1
|
Basu B, Dutta S, Rahaman M, Dutta S, Ansari MN, Prajapati BG, Dutta A, Ghosh S. Exploring the Impact of Polysaccharide-Based Nanoemulsions in Drug Delivery. J Biomed Mater Res B Appl Biomater 2025; 113:e35582. [PMID: 40237572 DOI: 10.1002/jbm.b.35582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/28/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Nanoemulsions are tiny mixtures of water and oil stabilized by surfactants, and they have become increasingly popular across various industries, including medicine. With droplet sizes in the nanometer scale, these mixtures are both compact and effective. This discussion explores the potential of polysaccharide-based nanotechnology as an innovative approach to drug delivery. Nanoemulsions offer several benefits, such as enhanced drug solubility and bioavailability, which are crucial for drugs that poorly dissolve in water. The incorporation of natural polysaccharides as emulsifiers in these nanoemulsions ensures their biocompatibility and safety within the body. Additionally, nanoemulsions can facilitate a sustained release of medications, allowing for gradual drug release over an extended period. This controlled release can be achieved through the careful selection and formulation of polysaccharides. This review addresses the methods for producing polysaccharide-based nanoemulsions and examines their physical and chemical properties. It highlights the influence of polysaccharide molecular weight and structure on the stability of nanoemulsions and the effectiveness of drug encapsulation. By understanding these factors, researchers can develop more efficient and safe drug delivery systems utilizing nanoemulsions. Additionally, the present article provides explicit and thorough information about the use of NPLS-based nano-carriers encapsulating a number of drugs designed to treat a variety of conditions, such as diabetes, cancer, HIV, malaria, cardiovascular and respiratory diseases, and skin diseases. For this reason, it is very important to review the most recent developments in polysaccharide-based nano-biocarriers in drug delivery and their application in the treatment of diseases. In this work, we concentrated on the preparation of polysaccharide-based nano-biocarriers, commonly used polysaccharides for the preparation of nano-biocarriers, and drugs loaded on polysaccharide-based nano-biocarriers to treat diseases. In the near future, polysaccharide-based nano-biocarriers will be used more and more frequently in drug delivery and disease treatment.
Collapse
Affiliation(s)
- Biswajit Basu
- School of Health and Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | - Srabona Dutta
- School of Health and Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | - Monosiz Rahaman
- School of Health and Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | - Swarnali Dutta
- Department of Pharmacology, Birla Institute of Technology Mesra, Ranchi, Jharkhand, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Bhupendra G Prajapati
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ayon Dutta
- Department of Pharmaceutical Technology, Brainware University, Kolkata, West Bengal, India
| | - Sourav Ghosh
- School of Health and Medical Sciences, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Gautam N, Sharma P, Yadav N, Rajeswari J, Kesavan K. Tear-Driven Phase Transition Microemulsion for Ocular Delivery of Dexamethasone in the Effective Treatment of Uveitis. Curr Eye Res 2025:1-10. [PMID: 40025691 DOI: 10.1080/02713683.2025.2469243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE The goal of this study was to develop dexamethasone-loaded tear-driven phase transition microemulsions (PTMEs) to effectively treat uveitis. METHODS PTMEs were prepared using the oil titration method. Physicochemical parameters, in vitro release, and ocular irritation studies were performed. The in vivo study, total cell count, and total protein content were estimated on the rabbit eye model. RESULTS The study revealed that developed PTMEs had nanoglobule sizes, acceptable physicochemical properties, and prolonged drug release. Ex-vivo and in-vivo studies concluded that higher permeability and improved anti-inflammatory properties were observed for PTMEs compared to marketed formulation. CONCLUSION The prepared PTMEs showed a sustained release pattern and enhanced therapeutic effectiveness, making them a promising alternative to conventional eye drops for treating uveitis.
