1
|
Mishra A, Qamar F, Ashrafi K, Fatima S, Samim M, Mohmmed A, Abdin MZ. Emerging nanotechnology-driven drug delivery solutions for malaria: Addressing drug resistance and improving therapeutic success. Int J Pharm 2025; 670:125163. [PMID: 39788401 DOI: 10.1016/j.ijpharm.2024.125163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/14/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Malaria remains the fifth deadliest parasitic infection worldwide, despite significant advancements in technology. A major challenge in combating this disease lies in the growing resistance of malaria parasites to antimalarial drugs and insect vectors to insecticides. The emerging inefficacy of artemisinin-based combination therapies (ACTs) further exacerbates the issue. Additionally, the absence of a highly effective malaria vaccine continues to be a significant obstacle. The complex biology of the malaria parasite and the multifaceted nature of the disease contribute to these challenges. Recent advancements in nanotechnology offer promising solutions in malaria treatment, providing benefits such as improved drug stability, sustained release, and targeted delivery to specific cells. Encapsulation technology, in particular, addresses critical limitations like poor solubility, low bioavailability, and frequent dosing requirements. Thus, this review explores innovative strategies to combat malaria, focusing on nanotechnology-based antimalarial formulations and their evaluation in vitro and in vivo. Moreover, the study highlights the SAR of potent antimalarial compounds, molecular markers linked with drug resistance, ACTs, advocates for eco-friendly approaches, nanotechnology-driven vaccines, and new antimalarial agents with their specific targets.
Collapse
Affiliation(s)
- Anuradha Mishra
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Firdaus Qamar
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Kudsiya Ashrafi
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saman Fatima
- Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Malik Zainul Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Saleh M, El-Moghazy A, Elgohary AH, Saber WIA, Helmy YA. Revolutionizing Nanovaccines: A New Era of Immunization. Vaccines (Basel) 2025; 13:126. [PMID: 40006673 PMCID: PMC11860605 DOI: 10.3390/vaccines13020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Infectious diseases continue to pose a significant global health threat. To combat these challenges, innovative vaccine technologies are urgently needed. Nanoparticles (NPs) have unique properties and have emerged as a promising platform for developing next-generation vaccines. Nanoparticles are revolutionizing the field of vaccine development, offering a new era of immunization. They allow the creation of more effective, stable, and easily deliverable vaccines. Various types of NPs, including lipid, polymeric, metal, and virus-like particles, can be employed to encapsulate and deliver vaccine components, such as mRNA or protein antigens. These NPs protect antigens from degradation, target them to specific immune cells, and enhance antigen presentation, leading to robust and durable immune responses. Additionally, NPs can simultaneously deliver multiple vaccine components, including antigens, and adjuvants, in a single formulation, simplifying vaccine production and administration. Nanovaccines offer a promising approach to combat food- and water-borne bacterial diseases, surpassing traditional formulations. Further research is needed to address the global burden of these infections. This review highlights the potential of NPs to revolutionize vaccine platforms. We explore their mechanisms of action, current applications, and emerging trends. The review discusses the limitations of nanovaccines, innovative solutions and the potential role of artificial intelligence in developing more effective and accessible nanovaccines to combat infectious diseases.
Collapse
Affiliation(s)
- Mohammed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Ahmed El-Moghazy
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Adel H. Elgohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
3
|
Keleş S, Alakbarli J, Akgül B, Baghirova M, Imamova N, Barati A, Shikhaliyeva I, Allahverdiyev A. Nanotechnology based drug delivery systems for malaria. Int J Pharm 2024; 666:124746. [PMID: 39321903 DOI: 10.1016/j.ijpharm.2024.124746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Malaria, caused by Plasmodium parasites transmitted through Anopheles mosquitoes, remains a global health burden, particularly in tropical regions. The most lethal species, Plasmodium falciparum and Plasmodium vivax, pose significant threats to human health. Despite various treatment strategies, malaria continues to claim lives, with Africa being disproportionately affected. This review explores the advancements in drug delivery systems for malaria treatment, focusing on polymeric and lipid-based nanoparticles. Traditional antimalarial drugs, while effective, face challenges such as toxicity and poor bio-distribution. To overcome these issues, nanocarrier systems have been developed, aiming to enhance drug efficacy, control release, and minimize side effects. Polymeric nanocapsules, dendrimers, micelles, liposomes, lipid nanoparticles, niosomes, and exosomes loaded with antimalarial drugs are examined, providing a comprehensive overview of recent developments in nanotechnology for malaria treatment. The current state of antimalarial treatment, including combination therapies and prophylactic drugs, is discussed, with a focus on the World Health Organization's recommendations. The importance of nanocarriers in malaria management is underscored, highlighting their role in targeted drug delivery, controlled release, and improved pharmacological properties. This review bridges the gap in the literature, consolidating the latest advancements in nanocarrier systems for malaria treatment and offering insights into potential future developments in the field.
