1
|
Cunha J, Latocheski E, Fidalgo ACD, Gerola AP, Marin CFDF, Ribeiro AJ. Core-shell hybrid liposomes: Transforming imaging diagnostics and therapeutic strategies. Colloids Surf B Biointerfaces 2025; 251:114597. [PMID: 40043539 DOI: 10.1016/j.colsurfb.2025.114597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 04/15/2025]
Abstract
For the last few years, researchers and industry have intensified efforts to develop a diverse array of diagnostic and therapeutic approaches to fight diseases such as cancer, diabetes, and viral infections. Among the emerging technologies, hybrid liposomes (HLs) stand out for their ability to address key limitations of conventional liposomes and deliver multifunctional solutions more effectively. While several novel nanosystems, including polymerlipid conjugates and inorganic nanoparticles (NPs), have shown great potential in the preclinical and clinical phases for the diagnosis and treatment of diseases, particularly cancer, HLs can integrate the best of both worlds, combining drug delivery properties with imaging capabilities. HLs, particularly those with core-shell structures, can surpass conventional liposomes by offering improved physicochemical properties, multifunctionality, and the capacity to overcome critical delivery challenges. The integration of natural and synthetic polymers has rapidly emerged as a preferred strategy in the development of HLs, providing significant advantages, such as enhanced stability, stimuli-responsive drug release, prolonged circulation, and improved therapeutic efficacy. Additionally, the customizable structure of HLs allows the incorporation of diverse materials, such as metals, ligands, and functional lipids, improving diagnosis and enhancing targeted delivery and cellular uptake far beyond what conventional liposomes offer. This review provides a critical and updated analysis of core-shell structure exhibiting HLs, with a focus on their preparation, characterization, and functional enhancements. We also examine in vitro/in vivo outcomes in imaging diagnosis and drug delivery while addressing the current barriers to clinical translation and future prospects for these versatile nanoplatforms.
Collapse
Affiliation(s)
- Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - Eloah Latocheski
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | | | | | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal; Group Genetics of Cognitive Dysfunction, I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4169-007, Portugal.
| |
Collapse
|
2
|
Rokhgireh S, Chaichian S, Mehdizadeh Kashi A, Haji Ali B, Tehermanesh K, Ajdary M, Nasir S, Pirhajati Mahabadi V, Eslahi N. Curcumin-gold nanoshell mediated near-infrared irradiation on human ovarian cancer cell: in vitro study. Med Oncol 2025; 42:145. [PMID: 40167850 DOI: 10.1007/s12032-025-02687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025]
Abstract
Ovarian cancer is considered a predominant female reproductive malignancy and poses a significant threat due to its 80-90% fatality rate. The typical approach involves surgery and chemotherapy, which due to problems such as drug resistance, encourage researchers to use new methods such as nanotechnology. The current study introduces a novel strategy: leveraging Curcumin-Gold Nanoshells (Cur-AuNShs) to combat chemotherapy's adverse effects and overcome drug resistance through hyperthermia mediation. Gold-based nanoparticles that absorb laser have shown the potential to target and treat cancer selectively through highly efficient light-to-heat conversion. This experimental study focused on the synthesis of AuNShs and their subsequent conjugation with Cur. The gold shell coverage on the surfaces of silica nanoparticles was examined using UV-VIS spectroscopy and transmission electron microscopy (TEM). Dynamic light scattering (DLS) and Zeta potential analysis were employed to evaluate the stability of particle size and surface charge. Human ovarian carcinoma cell lines (SKOV-3) were treated with a combination of Cur (15 μM) and AuNShs (75 μM), under the activation of near-infrared (NIR) laser irradiation at a power of 2.5 W/cm3 for 5 or 10 min. Cell viability was then assessed using the MTT assay. Lastly, the expression levels of Bax, Bcl2, and HSPB1 genes were analyzed using the real-time polymerase chain reaction (real-time PCR) technique. The average diameter of the AuNShs was measured at 70 ± 7.1 nm. Findings revealed that after a 48 h incubation with Cur-AuNShs followed by 10 min of laser irradiation, cell viability decreased significantly from 44.3 ± 1.7 to 14.4 ± 1. Analysis using real-time PCR showed an increase in Bax expression alongside a decrease in Bcl2 expression. Additionally, the expression of the HSPB1 gene was reduced from 1.35 ± 1 to 0.9 ± 0.65 in the laser-treated Cur-AuNShs-NIR group. The AuNShs, when combined with hyperthermia at 43 °C, demonstrated potential as an effective carrier for Cur administration. This combination was associated with a greater activation of apoptosis compared to the free drug.