Collapse
Affiliation(s)
- Nivedita Gautam
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
- Department of Pharmaceutics, J. K. College of Pharmacy, Bilaspur, Chhattisgarh, India
| | - Priya Sharma
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Neelima Yadav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Jothimani Rajeswari
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Karthikeyan Kesavan
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
3
|
Liana D, Chatwichien J, Phanumartwiwath A. Enhanced Anti-Inflammatory and Skin Barrier Repair Effects of Nanoemulsions Supplemented with Boesenbergia rotunda for Atopic Dermatitis. ACS NANOSCIENCE AU 2025; 5:37-51. [PMID: 39990109 PMCID: PMC11843515 DOI: 10.1021/acsnanoscienceau.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 02/25/2025]
Abstract
Betamethasone dipropionate (BD) is a potent anti-inflammatory drug for atopic dermatitis (AD); however, it leads to serious adverse effects during prolonged use. We aimed to improve the biochemical properties and lower the risk of toxicity by preparing nanoemulsions containing Boesenbergia rotunda rhizome hexane extract (Hex) and essential oils (EO). Physicochemical characterization and 3-month long-term stability testing were conducted. Gas chromatography-mass spectrometry analysis was used to compare the volatile composition after nanoemulsion formulation. Further, various assays related to AD management, including antioxidant potentials, anti-inflammatory activities through inhibition of 5-lipoxygenase and cyclooxygenase-2, and nitric oxide release suppression in lipopolysaccharides-induced RAW 264.7 macrophages, were investigated. In addition, antibacterial activity against Staphylococcus aureus and cytotoxicity to RAW 264.7 macrophages and HaCaT human keratinocyte cells were also evaluated. Monodispersed nanoemulsions (<20 nm) were successfully generated by an ultrasound-assisted method. BD was successfully encapsulated into B. rotunda-based nanoemulsions with more than 95% encapsulation efficiency (EE). The major phytochemicals present in EO and Hex remained after nanoemulsion formulation. The nanoemulsions were compatible with skin pH (5.2-5.8) and exhibited stability with respect to particle size, polydispersity index, transmittance, pH, and EE when stored for 3 months at -20 °C. The BD nanoemulsions loaded with B. rotunda exhibited antioxidant activities and significantly increased the 5-lipoxygenase inhibitory activity. Furthermore, the suppression of nitric oxide release was remarkably enhanced, whereas lower cytotoxicity was observed. The BD nanoemulsions improved the level of involucrin and filaggrin in HaCaT cells, implying their valuable property for skin barrier repair. The formulation of BD into nanoemulsions also enhanced S. aureus inhibition. Either B. rotunda nanoemulsions loaded with or without BD show promise for the topical treatment and prevention of AD.
Collapse
Affiliation(s)
- Desy Liana
- College
of Public Health Sciences, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Jaruwan Chatwichien
- Program
in Chemical Sciences, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Chulabhorn
Royal Academy, Bangkok 10210, Thailand
| | | |
Collapse
|
4
|
Abla KK, Alamoudi MK, Soliman GA, Abdel-Kader MS, Aldawsari MF, Mehanna MM. Alopecia Management Potential of Rosemary-Based Nanoemulgel Loaded with Metformin: Approach Combining Active Essential Oil and Repurposed Drug. Int J Nanomedicine 2025; 20:605-624. [PMID: 39835177 PMCID: PMC11745075 DOI: 10.2147/ijn.s500487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs. Metformin is an anti-diabetic drug, that can promote hair follicle regeneration via upregulation of the hair-inductive capability. Hence, the current study aims to fabricate a safe and effective nanoemulsion to improve metformin efficacy in targeting AGA. Methods Rosemary oil was selected as the oily phase due to its ability to increase blood flow and hair growth. Rosemary-based nanoemulsions were statistically optimized by Box-Behnken experimental design, loaded with metformin, and incorporated into a hydrogel to form a nanoemulgel. Metformin-loaded nanoemulsions were assessed for their diametric size, uniformity, zeta potential, and metformin characteristics within the formulated nanosystem. The nanoemulgel was then evaluated in terms of its pH, percentage drug content, and in-vitro release performance. In-vivo study assessed the nanoemulgel's ability to augment hair growth in rats. Results The experimental design displayed that using 50%w/w, 20%w/w, and 10%w/w of Cremophor®, Labrafil®, and deionized water, respectively, resulted in nanoemulsion formulation with the smallest globule size (125.01 ± 0.534 nm), unimodal size distribution (PDI=0.103), negative surface charge (-19.9 ± 2.01 mV) with a spherical morphological structure. Rosemary-based nanoemulgel displayed acceptable physicochemical characterizations namely; a neutral pH value of 6.7±0.15, high drug content (92.9± 2.3%), and controlled metformin in-vitro release. Besides, the formulated nanoemulgel significantly increased the number of hair follicles in the animal model compared with other controls and tested groups. Conclusion The designed nanoemulgel is a promising approach for treating androgenic alopecia.