Collapse
Affiliation(s)
- Sedanur Keleş
- Faculty of Engineering, Department of Metallurgical and Materials Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Jahid Alakbarli
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan; Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Buşra Akgül
- Faculty of Chemistry-Metallurgy, Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
| | - Malahat Baghirova
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Nergiz Imamova
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Ana Barati
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Inji Shikhaliyeva
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan
| | - Adil Allahverdiyev
- The V. Y. Akhundov Scientific Research Medical Preventive Institute, Baku, Azerbaijan.
| |
Collapse
|
4
|
Aboelsoued D, Toaleb NI, Ibrahim S, Ibrahim S. In vitro and ex vivo protoscolicidal effect of poly(amidoamine) nanoemulsion against Echinococcus granulosus. Sci Rep 2024; 14:11957. [PMID: 38796499 PMCID: PMC11127951 DOI: 10.1038/s41598-024-62015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Hydatidosis causes a serious health hazard to humans and animals leading to significant economic and veterinary and public health concern worldwide. The present study aimed to evaluate the in vitro and ex vivo protoscolicidal effects of synthesized poly(amidoamine), PAMAM, nanoemulsion. In this study, PAMAM was characterized through dynamic light scattering technique to investigate the particle size and zeta potential of nanoemulsified polymer. For the in vitro and ex vivo assays, we used eosin dye exclusion test and scanning electron microscope (SEM) to evaluate the effects of the prepared and characterized PAMAM nanoemulsion against protoscoleces from Echinococcus granulosus sensu lato G6 (GenBank: OQ443068.1) isolated from livers of naturally infected camels. Various concentrations (0.5, 1, 1.5 and 2 mg/mL) of PAMAM nanoemulsion at different exposure times (5, 10, 20 and 30 min) were tested against protoscolices. Our findings showed that PAMAM nanoemulsion had considerable concentration- and time-dependent protoscolicidal effect at both in vitro and ex vivo experiments. Regarding in vitro assay, PAMAM nanoemulsion had a potent protoscolicidal effect when compared with the control group with a highest protoscolicidal activity observed at the concentration of 2 mg/mL at all exposure times, such that 100% of protoscolices were killed after 20 min of exposure. Also, the mortality of protoscolices was 100% after 30 min of exposure to 1 and 1.5 mg/mL of PAMAM nanoemulsion, in vitro. Concerning ex vivo assay PAMAM nanoemulsion recorded the highest mortality rates at the concentration of 2 mg/mL (55, 99.4 and 100% at 10, 20, 30 min, respectively). Ultrastructure examination of examined protoscolices after 20 min of exposure to PAMAM nanoemulsion showed a complete loss of rostellar hooks, disruption of suckers with disorganization of hooks with partial or complete loss of them, and damage of protoscolices tegument with loss of their integrity in the form of holes and contraction of the soma region were observed in 1.5 and 2 mg/mL of PAMAM, in vitro and ex vivo, showing more damage in the in vitro conditions. It can be concluded that PAMAM nanoemulsion is a promising protoscolicidal agent offering a high protoscolicidal effect at a short exposure time. Further in vivo studies and preclinical animal trials are required to evaluate its efficacy and clinical applications against hydatid cysts.
Collapse
Affiliation(s)
- Dina Aboelsoued
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Nagwa I Toaleb
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Sally Ibrahim
- Department of Animal Reproduction and AI, Veterinary Research Institute, National Research Centre, El Buhouth Street, Dokki, Giza, Egypt
| | - Saber Ibrahim
- Packaging Materials Department, National Research Centre, Dokki, Giza, 12622, Egypt
- Nanomaterials Investigation Lab., Central Laboratory Network, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
5
|
Zannella C, Chianese A, Monti A, Giugliano R, Morone MV, Secci F, Sanna G, Manzin A, De Filippis A, Doti N, Galdiero M. SARS-CoV-2 Fusion Peptide Conjugated to a Tetravalent Dendrimer Selectively Inhibits Viral Infection. Pharmaceutics 2023; 15:2791. [PMID: 38140131 PMCID: PMC10748278 DOI: 10.3390/pharmaceutics15122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Fusion is a key event for enveloped viruses, through which viral and cell membranes come into close contact. This event is mediated by viral fusion proteins, which are divided into three structural and functional classes. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein belongs to class I fusion proteins, characterized by a trimer of helical hairpins and an internal fusion peptide (FP), which is exposed once fusion occurs. Many efforts have been directed at finding antivirals capable of interfering with the fusion mechanism, mainly by designing peptides on the two heptad-repeat regions present in class I viral fusion proteins. Here, we aimed to evaluate the anti-SARS-CoV-2 activity of the FP sequence conjugated to a tetravalent dendrimer through a classical organic nucleophilic substitution reaction (SN2) using a synthetic bromoacetylated peptide mimicking the FP and a branched scaffold of poly-L-Lysine functionalized with cysteine residues. We found that the FP peptide conjugated to the dendrimer, unlike the monomeric FP sequence, has virucidal activity by impairing the attachment of SARS-CoV-2 to cells. Furthermore, we found that the peptide dendrimer does not have the same effects on other coronaviruses, demonstrating that it is selective against SARS-CoV-2.
