1
|
Martínez-Borrajo R, Rouco H, Virzì NF, Diaz-Rodriguez P, Landin M. Modulation of IFN-γ induced macrophage inflammatory responses via indomethacin-loaded NLCs for OA management. Int J Pharm 2024; 666:124823. [PMID: 39396655 DOI: 10.1016/j.ijpharm.2024.124823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Macrophages are the main cells present in the synovial membrane. They play an important role in the development and progression of osteoarthritis (OA). After the establishment of the disease macrophages mostly adopt a pro-inflammatory secretory phenotype (OA phenotype) further inducing cartilage degradation. Indomethacin (IND) is a non-steroidal anti-inflammatory drug (NSAID) able to inhibit the synthesis of prostaglandins mediated by both cyclooxygenase isoforms depicting a potent anti-inflammatory capacity. However, the lack of specificity and short half-like of free drugs within the joint cavity limits its utility in controlling inflammation after intra-articular administration. This study aims at developing IND loaded glycosylated nanostructured lipid carriers (NLCs) to selectively target macrophages and promote their reprogramming to an anti-inflammatory phenotype. This approach focused on the local administration of the NLCs, offers a promising therapeutic strategy for treating OA by modulating the inflammatory environment within the joint. NLCs will be designed by combining experimental and in silico docking analyses, and thoroughly characterized to obtain drug delivery systems with high stability and suitable physicochemical properties. The proposed mannose-functionalized systems exhibited adequate particle sizes (≈ 70 nm) and positive surface charges (> 20 mV) to be efficiently retained in the joint cavity. Moreover, the developed NLCs demonstrated effective and specific uptake by OA-like macrophages leading to a significant decrease in the secretion of the pro-inflammatory cytokines IL-6, IL-8 and TNF-α similarly to the free drug. Therefore, these systems effectively reprogrammed OA-associated macrophages to adopt a more regenerative phenotype, offering a promising strategy for managing inflammation in OA.
Collapse
Affiliation(s)
- Rebeca Martínez-Borrajo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15782 Santiago de Compostela, Spain
| | - Helena Rouco
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15782 Santiago de Compostela, Spain
| | - Nicola Filippo Virzì
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Drug and Health Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15782 Santiago de Compostela, Spain
| | - Patricia Diaz-Rodriguez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15782 Santiago de Compostela, Spain.
| | - Mariana Landin
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Grupo I+D Farma (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; Instituto de Materiais da Universidade de Santiago de Compostela (iMATUS), 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Cimino C, Zingale E, Bonaccorso A, Musumeci T, Carbone C, Pignatello R. From Preformulative Design to In Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 1: Design, Characterization, and Preliminary In Vitro Studies. Mol Pharm 2024; 21:6034-6061. [PMID: 39441703 DOI: 10.1021/acs.molpharmaceut.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ocular pathologies are widely diffused worldwide, and their effective treatment, combined with a high patient compliance, is sometimes challenging to achieve due to the barriers of the eye; in this context, the use of nanoparticles for topical ophthalmic application could represent a successful strategy. Aiming to develop nanoplatforms with potential clinical applications, great attention has to be paid to their features, in relation to the route of administration and to the pharmacopoeial requirements. This review (part 1) thus embraces the preliminary steps of nanoparticle development and characterization. At the beginning, the main barriers of the eye and the different administration routes are resumed, followed by a general description of the advantages of the employment of nanoparticles for ocular topical administration. Subsequently, the preformulative steps are discussed, deepening the choice of raw materials and determining the quantitative composition. Then, a detailed report of the physicochemical and technological characterization of nanoparticles is presented, analyzing the most relevant tests that should be performed on nanoparticles to verify their properties and the requisites (both mandatory and suggested) demanded by regulatory agencies. In conclusion, some preliminary noncellular in vitro evaluation methods are described. Studies from in vitro cellular assays to in vivo tests will be discussed in a separate (part 2) review paper. Hence, this overview aims to offer a comprehensive tool to guide researchers in the choice of the most relevant studies to develop a nanoplatform for ophthalmic drug administration.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
3
|
Alfutaimani AS, Alharbi NK, S. Alahmari A, A. Alqabbani A, Aldayel AM. Exploring the landscape of Lipid Nanoparticles (LNPs): A comprehensive review of LNPs types and biological sources of lipids. Int J Pharm X 2024; 8:100305. [PMID: 39669003 PMCID: PMC11635012 DOI: 10.1016/j.ijpx.2024.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as promising carriers for delivering therapeutic agents, including mRNA-based immunotherapies, in various biomedical applications. The use of LNPs allows for efficient delivery of drugs, resulting in enhanced targeted delivery to specific tissues or cells. These LNPs can be categorized into several types, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-polymer hybrid nanoparticles. The preparation of LNPs involves the manipulation of their structural, dimensional, compositional, and physical characteristics via the use of different methods in the industry. Lipids used to construct LNPs can also be derived from various biological sources, such as natural lipids extracted from plants, animals, or microorganisms. This review dives into the different types of LNPs and their preparation methods. More importantly, it discusses all possible biological sources that are known to supply lipids for the creation of LNPs. Natural lipid reservoirs have surfaced as promising sources for generating LNPs. The use of LNPs in drug delivery is expected to increase significantly in the coming years. Herein, we suggest some environmentally friendly and biocompatible sources that can produce lipids for future LNPs production.