Collapse
Affiliation(s)
- Samaneh Rokhgireh
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Mehdizadeh Kashi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
- Iranian Scientific Society of Minimally Invasive Gynecology, Tehran, Iran
| | - Bahareh Haji Ali
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra Tehermanesh
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Setare Nasir
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Pirhajati Mahabadi
- Neurosciences Research Center, Iran University of Medical Sciences, PO Box: 354-14665, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, PO Box: 354-14665, Tehran, Iran.
| | - Neda Eslahi
- Finetech in Medicine Research Center, Iran University of Medical Sciences, PO Box: 354-14665, Tehran, Iran.
| |
Collapse
|
3
|
Azimizonuzi H, Ghayourvahdat A, Ahmed MH, Kareem RA, Zrzor AJ, Mansoor AS, Athab ZH, Kalavi S. A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis. Cancer Cell Int 2025; 25:26. [PMID: 39871316 PMCID: PMC11773959 DOI: 10.1186/s12935-024-03610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
Theranostics is a way of treating illness that blends medicine with testing. Specific characteristics should be present in the best theranostic agents for cancer: (1) the drugs should be safe and non-toxic; (2) they should be able to treat cancer selectively; and (3) they should be able to build up only in the cancerous tissue. Liposomes (LPs) are one of the most efficient drug delivery methods based on nanotechnology. Stealth LPs and commercial LPs have recently had an impact on cancer treatment. Using the valuable information from each imaging technique, along with the multimodality imaging functionality of liposomal therapeutic agents, makes them very appealing for personalized monitoring of how well therapeutic drugs are working against cancer in vivo and for predicting how well therapies will work. On the other hand, their use as nanoparticle delivery systems is currently in the research and development phase. Nanoscale delivery system innovation has made LP-nanoparticle hybrid structures very useful for combining therapeutic and imaging methods. LP-hybrid nanoparticles are better at killing cancer cells than their LP counterparts, making them excellent options for in vivo and in vitro drug delivery applications. Hybrid liposomes (HLs) could be used in the future as theranostic carriers to find and treat cancer targets. This would combine the best features of synthetic and biological drug delivery systems. Overarchingly, this article provided a comprehensive overview of the many LP types used in cancer detection, therapy, and theranostic analysis. An evaluation of the pros and cons of the many HLs types used in cancer detection and treatment has also been conducted. The study also included recent and significant research on HLs for cancer theranostic applications. We conclude by outlining the potential benefits and drawbacks of this theranostic approach to the concurrent detection and treatment of different malignancies, as well as its prospects.
Collapse
Affiliation(s)
- Hannaneh Azimizonuzi
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | - Arman Ghayourvahdat
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | | | | | - Athmar Jaber Zrzor
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Torres J, Calderón-Montaño JM, Prieto-Dapena F, López-Lázaro M, Rueda M, Rabasco-Álvarez AM, González-Rodríguez ML, García MC. A quality-by-design approach for optimizing the functionalization of gold nanoparticles onto the surface of doxorubicin-encapsulated liposomes. Int J Pharm 2025; 669:125040. [PMID: 39653291 DOI: 10.1016/j.ijpharm.2024.125040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Stimulus-responsive liposomes (L) are increasingly recognized for their potential in enhancing therapies, especially in cancer nanomedicine, owing to their ability to encapsulate drugs of diverse properties efficiently. In this study, a quality-by-design (QbD) strategy was proposed to optimize the surface functionalization of gold nanoparticles (AuNPs) on doxorubicin (Dox)-loaded L intended for improving cancer treatment. Thin-film hydration and pH-gradient methods were applied for L preparation and Dox loading, respectively. Through a Taguchi design (L9), the AuNPs surface functionalization was optimized by studying variables such as L-Dox:AuNPs ratio, stirring time, temperature, and post-functionalization period, and their impact on various L properties including size, polydispersity, and loading efficiency. This approach allowed thedevelopment of an AuNPs-L-Dox nanoplatform capable of controlled Dox release under bio-relevant conditions and dual pH/photothermal responsiveness for triggering drug release. Upon light irradiation, the nanoplatform exhibited enhanced anticancer efficacy against ovarian cancer cells, showcasing its potential for photothermal hyperthermia therapies. Biocompatibility assessment in absence of irradiation against keratinocytes confirmed safety without increased drug cytotoxicity. This study underscores the effectiveness of the QbD approach in optimizing key parameters for the functionalization of L-Dox with AuNPs, highlighting the potential of this nanoplatform for triggered Dox delivery in cancer nanomedicine, particularly in photothermal hyperthermia therapies.
Collapse
Affiliation(s)
- Jazmín Torres
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba X5000HUA, Argentina; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/ Prof. García González 2, 41012 Seville, Spain.
| | - José Manuel Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/ Prof. García González 2, 41012 Seville, Spain.
| | - Francisco Prieto-Dapena
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/ Prof. García González s/n, 41012 Seville, Spain.
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, C/ Prof. García González 2, 41012 Seville, Spain.
| | - Manuela Rueda
- Department of Physical Chemistry, Faculty of Chemistry, Universidad de Sevilla, C/ Prof. García González s/n, 41012 Seville, Spain.
| | - Antonio María Rabasco-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/ Prof. García González 2, 41012 Seville, Spain.
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/ Prof. García González 2, 41012 Seville, Spain.
| | - Mónica Cristina García
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Ciencias Farmacéuticas, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, Córdoba X5000HUA, Argentina.