Collapse
Affiliation(s)
- Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Francesco Secci
- Department of Chemical and Geological Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy;
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy; (G.S.); (A.M.)
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy; (G.S.); (A.M.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.C.); (R.G.); (M.V.M.); (A.D.F.)
- UOC of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| |
Collapse
|
6
|
Rajwar TK, Pradhan D, Halder J, Rai VK, Kar B, Ghosh G, Rath G. Opportunity in nanomedicine to counter the challenges of current drug delivery approaches used for the treatment of malaria: a review. J Drug Target 2023; 31:354-368. [PMID: 36604804 DOI: 10.1080/1061186x.2022.2164290] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Malaria is a life-threatening parasitic disease transmitted by the infected female Anopheles mosquito. The development of drug tolerance and challenges related to the drugs' pharmacodynamic and pharmacokinetic parameters limits the antimalarial therapeutics response. Currently, nanotechnology-based drug delivery system provides an integrative platform for antimalarial therapy by improving the drug physicochemical properties, combating multidrug resistance, and lowering antimalarial drug-related toxicity. In addition, surface engineered nanocarrier systems offer a variety of alternatives for site-specific/targeted delivery of antimalarial therapeutics, anticipating better clinical outcomes at low drug concentrations and low toxicity profiles, as well as reducing the likelihood of the emergence of drug resistance. So, constructing nano carrier-based approaches for drug delivery has been considered the foremost strategy to combat malaria. This review focuses on the numerous nanotherapeutic strategies utilised to treat malaria as well as the benefits of nanotechnology as a potentially effective therapeutic.
Collapse
Affiliation(s)
- Tushar Kanti Rajwar
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Jitu Halder
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Kisakova LA, Apartsin EK, Nizolenko LF, Karpenko LI. Dendrimer-Mediated Delivery of DNA and RNA Vaccines. Pharmaceutics 2023; 15:pharmaceutics15041106. [PMID: 37111593 PMCID: PMC10145063 DOI: 10.3390/pharmaceutics15041106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
DNA and RNA vaccines (nucleic acid-based vaccines) are a promising platform for vaccine development. The first mRNA vaccines (Moderna and Pfizer/BioNTech) were approved in 2020, and a DNA vaccine (Zydus Cadila, India), in 2021. They display unique benefits in the current COVID-19 pandemic. Nucleic acid-based vaccines have a number of advantages, such as safety, efficacy, and low cost. They are potentially faster to develop, cheaper to produce, and easier to store and transport. A crucial step in the technology of DNA or RNA vaccines is choosing an efficient delivery method. Nucleic acid delivery using liposomes is the most popular approach today, but this method has certain disadvantages. Therefore, studies are actively underway to develop various alternative delivery methods, among which synthetic cationic polymers such as dendrimers are very attractive. Dendrimers are three-dimensional nanostructures with a high degree of molecular homogeneity, adjustable size, multivalence, high surface functionality, and high aqueous solubility. The biosafety of some dendrimers has been evaluated in several clinical trials presented in this review. Due to these important and attractive properties, dendrimers are already being used to deliver a number of drugs and are being explored as promising carriers for nucleic acid-based vaccines. This review summarizes the literature data on the development of dendrimer-based delivery systems for DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Lyubov A. Kisakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Evgeny K. Apartsin
- CBMN, UMR 5248, CNRS, Bordeaux INP, University Bordeaux, F-33600 Pessac, France
| | - Lily F. Nizolenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Kol’tsovo, Russia
| |
Collapse
|
8
|
Assolini JP, Carloto ACM, Bortoleti BTDS, Gonçalves MD, Tomiotto Pellissier F, Feuser PE, Cordeiro AP, Hermes de Araújo PH, Sayer C, Miranda Sapla MM, Pavanelli WR. Nanomedicine in leishmaniasis: A promising tool for diagnosis, treatment and prevention of disease - An update overview. Eur J Pharmacol 2022; 923:174934. [PMID: 35367420 DOI: 10.1016/j.ejphar.2022.174934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Leishmaniasis is a neglected tropical disease that has a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths notified every year. The severity of the disease and its various clinical forms are determined by the species of the causative agent, Leishmania, as well as the host's immune response. Major challenges still exist in the diagnosis and treatment of leishmaniasis, and there is no vaccine available to prevent this disease in humans. Nanotechnology has emerged as a promising tool in a variety of fields. In this review, we highlight the main and most recent advances in nanomedicine to improve the diagnosis and treatment, as well as for the development of vaccines, for leishmaniasis. Nanomaterials are nanometric in size and can be produced by a variety of materials, including lipids, polymers, ceramics, and metals, with varying structures and morphologies. Nanotechnology can be used as biosensors to detect antibodies or antigens, thus improving the sensitivity and specificity of such immunological and molecular diagnostic tests. While in treatment, nanomaterials can act as drug carriers or, be used directly, to reduce any toxic effects of drug compounds to the host and to be more selective towards the parasite. Furthermore, preclinical studies show that different nanomaterials can carry different Leishmania antigens, or even act as adjuvants to improve a Th1 immune response in an attempt to produce an effective vaccine.