Collapse
Affiliation(s)
- Alanood S. Alfutaimani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Nouf K. Alharbi
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
| | - Amirah S. Alahmari
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Almaha A. Alqabbani
- The Ear, Nose, and Throat (ENT) Department at King Salman Hospital, Riyadh 12769, Saudi Arabia
| | - Abdulaziz M. Aldayel
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Riyadh 11426, Saudi Arabia
| |
Collapse
|
4
|
Cui M, Li Y, Li J, Jia N, Cao W, Li Z, Li X, Chu X. Construction of various lipid carriers to study the transdermal penetration mechanism of sinomenine hydrochloride. J Microencapsul 2024; 41:157-169. [PMID: 38451031 DOI: 10.1080/02652048.2024.2324810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE). METHODS SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin. RESULTS The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively. CONCLUSION SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.
Collapse
Affiliation(s)
- Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yaqing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nini Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wenxuan Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengguang Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Li
- Anhui Province Institute for Food and Drug Control, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Padaga SG, Bhatt H, Ch S, Paul M, Itoo AM, Ghosh B, Roy S, Biswas S. Glycol Chitosan-Poly(lactic acid) Conjugate Nanoparticles Encapsulating Ciprofloxacin: A Mucoadhesive, Antiquorum-Sensing, and Biofilm-Disrupting Treatment Modality for Bacterial Keratitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18360-18385. [PMID: 38573741 DOI: 10.1021/acsami.3c18061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Bacterial keratitis (BK) causes visual morbidity/blindness if not treated effectively. Here, ciprofloxacin (CIP)-loaded nanoparticles (NPs) using glycol chitosan (GC) and poly(lactic acid) (PLA) conjugate at three different ratios (CIP@GC(PLA) NPs (1:1,5,15)) were fabricated. CIP@GC(PLA) NPs (1:1) were more effective than other tested ratios, indicating the importance of optimal hydrophobic/hydrophilic balance for corneal penetration and preventing bacterial invasion. The CIP@GC(PLA) (NPs) (1:1) realized the highest association with human corneal epithelial cells, which were nonirritant to the hen's egg-chorioallantoic membrane test (HET-CAM test) and demonstrated significant antibacterial response in the in vitro minimum inhibitory, bactericidal, live-dead cells, zone of inhibition, and biofilm inhibition assays against the keratitis-inducing pathogen Pseudomonas aeruginosa. The antiquorum sensing activity of GC has been explored for the first time. The NPs disrupted the bacterial quorum sensing by inhibiting the production of virulence factors, including acyl homoserine lactones, pyocyanin, and motility, and caused significant downregulation of quorum sensing associated genes. In the in vivo studies, CIP@GC(PLA) NPs (1:1) displayed ocular retention in vivo (∼6 h) and decreased the opacity and the bacterial load effectively. Overall, the CIP@GC(PLA) NP (1:1) is a biofilm-disrupting antiquorum sensing treatment regimen with clinical translation potential in BK.
Collapse
Affiliation(s)
- Sri Ganga Padaga
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Himanshu Bhatt
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, Kallam Anji Reddy Campus, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
6
|
Arroyo-Urea EM, Muñoz-Hernando M, Leo-Barriga M, Herranz F, González-Paredes A. A quality by design approach for the synthesis of palmitoyl-L-carnitine-loaded nanoemulsions as drug delivery systems. Drug Deliv 2023; 30:2179128. [PMID: 36803136 PMCID: PMC10184586 DOI: 10.1080/10717544.2023.2179128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Nanoemulsions (NE) are lipid nanocarriers that can efficiently load hydrophobic active compounds, like palmitoyl-L-carnitine (pC), used here as model molecule. The use of design of experiments (DoE) approach is a useful tool to develop NEs with optimized properties, requiring less experiments compared to trial-and-error approach. In this work, NE were prepared by the solvent injection technique and DoE using a two-level fractional factorial design (FFD) as model was implemented for designing pC-loaded NE. NEs were fully characterized by a combination of techniques, studying its stability, scalability, pC entrapment and loading capacity and biodistribution, which was studied ex-vivo after injection of fluorescent NEs in mice. We selected the optimal composition for NE, named pC-NEU, after analysis of four variables using DoE. pC-NEU incorporated pC in a very efficient manner, with high entrapment efficiency (EE) and loading capacity. pC-NEU did not change its initial colloidal properties stored at 4 °C in water during 120 days, nor in buffers with different pH values (5.3 and 7.4) during 30 days. Moreover, the scalability process did not affect NE properties and stability profile. Finally, biodistribution study showed that pC-NEU formulation was predominantly concentrated in the liver, with minimal accumulation in spleen, stomach, and kidneys.
