390/pharmaceutics14020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
A glioblastoma is an aggressive form of a malignant glial-derived tumor with a poor prognosis despite multimodal therapy approaches. Lactate has a preponderant role in the tumor microenvironment, playing an immunoregulatory role as well as being a carbon source for tumor growth. Lactate homeostasis depends on the proper functioning of intracellular lactate regulation systems, such as transporters and enzymes involved in its synthesis and degradation, with evidence that an intracellular lactate overload generates metabolic stress on tumor cells and tumor cell death. We propose that the delivery of a lactate overload carried in nanoparticles, allowing the intracellular release of lactate, would compromise the survival of tumor cells. We synthesized and characterized silica and titania nanoparticles loaded with lactate to evaluate the cellular uptake, metabolic activity, pH modification, and cytotoxicity on C6 cells under normoxia and chemical hypoxia, and, finally, determined the survival of an orthotopic malignant glioma model after in situ administration. A dose-dependent reduction in metabolic activity of treated cells under normoxia was found, but not under hypoxia, independent of glucose concentration. Lactated-loaded silica nanoparticles were highly cytotoxic (58.1% of dead cells) and generated significant supernatant acidification. In vivo, lactate-loaded silica nanoparticles significantly increased the median survival time of malignant glioma-bearing rats (p = 0.005) when administered in situ. These findings indicate that lactate-loaded silica nanoparticles are cytotoxic on glioma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico; (V.C.); (A.S.); (R.F.); (J.S.)
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Emma Ortiz-Islas
- Nanotechnology Laboratory, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico;
| | - Alelí Salazar
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico; (V.C.); (A.S.); (R.F.); (J.S.)
| | - Verónica Pérez-de la Cruz
- Neurobiochemistry and Behaviour Laboratory, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico;
| | - Alejandra Espinosa-Bonilla
- Central de Instrumentación, Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Rubén Figueroa
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico; (V.C.); (A.S.); (R.F.); (J.S.)
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alma Ortíz-Plata
- Experimental Neuropathology Laboratory, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico;
| | - Julio Sotelo
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico; (V.C.); (A.S.); (R.F.); (J.S.)
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Correspondence: (F.J.S.-G.); (B.P.); Tel.: +52-1-(55)-57296300 (ext. 62370) (F.J.S.-G.); +52-1-(55)-56063822 (ext. 2001) (B.P.)
| | - Benjamín Pineda
- Neuroimmunology and Neuro-Oncology Unit, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City 14269, Mexico; (V.C.); (A.S.); (R.F.); (J.S.)
- Correspondence: (F.J.S.-G.); (B.P.); Tel.: +52-1-(55)-57296300 (ext. 62370) (F.J.S.-G.); +52-1-(55)-56063822 (ext. 2001) (B.P.)
| |
Collapse
|
21
|
Raduly FM, Rădiţoiu V, Rădiţoiu A, Frone AN, Nicolae CA, Purcar V, Ispas G, Constantin M, Răut I. Modeling the Properties of Curcumin Derivatives in Relation to the Architecture of the Siloxane Host Matrices. MATERIALS (BASEL, SWITZERLAND) 2021; 15:267. [PMID: 35009413 PMCID: PMC8745949 DOI: 10.3390/ma15010267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
Research in the field of natural dyes has constantly focused on methods of conditioning curcumin and diversifying their fields of use. In this study, hybrid materials were obtained from modified silica structures, as host matrices, in which curcumin dyes were embedded. The influence of the silica network structure on the optical properties and the antimicrobial activity of the hybrid materials was monitored. By modifying the ratio between phenyltriethoxysilane:diphenyldimethoxysilane (PTES:DPDMES), it was possible to evaluate the influence the organosilane network modifiers had on the morphostructural characteristics of nanocomposites. The nanosols were obtained by the sol-gel method, in acid catalysis. The nanocomposites obtained were deposited as films on a glass support and showed a transmittance value (T measured at 550 nm) of around 90% and reflectance of about 11%, comparable to the properties of the uncovered support. For the coatings deposited on PET (polyethylene terephthalate) films, these properties remained at average values of T550 = 85% and R550 = 11% without significantly modifying the optical properties of the support. The sequestration of the dye in silica networks reduced the antimicrobial activity of the nanocomposites obtained, by comparison to native dyes. Tests performed on Candida albicans fungi showed good results for the two curcumin derivatives embedded in silica networks (11-18 mm) by using the spot inoculation method; in comparison, the alcoholic dye solution has a spot diameter of 20-23 mm. In addition, hybrids with the CA derivative were the most effective (halo diameter of 17-18 mm) in inhibiting the growth of Gram-positive bacteria, compared to the curcumin derivative in alcoholic solution (halo diameter of 21 mm). The results of the study showed that the presence of 20-40% by weight DPDMES in the composition of nanosols is the optimal range for obtaining hybrid films that host curcumin derivatives, with potential uses in the field of optical films or bioactive coatings.