Collapse
Affiliation(s)
- João Paulo Assolini
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil; Universidade Alto Vale do Rio Peixe, Caçador, SC, Brazil.
| | | | | | | | | | - Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | - Arthur Poester Cordeiro
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | | | - Claudia Sayer
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, SC, Brazil
| | | | - Wander Rogério Pavanelli
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, PR, Brazil.
| |
Collapse
|
9
|
Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer. Mol Biol Rep 2022; 49:7979-7993. [PMID: 35274201 DOI: 10.1007/s11033-022-07317-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Aptamers refer to the artificially synthesized nucleic acid sequences (DNA/RNA) that can bind to a wide range of targets with high affinity and specificity, which are generally generated from systematic evolution of ligands by exponential enrichment (SELEX). As a novel method of aptamers screening, whole-cell-SELEX (WC-SELEX) has gained more and more attention in many fields such as biomedicine, analytical chemistry, and molecular diagnostics due to its ability to screen multiple potential aptamers without knowing the detailed structural information of target molecules. METHODS AND RESULTS In recent years, with the deepening of research on application of aptamers, the traditional WC-SELEX cannot meet the practical application because of long experimental period, complicated operation process and low specificity, etc. Therefore, the development of more efficient methods for screening aptamer is always on the road. This paper summarizes the current research status of WC-SELEX for bacteria, parasites and animal cells, and reviews the latest advances of WC-SELEX techniques that are dependent on novel instruments, materials and microelectronics, including fluorescence-activated cell sorting-assisted SELEX, three-dimensional assisted WC-SELEX, and microfluidic chip system-assisted WC-SELEX. In addition, the application of aptamers targeting cells was discussed. CONCLUSION Taken together, this review is aimed at providing a reference for WC-SELEX selection and application of aptamer targeting cells.
Collapse
|
10
|
Dendrimers and Dendritic Materials against Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14010154. [PMID: 35057050 PMCID: PMC8779515 DOI: 10.3390/pharmaceutics14010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
The COVID-19 pandemic showed more deeply the need of our society to provide new therapeutic strategies to fight infectious diseases, not only against currently known illnesses, where common antibiotics and drugs appear to be not fully effective, but also against new infectious threats that may arise [...].
Collapse
|
11
|
Mostafa O, Al-Shehri M, Moustafa M, Al-Emam A. Cnidarians as a potential source of antiparasitic drugs. Parasitol Res 2021; 121:35-48. [PMID: 34842987 DOI: 10.1007/s00436-021-07387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
New antiparasitic drugs are urgently required for treating parasitic infections. The marine environment has proven to be a valuable source of compounds with therapeutic properties against many diseases, including parasitic diseases. Cnidarian venoms are known for their toxicological properties and are candidates for developing medications. In this review, the antiparasitic properties of cnidarian toxins, discovered over the last two decades, were examined. A total of 61 cnidarian compounds from 18 different genera of cnidaria were studied for their antiparasitic activities. The assessed genera belonged mainly to three geographical areas: South America, North America, and Southeast Asia. The in vitro activities of crude extracts and compounds against a range of parasites including Plasmodium falciparum, Trypanosoma brucei gambiense, T. cruzi, T. congolense, Leishmania donovani, L. chagasi, L. braziliensis, and Giardia duodenalis are reviewed. The challenges involved in developing these compounds into effective drugs are discussed.
Collapse
Affiliation(s)
- Osama Mostafa
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia. .,Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt.
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia.,Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|