Collapse
Affiliation(s)
- Kawthar K Abla
- Department of Pharmaceutical Science, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mariam K Alamoudi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gamal A Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Maged S Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mohammed F Aldawsari
- Department Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed M Mehanna
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Nery Dos Santos Q, Teles DCS, de Araujo GRS, Lima OVA, Silva LAS, de Carvalho RDCV, Carlos de Sousa V, Matos SS, Costa AMB, Andrade-Neto VV, Torres-Santos EC, Antunes de S Araújo A, Sarmento VHV, Aécio de Amorim Carvalho F, de S Nunes R, Lira AAM. Microemulsions strongly promoted the activity of α-bisabolol against different Leishmania species and its skin permeation. Exp Parasitol 2024; 265:108808. [PMID: 39094996 DOI: 10.1016/j.exppara.2024.108808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
This study aimed to develop microemulsions (MEs) containing α-bisabolol for the topical treatment of cutaneous leishmaniasis (CL). Initially, pseudoternary phase diagrams were developed using α-bisabolol as the oil phase, Eumulgin® CO 40 as the surfactant, Polymol® HE as the co-surfactant, and distilled water as the aqueous phase. Two transparent liquid systems (TLS) containing 5% of α-bisabolol were selected and characterized (F5E25 and F5EP25). Next, skin permeation and retention assays were performed using Franz cells. The interaction of the formulation with the stratum corneum (SC) was evaluated using the FTIR technique. The cytotoxicity was evaluated in murine peritoneal macrophages. Finally, the antileishmanial activity of microemulsions was determined in promastigotes and amastigotes of L. amazonensis (strain MHOM/BR/77/LTB 0016). As a result, the selected formulations showed isotropy, nanometric size (below 25 nm), Newtonian behavior and pH ranging from 6.5 to 6.9. The MEs achieved a 2.5-fold increase in the flux and skin-permeated amount of α-bisabolol. ATR-FTIR results showed that microemulsions promoted fluidization and extraction of lipids and proteins of the stratum corneum, increasing the diffusion coefficient and partition coefficient of the drug in the skin. Additionally, F5E25 and F5EP25 showed higher activity against promastigotes (IC50 13.27 and 18.29, respectively) compared to unencapsulated α-bisabolol (IC50 53.8). Furthermore, F5E25 and F5EP25 also showed antileishmanial activity against intracellular amastigotes of L. amazonensis, with IC50 50 times lower than free α-bisabolol and high selectivity index (up to 15). Therefore, the systems obtained are favorable to topical administration, with significant antileishmanial activity against L. amazonensis promastigotes and amastigotes, being a promising system for future in vivo trials.
Collapse
Affiliation(s)
| | | | | | | | - Luiz André S Silva
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | - Saulo S Matos
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | - Rogéria de S Nunes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Ana Amélia M Lira
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
6
|
Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, Narooie-Noori F, Sargazi S, Mirinejad S, Roostaee M, Sargazi S, Barani M, Malahat Shadman S, Althomali RH, Rahman MM. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658:124226. [PMID: 38744414 DOI: 10.1016/j.ijpharm.2024.124226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846, Tehran, Iran.
| | - Hasan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran.