| |
Collapse
|
5
|
Aundhia C, Parmar G, Talele C, Talele D, Seth AK. Light Sensitive Liposomes: A Novel Strategy for Targeted Drug Delivery. Pharm Nanotechnol 2025; 13:41-54. [PMID: 38279711 DOI: 10.2174/0122117385271651231228073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Dipali Talele
- Faculty of Pharmacy, Vishwakarma University, Survey No. 2,3,4 Laxmi Nagar, Kondhwa Budruk, Pune, India
| | - Avinsh Kumar Seth
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
6
|
Paramshetti S, Angolkar M, Talath S, Osmani RAM, Spandana A, Al Fatease A, Hani U, Ramesh KVRNS, Singh E. Unravelling the in vivo dynamics of liposomes: Insights into biodistribution and cellular membrane interactions. Life Sci 2024; 346:122616. [PMID: 38599316 DOI: 10.1016/j.lfs.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Liposomes, as a colloidal drug delivery system dating back to the 1960s, remain a focal point of extensive research and stand as a highly efficient drug delivery method. The amalgamation of technological and biological advancements has propelled their evolution, elevating them to their current status. The key attributes of biodegradability and biocompatibility have been instrumental in driving substantial progress in liposome development. Demonstrating a remarkable ability to surmount barriers in drug absorption, enhance stability, and achieve targeted distribution within the body, liposomes have become pivotal in pharmaceutical research. In this comprehensive review, we delve into the intricate details of liposomal drug delivery systems, focusing specifically on their pharmacokinetics and cell membrane interactions via fusion, lipid exchange, endocytosis etc. Emphasizing the nuanced impact of various liposomal characteristics, we explore factors such as lipid composition, particle size, surface modifications, charge, dosage, and administration routes. By dissecting the multifaceted interactions between liposomes and biological barriers, including the reticuloendothelial system (RES), opsonization, enhanced permeability and retention (EPR) effect, ATP-binding cassette (ABC) phenomenon, and Complement Activation-Related Pseudoallergy (CARPA) effect, we provide a deeper understanding of liposomal behaviour in vivo. Furthermore, this review addresses the intricate challenges associated with translating liposomal technology into practical applications, offering insights into overcoming these hurdles. Additionally, we provide a comprehensive analysis of the clinical adoption and patent landscape of liposomes across diverse biomedical domains, shedding light on their potential implications for future research and therapeutic developments.
Collapse
Affiliation(s)
- Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Asha Spandana
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - K V R N S Ramesh
- Department of Pharmaceutics, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Ekta Singh
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
7
|
Nair R, Paul P, Maji I, Gupta U, Mahajan S, Aalhate M, Guru SK, Singh PK. Exploring the current landscape of chitosan-based hybrid nanoplatforms as cancer theragnostic. Carbohydr Polym 2024; 326:121644. [PMID: 38142105 DOI: 10.1016/j.carbpol.2023.121644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023]
Abstract
In the last decade, investigators have put significant efforts to develop several diagnostic and therapeutic strategies against cancer. Many novel nanoplatforms, including lipidic, metallic, and inorganic nanocarriers, have shown massive potential at preclinical and clinical stages for cancer diagnosis and treatment. Each of these nano-systems is distinct with its own benefits and limitations. The need to overcome the limitations of single-component nano-systems, improve their morphological and biological features, and achieve multiple functionalities has resulted in the emergence of hybrid nanoparticles (HNPs). These HNPs integrate multicomponent nano-systems with diagnostic and therapeutic functions into a single nano-system serving as promising nanotools for cancer theragnostic applications. Chitosan (CS) being a mucoadhesive, biodegradable, and biocompatible biopolymer, has emerged as an essential element for the development of HNPs offering several advantages over conventional nanoparticles including pH-dependent drug delivery, sustained drug release, and enhanced nanoparticle stability. In addition, the free protonable amino groups in the CS backbone offer flexibility to its structure, making it easy for the modification and functionalization of CS, resulting in better drug targetability and cell uptake. This review discusses in detail the existing different oncology-directed CS-based HNPs including their morphological characteristics, in-vitro/in-vivo outcomes, toxicity concerns, hurdles in clinical translation, and future prospects.
Collapse
Affiliation(s)
- Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
8
|
Soleimani K, Beyranvand S, Souri Z, Ahmadian Z, Yari A, Faghani A, Shams A, Adeli M. Ferrocene/ β-cyclodextrin based supramolecular nanogels as theranostic systems. Biomed Pharmacother 2023; 166:115402. [PMID: 37660653 DOI: 10.1016/j.biopha.2023.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
A supramolecular redox responsive nanogel (NG) with the ability to sense cancer cells and loaded with a releasing therapeutic agent was synthesized using hostguest interactions between polyethylene glycol-grafted-β-cyclodextrin and ferrocene boronic acid. Cyclic voltammetry matched with other spectroscopy and microscopy methods provided strong indications regarding host-guest interactions and formation of the NG. Moreover, the biological properties of the NG were evaluated using fluorescence silencing, confocal laser scanning microscopy, and cell toxicity assays. Nanogel with spherical core-shell architecture and 100-200 nm sized nanoparticles showed high encapsulation efficiency for doxorubicin (DOX) and luminol (LU) as therapeutic and sensing agents. High therapeutic and sensing efficiencies were manifested by complete release of DOX and dramatic quenching of LU fluorescence triggered by 0.05 mM H2O2 (as an ROS component). The NGs showed high ROS sensitivity. Taking advantage of a high loading capacity, redox sensitivity, and biocompatibility, the NGs can be used as strong theranostic systems in inflammation-associated diseases.
