1
|
Savadi P, Casale A, Roggia M, Conte G, Lozano MV, Costabile G, Ungaro F, Cosconati S, Santander-Ortega M, d'Angelo I. Unveiling the role of poly(vinyl alcohol) in the production of mucus-penetrating PLGA nanoparticles. Int J Pharm 2025; 673:125398. [PMID: 39999901 DOI: 10.1016/j.ijpharm.2025.125398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/10/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Mucosal drug delivery offers a promising non-invasive approach in pharmaceutical sciences but faces challenges from the protective mucus layer on mucosal surfaces, limiting drug absorption. Polymeric nanoparticles (NPs) have emerged as effective carriers, leveraging their small size to enhance mucus penetration and drug absorption. This study investigates polyvinyl alcohol (PVA)'s role in enhancing poly(lactic-co-glycolic acid) (PLGA) NPs for mucosal drug delivery. While PVA is commonly used as an emulsion stabilizer, its impact on NP mucoadhesiveness and mucodiffusivity is often overlooked. We characterized PLGA-based NPs with varying PVA types, employing particle tracking and molecular dynamics to demonstrate PVA's direct interaction with mucin MUC 5B. Our findings show reduced interaction with lower PVA hydrolysis, with particle tracking confirming PVA properties influence mucoadhesion. This study underscores PVA's critical role in optimizing NP efficacy for mucosal drug delivery, offering insights for developing more effective drug delivery systems.
Collapse
Affiliation(s)
- Pouria Savadi
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Andrea Casale
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Michele Roggia
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gemma Conte
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy; Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| | - M Victoria Lozano
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain; Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete 02008, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | | | - Francesca Ungaro
- Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| | - Sandro Cosconati
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Manuel Santander-Ortega
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain; Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete 02008, Spain; Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Spain
| | - Ivana d'Angelo
- Di.S.T.A.Bi.F., University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
2
|
González-Fuentes J, Plaza-Oliver M, Santander-Ortega MJ, Lozano MV. Understanding the role of the structure of single-stimuli hybrid systems on their behaviour as platforms for colonic delivery. Drug Deliv Transl Res 2024; 14:2598-2614. [PMID: 38856952 DOI: 10.1007/s13346-024-01641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
The success of colon-targeted oral hybrid systems relies in the proper control over the release of the entrapped nanostructures at the colon. This work describes the design of hybrid systems for their colonic enzyme-triggered release. The hybrid systems were constituted by nanoemulsions, with adequate characteristics for the treatment of ulcerative colitis, included in a pectin hydrogel-like matrix. For that purpose, pectins with similar degrees of methylation (< 50%) and increasing degree of amidation, i.e. 0, 13 and 20%, were selected. Hybrid systems were formulated by a novel aggregation induced gelation method, using Ca2+, Ba2+ or Zn2+ as aggregating agents, as well as by a polyelectrolyte condensation approach, obtaining structures in the micrometric range (< 10 μm). Despite the resistance of pectins to the upper gastrointestinal tract stimuli, the analysis of the behaviour of the different prototypes showed that the non-covalent crosslinks that allow the formation of the hybrid structure may play a relevant role on the performance of the formulation.Our results indicated that the partial disassembling of the hybrid system's microstructure due to the intestinal conditions may facilitate the stimuli-triggered release of the nanoemulsions at the colon. More interestingly, the particle tracking experiments showed that the condensation process that occurs during the formation of the system may affect to the enzymatic degradation of pectin. In this sense, the effect of the high degree of amidation of pectin may be more prevalent as structural feature rather than as a promoter of the enzyme-triggered release.
Collapse
Affiliation(s)
- Joaquín González-Fuentes
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain
- Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete, 02008, Spain
| | - María Plaza-Oliver
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain
- Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete, 02008, Spain
| | - Manuel Jesús Santander-Ortega
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain.
- Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete, 02008, Spain.
| | - María Victoria Lozano
- Development and Evaluation of Nanomedicines (DEVANA), Faculty of Pharmacy, Albacete, Spain.
- Instituto de Biomedicina (IB), Universidad de Castilla-La Mancha (UCLM), Albacete, 02008, Spain.