| | - Foroozan Narooie-Noori
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
| | | | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
7
|
Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives. J Control Release 2023; 362:70-96. [PMID: 37591463 DOI: 10.1016/j.jconrel.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Eye is the most specialized and sensory body organ and treating eye diseases efficiently is necessary. Despite various attempts, the design of a consummate ophthalmic drug delivery system remains unsolved because of anatomical and physiological barriers that hinder drug transport into the desired ocular tissues. It is important to advance new platforms to manage ocular disorders, whether they exist in the anterior or posterior cavities. Nanotechnology has piqued the interest of formulation scientists because of its capability to augment ocular bioavailability, control drug release, and minimize inefficacious drug absorption, with special attention to lipid-based nanocarriers (LBNs) because of their cellular safety profiles. LBNs have greatly improved medication availability at the targeted ocular site in the required concentration while causing minimal adverse effects on the eye tissues. Nevertheless, the exact mechanisms by which lipid-based nanocarriers can bypass different ocular barriers are still unclear and have not been discussed. Thus, to bridge this gap, the current work aims to highlight the applications of LBNs in the ocular drug delivery exploring the different ocular barriers and the mechanisms viz. adhesion, fusion, endocytosis, and lipid exchange, through which these platforms can overcome the barrier characteristics challenges.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
8
|
Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnology 2023; 21:232. [PMID: 37480102 PMCID: PMC10362606 DOI: 10.1186/s12951-023-01992-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Ocular drug delivery has constantly challenged ophthalmologists and drug delivery scientists due to various anatomical and physiological barriers. Static and dynamic ocular barriers prevent the entry of exogenous substances and impede therapeutic agents' active absorption. This review elaborates on the anatomy of the eye and the associated constraints. Followed by an illustration of some common ocular diseases, including glaucoma and their current clinical therapies, emphasizing the significance of drug therapy in treating ocular diseases. Subsequently, advances in ocular drug delivery modalities, especially nanotechnology-based ocular drug delivery systems, are recommended, and some typical research is highlighted. Based on the related research, systematic and comprehensive characterizations of the nanocarriers are summarized, hoping to assist with future research. Besides, we summarize the nanotechnology-based ophthalmic drugs currently on the market or still in clinical trials and the recent patents of nanocarriers. Finally, inspired by current trends and therapeutic concepts, we provide an insight into the challenges faced by novel ocular drug delivery systems and further put forward directions for future research. We hope this review can provide inspiration and motivation for better design and development of novel ophthalmic formulations.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
9
|
Shi J, Yang J, Xu H, Luo Q, Sun J, Zhang Y, Liang Z, Zhao N, Zhang J. Preparation of a Sunitinib loaded microemulsion for ocular delivery and evaluation for the treatment of corneal neovascularization in vitro and in vivo. Front Pharmacol 2023; 14:1157084. [PMID: 37497104 PMCID: PMC10366539 DOI: 10.3389/fphar.2023.1157084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Corneal neovascularization (CNV) is a pathological condition that can disrupt corneal transparency, thus harming visual acuity. However, there is no effective drug to treat CNV. Sunitinib (STB), a small-molecule multiple receptor tyrosine kinase inhibitor, was shown to have an effect on CNV. The purpose of this study was to develop an STB microemulsion (STB-ME) eye drop to inhibit CNV by topical application. Methods: We successfully prepared an STB-ME by the phase inversion emulsification method, and the physicochemical properties of STB-MEs were investigated. The short-term storage stability, cytotoxicity to human corneal epithelial cells, drug release, ocular irritation, ocular pharmacokinetics and the inhibitory effect on CNV were evaluated in vitro and in vivo. Results: The optimal formulation of STB-ME is composed of oleic acid, CRH 40, Transcutol P, water and sodium hyaluronate (SH). It is a uniform spherical particle with a mean droplet size of 18.74 ± 0.09 nm and a polydispersity index of 0.196 ± 0.004. In the in vitro drug release results, STB-ME showed sustained release and was best fitted by a Korsmeyer-Peppas model (R 2 = 0.9960). The results of the ocular pharmacokinetics in rabbits showed that the formulation containing SH increased the bioavailability in the cornea (2.47-fold) and conjunctiva (2.14-fold). STB-ME (0.05% and 0.1%), administered topically, suppressed alkali burn-induced CNV in mice more effectively than saline, and high-dose (0.1%) STB-ME had similar efficacy to dexamethasone (0.025%). Conclusion: This study provides a promising formulation of STB-ME for the inhibition of CNV by topical administration, which has the excellent characteristics of effectiveness, sustained release and high ocular bioavailability.