Collapse
Affiliation(s)
- Khadijeh Soleimani
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zeinab Souri
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Abdollah Yari
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Abbas Faghani
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Azim Shams
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran
| | - Mohsen Adeli
- Department of Chemistry, Lorestan University, Khorramabad 6815144316, Iran.
| |
Collapse
|
9
|
Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives. J Control Release 2023; 362:70-96. [PMID: 37591463 DOI: 10.1016/j.jconrel.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Eye is the most specialized and sensory body organ and treating eye diseases efficiently is necessary. Despite various attempts, the design of a consummate ophthalmic drug delivery system remains unsolved because of anatomical and physiological barriers that hinder drug transport into the desired ocular tissues. It is important to advance new platforms to manage ocular disorders, whether they exist in the anterior or posterior cavities. Nanotechnology has piqued the interest of formulation scientists because of its capability to augment ocular bioavailability, control drug release, and minimize inefficacious drug absorption, with special attention to lipid-based nanocarriers (LBNs) because of their cellular safety profiles. LBNs have greatly improved medication availability at the targeted ocular site in the required concentration while causing minimal adverse effects on the eye tissues. Nevertheless, the exact mechanisms by which lipid-based nanocarriers can bypass different ocular barriers are still unclear and have not been discussed. Thus, to bridge this gap, the current work aims to highlight the applications of LBNs in the ocular drug delivery exploring the different ocular barriers and the mechanisms viz. adhesion, fusion, endocytosis, and lipid exchange, through which these platforms can overcome the barrier characteristics challenges.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
10
|
Abla KK, Mehanna MM. The battle of lipid-based nanocarriers against blood-brain barrier: a critical review. J Drug Target 2023; 31:832-857. [PMID: 37577919 DOI: 10.1080/1061186x.2023.2247583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Central nervous system integrity is the state of brain functioning across sensory, cognitive, emotional-social behaviors, and motor domains, allowing a person to realise his full potential. Thus, brain disorders seriously affect patients' quality of life. Efficient drug delivery to treat brain disorders remains a crucial challenge due to numerous brain barriers, particularly the blood-brain barrier (BBB), which greatly impacts the ultimate drug therapeutic efficacy. Lately, nanocarrier technology has made huge progress in overcoming these barriers by improving drug solubility, ameliorating its retention, reducing its toxicity, and targeting the encapsulated agents to different brain tissues. The current review primarily offers an overview of the different components of BBB and the progress, strategies, and contemporary applications of the nanocarriers, specifically lipid-based nanocarriers (LBNs), in treating various brain disorders.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Faculty of Pharmacy, Industrial Pharmacy Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Abla KK, Domiati S, El Majzoub R, Mehanna MM. Propranolol-Loaded Limonene-Based Microemulsion Thermo-Responsive Mucoadhesive Nasal Nanogel: Design, In Vitro Assessment, Ex Vivo Permeation, and Brain Biodistribution. Gels 2023; 9:491. [PMID: 37367161 DOI: 10.3390/gels9060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Propranolol is the first-line drug for managing migraine attacks. D-limonene is a citrus oil known for its neuroprotective mechanism. Thus, the current work aims to design a thermo-responsive intranasal limonene-based microemulsion mucoadhesive nanogel to improve propranolol efficacy. Microemulsion was fabricated using limonene and Gelucire® as the oily phase, Labrasol®, Labrafil®, and deionized water as the aqueous phase, and was characterized regarding its physicochemical features. The microemulsion was loaded in thermo-responsive nanogel and evaluated regarding its physical and chemical properties, in vitro release, and ex vivo permeability through sheep nasal tissues. Its safety profile was assessed via histopathological examination, and its capability to deliver propranolol effectively to rats' brains was examined using brain biodistribution analysis. Limonene-based microemulsion was of 133.7 ± 0.513 nm diametric size with unimodal size distribution and spheroidal shape. The nanogel showed ideal characteristics with good mucoadhesive properties and in vitro controlled release with 1.43-fold enhancement in ex vivo nasal permeability compared with the control gel. Furthermore, it displayed a safe profile as elucidated by the nasal histopathological features. The nanogel was able to improve propranolol brain availability with Cmax 970.3 ± 43.94 ng/g significantly higher than the control group (277.7 ± 29.71 ng/g) and with 382.4 % relative central availability, which confirms its potential for migraine management.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Souraya Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Rania El Majzoub
- Department of Biomedical Sciences, Faculty of Pharmacy, Lebanese International University, Beirut P.O. Box 11-5020, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
12
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
13
|
Abla KK, Mneimneh AT, Allam AN, Mehanna MM. Application of Box-Behnken Design in the Preparation, Optimization, and In-Vivo Pharmacokinetic Evaluation of Oral Tadalafil-Loaded Niosomal Film. Pharmaceutics 2023; 15:173. [PMID: 36678802 PMCID: PMC9861327 DOI: 10.3390/pharmaceutics15010173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) affects about 90% of men whose ages are over 65. Tadalafil, a selective PDE-5 inhibitor, was approved by FDA for BPH, however, its poor aqueous solubility and bioavailability are considered major drawbacks. This work intended to develop and evaluate oral fast dissolving film containing tadalafil-loaded niosomes for those who cannot receive the oral dosage form. Niosomes were statistically optimized by Box-Behnken experimental design and loaded into a polymeric oral film. Niosomes were assessed for their vesicular size, uniformity, and zeta potential. The thickness, content uniformity, folding endurance, tensile strength, disintegration time, and surface morphology were evaluated for the prepared polymeric film. The optimized niosomes revealed high entrapment efficiency (99.78 ± 2.132%) and the film was smooth with good flexibility and convenient thickness (110 ± 10 µm). A fast release of tadalafil was achieved within 5 min significantly faster than the niosomes-free drug film. The in-vivo bioavailability in rats established that the optimized niosomal film enhanced tadalafil systemic absorption, with higher peak concentration (Cmax = 0.63 ± 0.03 µg/mL), shorter Tmax value (0.66-fold), and relative bioavailability of 118.4% compared to the marketed tablet. These results propose that the oral film of tadalafil-loaded niosomes is a suitable therapeutic application that can be passed with ease to geriatric patients who suffer from BPH.