Collapse
Affiliation(s)
- Florentina Monica Raduly
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Valentin Rădiţoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Alina Rădiţoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Adriana Nicoleta Frone
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Cristian Andi Nicolae
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Violeta Purcar
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Georgiana Ispas
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| | - Mariana Constantin
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
- Faculty of Pharmacy, Titu Maiorescu University, Bd. Gh. Sincai, No.16, 040441 Bucharest, Romania
| | - Iuliana Răut
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; (F.M.R.); (V.R.); (A.N.F.); (C.A.N.); (V.P.); (G.I.); (M.C.); (I.R.)
| |
Collapse
|
22
|
Tao C, Zhao F, Tang ZW, Zhang L, Niu Q, Cao G, Zhao LM, Huang W, Zhao P. Bi2O3 gated Fe3O4@ZrO2 core/shell drug delivery system for chemo/ionic synergistic therapeutics. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Jia L, Zhang P, Sun H, Dai Y, Liang S, Bai X, Feng L. Optimization of Nanoparticles for Smart Drug Delivery: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2790. [PMID: 34835553 PMCID: PMC8622036 DOI: 10.3390/nano11112790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Nanoparticle delivery systems have good application prospects in the treatment of various diseases, especially in cancer treatment. The effect of drug delivery is regulated by the properties of nanoparticles. There have been many studies focusing on optimizing the structure of nanoparticles in recent years, and a series of achievements have been made. This review summarizes the optimization strategies of nanoparticles from three aspects-improving biocompatibility, increasing the targeting efficiency of nanoparticles, and improving the drug loading rate of nanoparticles-aiming to provide some theoretical reference for the subsequent drug delivery of nanoparticles.
Collapse
Affiliation(s)
- Lina Jia
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Peng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Yuguo Dai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Shuzhang Liang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Xue Bai
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; (L.J.); (P.Z.); (H.S.); (Y.D.); (S.L.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
24
|
Martinez-Erro S, Navas F, Romaní-Cubells E, Fernández-García P, Morales V, Sanz R, García-Muñoz RA. Kidney-Protector Lipidic Cilastatin Derivatives as Structure-Directing Agents for the Synthesis of Mesoporous Silica Nanoparticles for Drug Delivery. Int J Mol Sci 2021; 22:7968. [PMID: 34360733 PMCID: PMC8348040 DOI: 10.3390/ijms22157968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/23/2023] Open
Abstract
Mesoporous silica nanomaterials have emerged as promising vehicles in controlled drug delivery systems due to their ability to selectively transport, protect, and release pharmaceuticals in a controlled and sustained manner. One drawback of these drug delivery systems is their preparation procedure that usually requires several steps including the removal of the structure-directing agent (surfactant) and the later loading of the drug into the porous structure. Herein, we describe the preparation of mesoporous silica nanoparticles, as drug delivery systems from structure-directing agents based on the kidney-protector drug cilastatin in a simple, fast, and one-step process. The concept of drug-structure-directing agent (DSDA) allows the use of lipidic derivatives of cilastatin to direct the successful formation of mesoporous silica nanoparticles (MSNs). The inherent pharmacological activity of the surfactant DSDA cilastatin-based template permits that the MSNs can be directly employed as drug delivery nanocarriers, without the need of extra steps. MSNs thus synthesized have shown good sphericity and remarkable textural properties. The size of the nanoparticles can be adjusted by simply selecting the stirring speed, time, and aging temperature during the synthesis procedure. Moreover, the release experiments performed on these materials afforded a slow and sustained drug release over several days, which illustrates the MSNs potential utility as drug delivery system for the cilastatin cargo kidney protector. While most nanotechnology strategies focused on combating the different illnesses this methodology emphasizes on reducing the kidney toxicity associated to cancer chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rafael A. García-Muñoz
- Department of Chemical and Environmental Technology, Rey Juan Carlos University (URJC), C/Tulipán s/n, Móstoles, 28933 Madrid, Spain; (S.M.-E.); (F.N.); (E.R.-C.); (P.F.-G.); (V.M.); (R.S.)
| |
Collapse
|
25
|
|