| |
Collapse
|
3
|
Farasati Far B, Naimi-Jamal MR, Sedaghat M, Hoseini A, Mohammadi N, Bodaghi M. Combinational System of Lipid-Based Nanocarriers and Biodegradable Polymers for Wound Healing: An Updated Review. J Funct Biomater 2023; 14:jfb14020115. [PMID: 36826914 PMCID: PMC9963106 DOI: 10.3390/jfb14020115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Skin wounds have imposed serious socioeconomic burdens on healthcare providers and patients. There are just more than 25,000 burn injury-related deaths reported each year. Conventional treatments do not often allow the re-establishment of the function of affected regions and structures, resulting in dehydration and wound infections. Many nanocarriers, such as lipid-based systems or biobased and biodegradable polymers and their associated platforms, are favorable in wound healing due to their ability to promote cell adhesion and migration, thus improving wound healing and reducing scarring. Hence, many researchers have focused on developing new wound dressings based on such compounds with desirable effects. However, when applied in wound healing, some problems occur, such as the high cost of public health, novel treatments emphasizing reduced healthcare costs, and increasing quality of treatment outcomes. The integrated hybrid systems of lipid-based nanocarriers (LNCs) and polymer-based systems can be promising as the solution for the above problems in the wound healing process. Furthermore, novel drug delivery systems showed more effective release of therapeutic agents, suitable mimicking of the physiological environment, and improvement in the function of the single system. This review highlights recent advances in lipid-based systems and the role of lipid-based carriers and biodegradable polymers in wound healing.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
- Correspondence: (M.R.N.-J.); (M.B.)
| | - Meysam Sedaghat
- Advanced Materials Research Center, Materials Engineering Department, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Alireza Hoseini
- Department of Materials Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Negar Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Science, Ahvaz 6135733184, Iran
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: (M.R.N.-J.); (M.B.)
| |
Collapse
|
4
|
Gabriel L, Almeida H, Avelar M, Sarmento B, das Neves J. MPTHub: An Open-Source Software for Characterizing the Transport of Particles in Biorelevant Media. NANOMATERIALS 2022; 12:nano12111899. [PMID: 35683754 PMCID: PMC9182034 DOI: 10.3390/nano12111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
The study of particle transport in different environments plays an essential role in understanding interactions with humans and other living organisms. Importantly, obtained data can be directly used for multiple applications in fields such as fundamental biology, toxicology, or medicine. Particle movement in biorelevant media can be readily monitored using microscopy and converted into time-resolved trajectories using freely available tracking software. However, translation into tangible and meaningful parameters is time consuming and not always intuitive. We developed new software—MPTHub—as an open-access, standalone, user-friendly tool for the rapid and reliable analysis of particle trajectories extracted from video microscopy. The software was programmed using Python and allowed to import and analyze trajectory data, as well as to export relevant data such as individual and ensemble time-averaged mean square displacements and effective diffusivity, and anomalous transport exponent. Data processing was reliable, fast (total processing time of less than 10 s), and required minimal memory resources (up to a maximum of around 150 MB in random access memory). Demonstration of software applicability was conducted by studying the transport of different polystyrene nanoparticles (100–200 nm) in mucus surrogates. Overall, MPTHub represents a freely available software tool that can be used even by inexperienced users for studying the transport of particles in biorelevant media.
Collapse
Affiliation(s)
- Leandro Gabriel
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Helena Almeida
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta Avelar
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- IUCS—Instituto Universitário de Ciências da Saúde, CESPU, 4585-116 Gandra, Portugal
| | - José das Neves
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (L.G.); (H.A.); (M.A.); (B.S.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- IUCS—Instituto Universitário de Ciências da Saúde, CESPU, 4585-116 Gandra, Portugal
- Correspondence: ; Tel.: +351-220-408-800
| |
Collapse
|
5
|
Cheng HJ, Hsu CH, Hung CL, Lin CY. A review for Cell and Particle Tracking on Microscopy Images using Algorithms and Deep Learning Technologies. Biomed J 2021; 45:465-471. [PMID: 34628059 PMCID: PMC9421944 DOI: 10.1016/j.bj.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/06/2023] Open
Abstract
Time-lapse microscopy images generated by biological experiments have been widely used for observing target activities, such as the motion trajectories and survival states. Based on these observations, biologists can conclude experimental results or present new hypotheses for several biological applications, i.e. virus research or drug design. Many methods or tools have been proposed in the past to observe cell and particle activities, which are defined as single cell tracking and single particle tracking problems, by using algorithms and deep learning technologies. In this article, a review for these works is presented in order to summarize the past methods and research topics at first, then points out the problems raised by these works, and finally proposes future research directions. The contributions of this article will help researchers to understand past development trends and further propose innovative technologies.