Collapse
Affiliation(s)
- Kawthar K. Abla
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Amina T. Mneimneh
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Ahmed N. Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohammed M. Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
14
|
Freeze-drying: A Flourishing Strategy to Fabricate Stable Pharmaceutical and Biological Products. Int J Pharm 2022; 628:122233. [DOI: 10.1016/j.ijpharm.2022.122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022]
|
15
|
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213:166-194. [PMID: 35644315 DOI: 10.1016/j.ijbiomac.2022.05.156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey.
| |
Collapse
|
16
|
Chen H, Sun R, Zheng J, Kawazoe N, Yang Y, Chen G. Doxorubicin-encapsulated thermosensitive liposome-functionalized photothermal composite scaffolds for synergistic photothermal therapy and chemotherapy. J Mater Chem B 2022; 10:4771-4782. [PMID: 35671131 DOI: 10.1039/d2tb00993e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synergistic therapy, especially the combination of photothermal therapy and chemotherapy, has been proposed as an effective therapeutic approach for breast cancer treatment. In this study, a smart platform for synergistic photothermal therapy and chemotherapy was developed by hybridizing doxorubicin-encapsulated thermosensitive liposomes and gold nanorods into porous scaffolds of gelatin and polyglutamic acid (Dox-lipo/AuNR/Gel/PGA). The Dox-lipo/AuNR/Gel/PGA composite scaffolds had good photothermal conversion and temperature-dependent doxorubicin release properties. Under near-infrared laser irradiation, the composite scaffolds increased the local temperature to not only kill the breast cancer cells in the scaffolds but also accelerate the release of doxorubicin to eliminate the breast cancer cells surrounding the scaffolds. In vitro cell culture and in vivo mouse experiments demonstrated that the synergistic effects of photothermal ablation combined with doxorubicin-induced inhibition of the breast cancer cells in and surrounding the composite scaffolds under near-infrared laser irradiation. Moreover, after drug release was complete, the composite scaffolds fostered human bone marrow-derived mesenchymal stem cell proliferation. These results suggested that the composite scaffolds provided synergistic photothermal therapy and chemotherapy for breast cancer cell elimination at the early stage and promoted stem cell activities at the late stage. Therefore, this composite scaffold holds great potential as a synergistic therapy platform for breast cancer treatment.
Collapse
Affiliation(s)
- Huajian Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Rui Sun
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Jing Zheng
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Guoping Chen
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
17
|
Eras A, Castillo D, Suárez M, Vispo NS, Albericio F, Rodriguez H. Chemical Conjugation in Drug Delivery Systems. Front Chem 2022; 10:889083. [PMID: 35720996 PMCID: PMC9204480 DOI: 10.3389/fchem.2022.889083] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is one of the diseases with the highest mortality rate. Treatments to mitigate cancer are usually so intense and invasive that they weaken the patient to cure as dangerous as the own disease. From some time ago until today, to reduce resistance generated by the constant administration of the drug and improve its pharmacokinetics, scientists have been developing drug delivery system (DDS) technology. DDS platforms aim to maximize the drugs’ effectiveness by directing them to reach the affected area by the disease and, therefore, reduce the potential side effects. Erythrocytes, antibodies, and nanoparticles have been used as carriers. Eleven antibody–drug conjugates (ADCs) involving covalent linkage has been commercialized as a promising cancer treatment in the last years. This review describes the general features and applications of DDS focused on the covalent conjugation system that binds the antibody carrier to the cytotoxic drug.
Collapse
Affiliation(s)
- Alexis Eras
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Danna Castillo
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Margarita Suárez
- Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, La Habana, Cuba
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| | - Fernando Albericio
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
- CIBER-BBN, Networking Centre of Bioengineering, Biomaterials, and Nanomedicine and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| | - Hortensia Rodriguez
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| |
Collapse
|
18
|
Anti-Quorum Sensing Activities of Gliptins against Pseudomonas aeruginosa and Staphylococcus aureus. Biomedicines 2022; 10:biomedicines10051169. [PMID: 35625906 PMCID: PMC9138634 DOI: 10.3390/biomedicines10051169] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
The development of bacterial resistance to traditional antibiotics constitutes an emerging public health issue. Promising approaches have been innovated to conquer bacterial resistance, and targeting bacterial virulence is one of these approaches. Bacterial virulence mitigation offers several merits, as antivirulence agents do not affect the growth of bacteria and hence do not induce bacteria to develop resistance. In this direction, numerous drugs have been repurposed as antivirulence agents prior to their clinical use alone or in combination with traditional antibiotics. Quorum sensing (QS) plays a key role in controlling bacterial virulence. In the current study, dipeptidase inhibitor-4 (DPI-4) antidiabetic gliptins were screened for their antivirulence and anti-quorum sensing (anti-QS) activities against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Upon assessing their antibiofilm activities, the ten tested gliptins significantly diminished biofilm formation. In particular, sitagliptin exhibited the most efficient antibiofilm activity, so it was chosen as a representative of all gliptins to further investigate its antivirulence activity. Sitagliptin significantly protected mice from P. aeruginosa and S. aureus pathogenesis. Furthermore, sitagliptin downregulated QS-encoding genes in P. aeruginosa and S. aureus. To test the anti-QS activities of gliptins, a detailed molecular docking study was conducted to evaluate the gliptins’ binding affinities to P. aeruginosa and S. aureus QS receptors, which helped explain the anti-QS activities of gliptins, particularly sitagliptin and omarigliptin. In conclusion, this study evaluates the possible antivirulence and anti-QS activities of gliptins that could be promising novel candidates for the treatment of aggressive Gram-negative or -positive bacterial infections either alone or as adjuvants to other antibiotics.