Collapse
Affiliation(s)
- Jieran Shi
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qing Luo
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jun Sun
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yali Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Formica ML, Awde Alfonso HG, Paredes AJ, Melian ME, Camacho NM, Faccio R, Tártara LI, Palma SD. Development of Triamcinolone Acetonide Nanocrystals for Ocular Administration. Pharmaceutics 2023; 15:pharmaceutics15020683. [PMID: 36840006 PMCID: PMC9962019 DOI: 10.3390/pharmaceutics15020683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Triamcinolone acetonide (TA) is a powerful anti-inflammatory drug used in the treatment of inflammatory ocular disorders; however, its poor aqueous solubility and ocular anatomical barriers hinder optimal treatment. The aim of this work was to obtain triamcinolone acetonide nanocrystals (TA-NC) to improve ocular corticosteroid therapy. Self-dispersible TA-NC were prepared by the bead milling technique followed by spray-drying, exhaustively characterized and then evaluated in vivo in an ocular model of endotoxin-induced uveitis (EIU). Self-dispersible TA-NC presented an average particle size of 257 ± 30 nm, a narrow size distribution and a zeta potential of -25 ± 3 mV, which remained unchanged for 120 days under storage conditions at 25 °C. In addition, SEM studies of the TA-NC showed uniform and spherical morphology, and FTIR and XRDP analyses indicated no apparent chemical and crystallinity changes. The subconjunctival administration of TA-NC in albino male white rabbits showed no clinical signs of ocular damage. In vivo studies proved that treatment with self-dispersible TA-NC alleviated the inflammatory response in the anterior chamber and iris in EUI rabbit eyes. Dispersible TA-NC are a promising approach to obtaining a novel nanometric TA formulation for ocular disorders.
Collapse
Affiliation(s)
- María Lina Formica
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Hamoudi Ghassan Awde Alfonso
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | | | - María Elisa Melian
- Área de Farmacología, Departamento de Ciencias Farmacéuticas—CIENFAR, Facultad de Química, Universidad de la República (Udelar), Av. General Flores 2124, Montevideo 11800, Uruguay
| | - Nahuel Matías Camacho
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Ricardo Faccio
- Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones—DETEMA, Facultad de Química, Universidad de la República (Udelar), Av. General Flores 2124, Montevideo 11800, Uruguay
| | - Luis Ignacio Tártara
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Santiago Daniel Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina
- Correspondence:
| |
Collapse
|
11
|
Durgapal S, Goswami L, Nair AB, Juyal V, Verma A. Enhanced anti-cataract effect of microemulsion containing Cineraria maritima: Formulation, optimization and in vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Yang J, Liang Z, Lu P, Song F, Zhang Z, Zhou T, Li J, Zhang J. Development of a Luliconazole Nanoemulsion as a Prospective Ophthalmic Delivery System for the Treatment of Fungal Keratitis: In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 14:2052. [PMID: 36297487 PMCID: PMC9608689 DOI: 10.3390/pharmaceutics14102052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Luliconazole (LCZ), a novel imidazole drug, has broad-spectrum and potential antifungal effects, which makes it a possible cure for fungal keratitis; nevertheless, its medical use in ocular infections is hindered by its poor solubility. The purpose of this study was to design and optimize LCZ nanoemulsion (LCZ-NE) formulations using the central composite design-response surface methodology, and to investigate its potential in improving bioavailability following ocular topical administration. The LCZ-NE formulation was composed of Capryol 90, ethoxylated hydrogenated castor oil, Transcutol® P and water. The shape of LCZ-NE was spherical and uniform, with a droplet size of 18.43 ± 0.05 nm and a low polydispersity index (0.070 ± 0.008). The results of an in vitro release of LCZ study demonstrated that the LCZ-NE released more drug than an LCZ suspension (LCZ-Susp). Increases in the inhibition zone indicated that the in vitro antifungal activity of the LCZ-NE was significantly improved. An ocular irritation evaluation in rabbits showed that the LCZ-NE had a good tolerance in rabbit eyes. Ocular pharmacokinetics analysis revealed improved bioavailability in whole eye tissues that were treated with LCZ-NE, compared with those treated with LCZ-Susp. In conclusion, the optimized LCZ-NE formulation exhibited excellent physicochemical properties, good tolerance, enhanced antifungal activity and bioavailability in eyes. This formulation would be safe, and shows promise in effectively treating ocular fungal infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junjie Zhang
- Henan Eye Hospital, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| |
Collapse
|
13
|
Li YT, Sheng ST, Yu B, Jia F, Wang K, Han HJ, Jin Q, Wang YX, Ji J. An ROS-Responsive Antioxidative Macromolecular Prodrug of Caffeate for Uveitis Treatment. CHINESE JOURNAL OF POLYMER SCIENCE 2022; 40:1101-1109. [DOI: 10.1007/s10118-022-2798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 11/03/2022]
|
14
|