Collapse
Affiliation(s)
- Hui-Jun Cheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China; Department of Computer Science and Information Engineering, Providence University, Taichung 43301, Taiwan
| | - Ching-Hsien Hsu
- Department of Computer Science and Information Engineering, Asia University, Taichung 41354, Taiwan; Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Mathematics and Big Data, Foshan University, Foshan 528000, China; Department of Medical Research, China Medical University Hospital, China Medical University, Taiwan
| | - Che-Lun Hung
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Department of Computer Science and Communication Engineering, Providence University, Taichung 43301, Taiwan
| | - Chun-Yuan Lin
- Department of Computer Science and Information Engineering, Asia University, Taichung 41354, Taiwan; Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
6
|
Castro-Vázquez L, Lozano MV, Rodríguez-Robledo V, González-Fuentes J, Marcos P, Villaseca N, Arroyo-Jiménez MM, Santander-Ortega MJ. Pressurized Extraction as an Opportunity to Recover Antioxidants from Orange Peels: Heat treatment and Nanoemulsion Design for Modulating Oxidative Stress. Molecules 2021; 26:molecules26195928. [PMID: 34641471 PMCID: PMC8512928 DOI: 10.3390/molecules26195928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Orange peel by-products generated in the food industry are an important source of value-added compounds that can be potentially reused. In the current research, the effect of oven-drying (50–70 °C) and freeze-drying on the bioactive compounds and antioxidant potential from Navelina, Salustriana, and Sanguina peel waste was investigated using pressurized extraction (ASE). Sixty volatile components were identified by ASE-GC-MS. The levels of terpene derivatives (sesquitenenes, alcohols, aldehydes, hydrocarbons, and esters) remained practically unaffected among fresh and freeze-dried orange peels, whereas drying at 70 °C caused significative decreases in Navelina, Salustriana, and Sanguina peels. Hesperidin and narirutin were the main flavonoids quantified by HPLC-MS. Freeze-dried Sanguina peels showed the highest levels of total-polyphenols (113.3 mg GAE·g−1), total flavonoids (39.0 mg QE·g−1), outstanding values of hesperedin (187.6 µg·g−1), phenol acids (16.54 mg·g−1 DW), and the greatest antioxidant values (DPPH•, FRAP, and ABTS•+ assays) in comparison with oven-dried samples and the other varieties. Nanotechnology approaches allowed the formulation of antioxidant-loaded nanoemulsions, stabilized with lecithin, starting from orange peel extracts. Those provided 70–80% of protection against oxidative UV-radiation, also decreasing the ROS levels into the Caco-2 cells. Overall, pressurized extracts from freeze-drying orange peel can be considered a good source of natural antioxidants that could be exploited in food applications for the development of new products of commercial interest.
Collapse
Affiliation(s)
- Lucía Castro-Vázquez
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
- Correspondence: (L.C.-V.); (M.J.S.-O.)
| | - María Victoria Lozano
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Virginia Rodríguez-Robledo
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Joaquín González-Fuentes
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Pilar Marcos
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Noemí Villaseca
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Maria Mar Arroyo-Jiménez
- Analytical Chemistry and Food Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain; (M.V.L.); (V.R.-R.); (J.G.-F.); (P.M.); (N.V.); (M.M.A.-J.)
| | - Manuel J. Santander-Ortega
- Pharmaceutical Technology Area, Faculty of Pharmacy, University of Castilla-La Mancha (UCLM), Avda. Doctor Jose María Sanchez Ibañez. S/N c.p., 02008 Albacete, Spain
- Correspondence: (L.C.-V.); (M.J.S.-O.)
| |
Collapse
|
7
|
Wibel R, Braun DE, Hämmerle L, Jörgensen AM, Knoll P, Salvenmoser W, Steinbring C, Bernkop-Schnürch A. In Vitro Investigation of Thiolated Chitosan Derivatives as Mucoadhesive Coating Materials for Solid Lipid Nanoparticles. Biomacromolecules 2021; 22:3980-3991. [PMID: 34459197 PMCID: PMC8441978 DOI: 10.1021/acs.biomac.1c00776] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, chitosan (CS) was thiolated by introducing l-cysteine via amide bond formation. Free thiol groups were protected with highly reactive 6-mercaptonicotinic acid (6-MNA) and less-reactive l-cysteine, respectively, via thiol/disulfide-exchange reactions. Unmodified CS, l-cysteine-modified thiolated CS (CS-Cys), 6-MNA-S-protected thiolated CS (CS-Cys-MNA), and l-cysteine-S-protected thiolated CS (CS-Cys-Cys) were applied as coating materials to solid lipid nanoparticles (SLN). The strength of mucus interaction followed the rank order plain < CS < CS-Cys-Cys < CS-Cys < CS-Cys-MNA, whereas mucus diffusion followed the rank order CS-Cys < CS-Cys-Cys < CS < CS-Cys-MNA < plain. In accordance with lower reactivity, CS-Cys-Cys-coated SLN were immobilized to a lower extent than CS-Cys-coated SLN, while CS-Cys-MNA-coated SLN dissociated from their coating material resulting in a similar diffusion behavior as plain SLN. Consequently, CS-Cys-Cys-coated SLN and CS-Cys-MNA-coated SLN showed the highest retention on porcine intestinal mucosa by enabling a synergism of efficient mucus diffusion and strong mucoadhesion.
Collapse
Affiliation(s)
- Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Doris E Braun
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Laurenz Hämmerle
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Arne M Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Patrick Knoll
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Willi Salvenmoser
- Department of Zoology, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Christian Steinbring
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| |
Collapse
|