Collapse
|
19
|
Khayat MT, Abbas HA, Ibrahim TS, Khayyat AN, Alharbi M, Darwish KM, Elhady SS, Khafagy ES, Safo MK, Hegazy WAH. Anti-Quorum Sensing Activities of Gliptins against Pseudomonas aeruginosa and Staphylococcus aureus. Biomedicines 2022; 10:1169. [PMID: 35625906 PMCID: PMC9138634 DOI: 10.3389/fmolb.2023.1203672activities 10.3390/biomedicines10051169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 07/07/2024] Open
Abstract
The development of bacterial resistance to traditional antibiotics constitutes an emerging public health issue. Promising approaches have been innovated to conquer bacterial resistance, and targeting bacterial virulence is one of these approaches. Bacterial virulence mitigation offers several merits, as antivirulence agents do not affect the growth of bacteria and hence do not induce bacteria to develop resistance. In this direction, numerous drugs have been repurposed as antivirulence agents prior to their clinical use alone or in combination with traditional antibiotics. Quorum sensing (QS) plays a key role in controlling bacterial virulence. In the current study, dipeptidase inhibitor-4 (DPI-4) antidiabetic gliptins were screened for their antivirulence and anti-quorum sensing (anti-QS) activities against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Upon assessing their antibiofilm activities, the ten tested gliptins significantly diminished biofilm formation. In particular, sitagliptin exhibited the most efficient antibiofilm activity, so it was chosen as a representative of all gliptins to further investigate its antivirulence activity. Sitagliptin significantly protected mice from P. aeruginosa and S. aureus pathogenesis. Furthermore, sitagliptin downregulated QS-encoding genes in P. aeruginosa and S. aureus. To test the anti-QS activities of gliptins, a detailed molecular docking study was conducted to evaluate the gliptins' binding affinities to P. aeruginosa and S. aureus QS receptors, which helped explain the anti-QS activities of gliptins, particularly sitagliptin and omarigliptin. In conclusion, this study evaluates the possible antivirulence and anti-QS activities of gliptins that could be promising novel candidates for the treatment of aggressive Gram-negative or -positive bacterial infections either alone or as adjuvants to other antibiotics.
Collapse
Affiliation(s)
- Maan T. Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Hisham A. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Ahdab N. Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41552, Egypt
| | - Martin K. Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Department of Pharmaceutical Sciences, Pharmacy Program, Oman College of Health Sciences, Muscat 113, Oman
| |
Collapse
|
20
|
Mehanna MM, Abla KK, Domiati S, Elmaradny H. Superiority of Microemulsion-based Hydrogel for Non-Steroidal Anti-Inflammatory Drug Transdermal Delivery: A Comparative Safety and Anti-nociceptive Efficacy Study. Int J Pharm 2022; 622:121830. [PMID: 35589005 DOI: 10.1016/j.ijpharm.2022.121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent the foundation of pain management caused by inflammatory disorders. Nevertheless, their oral administration induces several side effects exemplified by gastric ulceration, thus, delivering NSAIDs via the skin has become an attractive alternative. Herein, microemulsion-based hydrogel (MBH), proliposomal, and cubosomal gels were fabricated, loaded with diclofenac, and physicochemically characterized. The sizes, charges, surface morphologies, and the state of diclofenac within the reconstituted gels were also addressed. The release pattern and ex-vivo permeation studies using Franz cells were performed via the rat abdominal skin. The formulations were assessed in-vivo on mice skin for their irritation effect and their anti-nociceptive efficacy through the tail-flick test. Biosafety study of the optimal gel was also pointed out. The gels and their dispersion forms displayed accepted physicochemical properties. Diclofenac released in a prolonged manner from the prepared gels. MBH revealed a significantly higher skin permeation and the foremost results regarding in-vivo assessment where no skin irritation or altered histopathological features were observed. MBH further induced a significant anti-nociceptive effect during the tail-flick test with a lower tendency to evoke systemic toxicity. Therefore, limonene-containing microemulsion hydrogel is a promising lipid-based vehicle to treat pain with superior safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Kawthar K Abla
- Pharmaceutical Technology Department, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Souraya Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Hoda Elmaradny
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
Abstract
Finding out predisposition and makeup alterations in cancer cells has prompted the exploration of exogenous small interference RNA (siRNA) as a therapeutic agent to deal with cancer. siRNA is subjected to many limitations that hinders its cellular uptake. Various nanocarriers have been loaded with siRNA to improve their cellular transportation and have moved to clinical trials. However, many restrictions as low encapsulation efficiency, nanocarrier cytotoxicity and premature release of siRNA have impeded the single nanocarrier use. The realm of nanohybrid systems has emerged to overcome these limitations and to synergize the criteria of two or more nanocarriers. Different nanohybrid systems that were developed as cellular pathfinders for the exogenous siRNA to target cancer will be illustrated in this review.