Fernandes AR, Vidal LB, Sánchez-López E, Dos Santos T, Granja PL, Silva AM, Garcia ML, Souto EB. Customized cationic nanoemulsions loading triamcinolone acetonide for corneal neovascularization secondary to inflammatory processes. Int J Pharm 2022; 623:121938. [PMID: 35728716 DOI: 10.1016/j.ijpharm.2022.121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Customized cationic oil-in-water nanoemulsions (NEs) have been produced to improve the bioavailability of poorly water-soluble drugs, such as triamcinolone acetonide (TA). TA is a synthetic glucocorticoid with anti-inflammatory and antiangiogenic therapeutic properties and it is widely used as an effective treatment in ocular disorders. In this work, TA-NEs were characterized using two different custom-made cationic surfactants, showing a high positive surface charge favouring corneal penetration and a particle size below 300 nm. Both TA-NE formulations demonstrated to be stable at 4 °C during the first months of storage. Furthermore, TA-NEs were able to produce antiangiogenic effects in chicken membranes. The TA-NEs safety profile was evaluated using in vitro and in vivo ocular tolerance tests. Out of the two formulations, the one showing no irritant effects was screened in vivo demonstrating capacity to ameliorate ocular inflammation in New Zealand rabbits significantly, specially to reduce the risk of ocular inflammation processes, with antiangiogenic activity, and can therefore be exploited as a suitable formulation to avoid inflammatory reactions upon ocular surgical procedures, such as cataracts.
Collapse
Affiliation(s)
- Ana R Fernandes
- i3s - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal; Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal; Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Lorena B Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain; Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
| | - Tiago Dos Santos
- i3s - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Pedro L Granja
- i3s - Institute for Research & Innovation in Health, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Biomedical Engineering Institute, University of Porto, Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Amelia M Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal; Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, P-5001-801 Vila Real, Portugal.
| | - Maria L Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal; REQUIMTE/UCIBIO, Faculty of Pharmacy of University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
15
|
Jing H, Huang X, Du X, Mo L, Ma C, Wang H. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond. Carbohydr Polym 2022; 278:118993. [PMID: 34973796 DOI: 10.1016/j.carbpol.2021.118993] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022]
Abstract
In this work, a novel synthesis strategy of sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond was described. The beads were prepared by dropping the blends of two polymers into the citric acid solution. Besides hydrogen bonding, electrostatic interactions were also involved in the formation of the hydrogel beads. The thermal stability experiments revealed that the more the content of carboxymethyl chitosan, the better the thermal stability of the beads. The beads exhibited excellent pH sensitivity, pH reversibility, and lactoferrin loading capacity. The swelling ratio of the bead and its protein releasing profile was pH-dependent, which could prevent premature protein release in the gastric environment. Also, the circular dichroism results demonstrated that lactoferrin could maintain its structure during the loading and releasing process. The obtained results revealed that the hydrogel beads prepared in this work could be used as a potential protein carrier for oral delivery.
Collapse
Affiliation(s)
- Huijuan Jing
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xin Huang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaojing Du
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Ling Mo
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chaoyang Ma
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hongxin Wang
- The State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
16
|
Development and Characterization of Nanoemulsions for Ophthalmic Applications: Role of Cationic Surfactants. MATERIALS 2021; 14:ma14247541. [PMID: 34947136 PMCID: PMC8706710 DOI: 10.3390/ma14247541] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
The eye is a very complex organ comprising several physiological and physical barriers that compromise drug absorption into deeper layers. Nanoemulsions are promising delivery systems to be used in ocular drug delivery due to their innumerous advantages, such as high retention time onto the site of application and the modified release profile of loaded drugs, thereby contributing to increasing the bioavailability of drugs for the treatment of eye diseases, in particular those affecting the posterior segment. In this review, we address the main factors that govern the development of a suitable nanoemulsion formulation for eye administration to increase the patient’s compliance to the treatment. Appropriate lipid composition and type of surfactants (with a special emphasis on cationic compounds) are discussed, together with manufacturing techniques and characterization methods that are instrumental for the development of appropriate ophthalmic nanoemulsions.