Collapse
|
22
|
Zahra QUA, Fang X, Luo Z, Ullah S, Fatima S, Batool S, Qiu B, Shahzad F. Graphene Based Nanohybrid Aptasensors in Environmental Monitoring: Concepts, Design and Future Outlook. Crit Rev Anal Chem 2022; 53:1433-1454. [PMID: 35085047 DOI: 10.1080/10408347.2022.2025758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In view of ever-increasing environmental pollution, there is an immediate requirement to promote cheap, multiplexed, sensitive and fast biosensing systems to monitor these pollutants or contaminants. Aptamers have shown numerous advantages in being used as molecular recognition elements in various biosensing devices. Graphene and graphene-based materials/nanohybrids combined with several detection methods exhibit great potential owing to their exceptional optical, electronic and physicochemical properties which can be employed extensively to monitor environmental contaminants. For environmental monitoring applications, aptamers have been successfully combined with graphene-based nanohybrids to produce a wide range of innovative methodologies. Aptamers are immobilized at the surface of graphene based nanohybrids via covalent and non-covalent strategies. This review highlights the design, working principle, recent developmental advances and applications of graphene based nanohybrid aptasensors (GNH-Apts) (since January 2014 to September 2021) with a special emphasis on two major signal-transduction methods, i.e., optical and electrochemical for the monitoring of pesticides, heavy metals, bacteria, antibiotics, and organic compounds from different environmental samples (e.g., water, soil and related). Lastly, the challenges confronted by scientists and the possible future outlook have also been addressed. It is expected that high-performance graphene-based nanohybrid aptasensors would find broad applications in the field of environmental monitoring.
Collapse
Affiliation(s)
- Qurat Ul Ain Zahra
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaona Fang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhaofeng Luo
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Salim Ullah
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Shazia Fatima
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Sadaf Batool
- Nuclear Medicine, Oncology & Radiotherapy Institute (NORI), Islamabad, Pakistan
| | - Bensheng Qiu
- Biomedical Imaging Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
23
|
Smart Nanocarriers as an Emerging Platform for Cancer Therapy: A Review. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010146. [PMID: 35011376 PMCID: PMC8746670 DOI: 10.3390/molecules27010146] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a group of disorders characterized by uncontrolled cell growth that affects around 11 million people each year globally. Nanocarrier-based systems are extensively used in cancer imaging, diagnostics as well as therapeutics; owing to their promising features and potential to augment therapeutic efficacy. The focal point of research remains to develop new-fangled smart nanocarriers that can selectively respond to cancer-specific conditions and deliver medications to target cells efficiently. Nanocarriers deliver loaded therapeutic cargos to the tumour site either in a passive or active mode, with the least drug elimination from the drug delivery systems. This review chiefly focuses on current advances allied to smart nanocarriers such as dendrimers, liposomes, mesoporous silica nanoparticles, quantum dots, micelles, superparamagnetic iron-oxide nanoparticles, gold nanoparticles and carbon nanotubes, to list a few. Exhaustive discussion on crucial topics like drug targeting, surface decorated smart-nanocarriers and stimuli-responsive cancer nanotherapeutics responding to temperature, enzyme, pH and redox stimuli have been covered.
Collapse
|
24
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
25
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|
26
|
Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13081151. [PMID: 34452113 PMCID: PMC8398618 DOI: 10.3390/pharmaceutics13081151] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The encapsulation of therapeutic agents into nano-based drug delivery system for cancer treatment has received considerable attention in recent years. Advancements in nanotechnology provide an opportunity for efficient delivery of anticancer drugs. The unique properties of nanoparticles not only allow cancer-specific drug delivery by inherent passive targeting phenomena and adopting active targeting strategies, but also improve the pharmacokinetics and bioavailability of the loaded drugs, leading to enhanced therapeutic efficacy and safety compared to conventional treatment modalities. Small molecule drugs are the most widely used anticancer agents at present, while biological macromolecules, such as therapeutic antibodies, peptides and genes, have gained increasing attention. Therefore, this review focuses on the recent achievements of novel nano-encapsulation in targeted drug delivery. A comprehensive introduction of intelligent delivery strategies based on various nanocarriers to encapsulate small molecule chemotherapeutic drugs and biological macromolecule drugs in cancer treatment will also be highlighted.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Qingqing Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Zhong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (H.Z.); (W.W.)