Collapse
|
17
|
Ma Y, Li C, Mai Z, Yang J, Tai M, Leng G. Efficacy and safety testing of dissolving microarray patches in Chinese subjects. J Cosmet Dermatol 2021; 21:3496-3502. [PMID: 34825760 DOI: 10.1111/jocd.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES There is a lack of clinical research in the Chinese market concerning dissolving microarray (DMA) patches in cosmetic applications. In this study, the clinical efficacy and safety tests of DMA patch technology were performed on Chinese consumers. METHODS A 4-week clinical efficacy and safety evaluation was conducted on 30 Chinese female subjects with crow's feet and eye bags. DMA patches loaded with hyaluronic acid (HA-DMA) were applied under the eyes and corners of the eyes of the subjects three times a week over four consecutive weeks. Skin firmness and dermal layer strength were measured using ultrasound, and changes in skin wrinkles were detected using VISIA-CR and Primos Lite. Eye bag ratings were evaluated by professional dermatologists based on the 0-6 grades of eye bags in the "Skin Aging Atlas Volume 2: Asian Type." RESULTS HA-DMA patches produced good clinical improvements on both crow's feet and eye bags in the study participants. HA-DMA effectively increased skin firmness while reducing the number, area, and volume of crow's feet, along with reducing eye bag ratings. The reductions in all metrics were statistically significant with positive effects evident in as little as 1 week of treatment. There were no adverse effects related to the treatments observed during the test period. CONCLUSIONS In a clinical efficacy trial of 30 Chinese female subjects, HA-DMA showed excellent therapeutic benefits without adverse effects while reducing crow's feet and eye bags. HA-DMA is expected to be a safe, effective, and novel cosmetic for improving the appearance of aging skin.
Collapse
Affiliation(s)
- Yonghao Ma
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| | - Chengguo Li
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| | | | - Jian Yang
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| | - Meiling Tai
- Infinitus (China) Company Ltd, Jiangmen, China
| | - Gang Leng
- Youwe (ZhuHai) Biotechnology Company Ltd, Zhuhai, China
| |
Collapse
|
18
|
DHAHIR RK, AL-NIMA AM, AL-BAZZAZ F. Nanoemulsions as Ophthalmic Drug Delivery Systems. Turk J Pharm Sci 2021; 18:652-664. [PMID: 34708428 PMCID: PMC8562122 DOI: 10.4274/tjps.galenos.2020.59319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
Nanoemulsions are liquid-in-liquid dispersion with a droplet size of about 100 nm. They have a transparent appearance, high rate of bioavailability, and increased shelf life. Nanoemulsions mainly consist of oil, water, surfactant, and cosurfactant and can be prepared by high- and low-energy methods. Diluted nanoemulsions are utilized for the delivery of ophthalmic drugs due to their capability to penetrate the deep layers of the ocular structure, provide a sustained release effect, and reduce the frequency of administration and side effects. These nanoemulsions are subjected to certain tests, such as safety, stability, pH profile, rheological studies, and so on. Cationic nanoemulsions are prepared for topical ophthalmic delivery of active ingredients from cationic agents to increase the drug residence time on the ocular surface, reducing their clearance from the ocular surface and improving drug bioavailability. This review article summarizes the main characteristics of nanoemulsions, ophthalmic nanoemulsions, and cationic nanoemulsions and their components, methods of preparation, and the evaluation parameters for ophthalmic nanoemulsions.
Collapse
Affiliation(s)
- Rasha Khalid DHAHIR
- Department of Pharmaceutics, College of Pharmacy, University of Mosul, Mosul, Iraq
| | | | - Fadia AL-BAZZAZ
- Department of Pharmaceutics, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|