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (H.Z.); (W.W.)
| |
Collapse
|
27
|
Choi SH, Lee DY, Kang S, Lee MK, Lee JH, Lee SH, Lee HL, Lee HY, Jeong YIL. Caffeic Acid Phenethyl Ester-Incorporated Radio-Sensitive Nanoparticles of Phenylboronic Acid Pinacol Ester-Conjugated Hyaluronic Acid for Application in Radioprotection. Int J Mol Sci 2021; 22:6347. [PMID: 34198522 PMCID: PMC8231778 DOI: 10.3390/ijms22126347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
We synthesized phenylboronic acid pinacol ester (PBPE)-conjugated hyaluronic acid (HA) via thiobis(ethylamine) (TbEA) linkage (abbreviated as HAsPBPE conjugates) to fabricate the radiosensitive delivery of caffeic acid phenetyl ester (CAPE) and for application in radioprotection. PBPE was primarily conjugated with TbEA and then PBPE-TbEA conjugates were conjugated again with hyaluronic acid using carbodiimide chemistry. CAPE-incorporated nanoparticles of HAsPBPE were fabricated by the nanoprecipitation method and then the organic solvent was removed by dialysis. CAPE-incorporated HAsPBPE nanoparticles have a small particle size of about 80 or 100 nm and they have a spherical shape. When CAPE-incorporated HAsPBPE nanoparticles were irradiated, nanoparticles became swelled or disintegrated and their morphologies were changed. Furthermore, the CAPE release rate from HAsPBPE nanoparticles were increased according to the radiation dose, indicating that CAPE-incorporated HAsPBPE nanoparticles have radio-sensitivity. CAPE and CAPE-incorporated HAsPBPE nanoparticles appropriately prevented radiation-induced cell death and suppressed intracellular accumulation of reactive oxygen species (ROS). CAPE and CAPE-incorporated HAsPBPE nanoparticles efficiently improved survivability of mice from radiation-induced death and reduced apoptotic cell death. We suggest that HAsPBPE nanoparticles are promising candidates for the radio-sensitive delivery of CAPE.
Collapse
Affiliation(s)
- Seon-Hee Choi
- Biomedical R&D Center, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea; (S.-H.C.); (H.-L.L.)
| | - Dong-Yeon Lee
- Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences, Pusan 46033, Korea;
| | - Sohi Kang
- Biomaterial R&BD Center, Chonnam National University, Gwangju 61186, Korea;
| | - Min-Kyung Lee
- Department of Dental Hygiene, Dong-Eui University, Pusan 47340, Korea;
| | - Jae-Heun Lee
- Department of Radiological Science, Dong-Eui University, Pusan 47340, Korea; (J.-H.L.); (S.-H.L.)
| | - Sang-Heon Lee
- Department of Radiological Science, Dong-Eui University, Pusan 47340, Korea; (J.-H.L.); (S.-H.L.)
| | - Hye-Lim Lee
- Biomedical R&D Center, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea; (S.-H.C.); (H.-L.L.)
| | - Hyo-Young Lee
- Department of Radiological Science, Dong-Eui University, Pusan 47340, Korea; (J.-H.L.); (S.-H.L.)
| | - Young-IL Jeong
- Biomedical R&D Center, Pusan National University Yangsan Hospital, Gyeongnam 50612, Korea; (S.-H.C.); (H.-L.L.)
| |
Collapse
|
28
|
Musielak M, Potoczny J, Boś-Liedke A, Kozak M. The Combination of Liposomes and Metallic Nanoparticles as Multifunctional Nanostructures in the Therapy and Medical Imaging-A Review. Int J Mol Sci 2021; 22:6229. [PMID: 34207682 PMCID: PMC8229649 DOI: 10.3390/ijms22126229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology has introduced a new quality and has definitely developed the possibilities of treating and diagnosing various diseases. One of the scientists' interests is liposomes and metallic nanoparticles (LipoMNPs)-the combination of which has introduced new properties and applications. However, the field of creating hybrid nanostructures consisting of liposomes and metallic nanoparticles is relatively little understood. The purpose of this review was to compile the latest reports in the field of treatment and medical imaging using of LipoMNPs. The authors focused on presenting this issue in the direction of improving the used conventional treatment and imaging methods. Most of all, the nature of bio-interactions between nanostructures and cells is not sufficiently taken into account. As a result, overcoming the existing limitations in the implementation of such solutions in the clinic is difficult. We concluded that hybrid nanostructures are used in a very wide range, especially in the treatment of cancer and magnetic resonance imaging. There were also solutions that combine treatments with simultaneous imaging, creating a theragnostic approach. In the future, researchers should focus on the description of the biological interactions and the long-term effects of the nanostructures to use LipoMNPs in the treatment of patients.
Collapse
Affiliation(s)
- Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| | - Jakub Potoczny
- Heliodor Swiecicki Clinical Hospital in Poznan, 60-355 Poznań, Poland;
| | - Agnieszka Boś-Liedke
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| |
Collapse
|
29
|
Bismuth-Graphene Nanohybrids: Synthesis, Reaction Mechanisms, and Photocatalytic Applications—A Review. ENERGIES 2021. [DOI: 10.3390/en14082281] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photocatalysis is a classical solution to energy conversion and environmental pollution control problems. In photocatalysis, the development and exploration of new visible light catalysts and their synthesis and modification strategies are crucial. It is also essential to understand the mechanism of these reactions in the various reaction media. Recently, bismuth and graphene’s unique geometrical and electronic properties have attracted considerable attention in photocatalysis. This review summarizes bismuth-graphene nanohybrids’ synthetic processes with various design considerations, fundamental mechanisms of action, heterogeneous photocatalysis, benefits, and challenges. Some key applications in energy conversion and environmental pollution control are discussed, such as CO2 reduction, water splitting, pollutant degradation, disinfection, and organic transformations. The detailed perspective of bismuth-graphene nanohybrids’ applications in various research fields presented herein should be of equal interest to academic and industrial scientists.
Collapse
|