Collapse
Affiliation(s)
- E M Arroyo-Urea
- Nanomedicine and Molecular Imaging group, Instituto de Química Médica-CSIC, Madrid, Spain
| | - María Muñoz-Hernando
- Nanomedicine and Molecular Imaging group, Instituto de Química Médica-CSIC, Madrid, Spain
| | - Marta Leo-Barriga
- Nanomedicine and Molecular Imaging group, Instituto de Química Médica-CSIC, Madrid, Spain
| | - Fernando Herranz
- Nanomedicine and Molecular Imaging group, Instituto de Química Médica-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Conexión Nanomedicina-CSIC, Madrid, Spain
| | - Ana González-Paredes
- Nanomedicine and Molecular Imaging group, Instituto de Química Médica-CSIC, Madrid, Spain.,Conexión Nanomedicina-CSIC, Madrid, Spain
| |
Collapse
|
7
|
Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives. J Control Release 2023; 362:70-96. [PMID: 37591463 DOI: 10.1016/j.jconrel.2023.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Eye is the most specialized and sensory body organ and treating eye diseases efficiently is necessary. Despite various attempts, the design of a consummate ophthalmic drug delivery system remains unsolved because of anatomical and physiological barriers that hinder drug transport into the desired ocular tissues. It is important to advance new platforms to manage ocular disorders, whether they exist in the anterior or posterior cavities. Nanotechnology has piqued the interest of formulation scientists because of its capability to augment ocular bioavailability, control drug release, and minimize inefficacious drug absorption, with special attention to lipid-based nanocarriers (LBNs) because of their cellular safety profiles. LBNs have greatly improved medication availability at the targeted ocular site in the required concentration while causing minimal adverse effects on the eye tissues. Nevertheless, the exact mechanisms by which lipid-based nanocarriers can bypass different ocular barriers are still unclear and have not been discussed. Thus, to bridge this gap, the current work aims to highlight the applications of LBNs in the ocular drug delivery exploring the different ocular barriers and the mechanisms viz. adhesion, fusion, endocytosis, and lipid exchange, through which these platforms can overcome the barrier characteristics challenges.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
8
|
Joshi PH, Youssef AAA, Ghonge M, Varner C, Tripathi S, Dudhipala N, Majumdar S. Gatifloxacin Loaded Nano Lipid Carriers for the Management of Bacterial Conjunctivitis. Antibiotics (Basel) 2023; 12:1318. [PMID: 37627738 PMCID: PMC10451836 DOI: 10.3390/antibiotics12081318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial conjunctivitis (BC) entails inflammation of the ocular mucous membrane. Early effective treatment of BC can prevent the spread of the infection to the intraocular tissues, which could lead to bacterial endophthalmitis or serious visual disability. In 2003, gatifloxacin (GTX) eyedrops were introduced as a new broad-spectrum fluoroquinolone to treat BC. Subsequently, GTX use was extended to other ocular bacterial infections. However, due to precorneal loss and poor ocular bioavailability, frequent administration of the commercial eyedrops is necessary, leading to poor patient compliance. Thus, the goal of the current investigation was to formulate GTX in a lipid-based drug delivery system to overcome the challenges with the existing marketed eyedrops and, thus, improve the management of bacterial conjunctivitis. GTX-NLCs and SLNs were formulated with a hot homogenization-probe sonication method. The lead GTX-NLC formulation was characterized and assessed for in vitro drug release, antimicrobial efficacy (against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa), and ex vivo permeation. The lead formulation exhibited desired physicochemical characteristics, an extended release of GTX over a 12 h period, and was stable over three months at the three storage conditions (refrigerated, room temperature, and accelerated). The transcorneal flux and permeability of GTX from the GTX-NLC formulation were 5.5- and 6.0-fold higher in comparison to the commercial eyedrops and exhibited a similar in vitro antibacterial activity. Therefore, GTX-NLCs could serve as an alternative drug delivery platform to improve treatment outcomes in BC.
Collapse
Affiliation(s)
- Poorva H. Joshi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mihir Ghonge
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
| | - Corinne Varner
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
| | - Siddharth Tripathi
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA;
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, USA; (P.H.J.); (A.A.A.Y.); (M.G.); (C.V.); (N.D.)
- Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
9
|
Talarico L, Pepi S, Susino S, Leone G, Bonechi C, Consumi M, Clemente I, Magnani A. Design and Optimization of Solid Lipid Nanoparticles Loaded with Triamcinolone Acetonide. Molecules 2023; 28:5747. [PMID: 37570717 PMCID: PMC10420805 DOI: 10.3390/molecules28155747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Principles of quality by design and design of experiments are acquiring more importance in the discovery and application of new drug carriers, such as solid lipid nanoparticles. In this work, an optimized synthesis of solid lipid nanoparticles loaded with Triamcinolone Acetonide is presented using an approach that involves Stearic Acid as a lipid, soy PC as an ionic surfactant, and Tween 80 as a nonionic surfactant. The constructed circumscribed Central Composite Design considers the lipid and nonionic surfactant quantities and the sonication amplitude in order to optimize particle size and Zeta potential, both measured by means of Dynamic Light Scattering, while the separation of unentrapped drug from the optimized Triamcinolone Acetonide-loaded solid lipid nanoparticles formulation is performed by Size Exclusion Chromatography and, subsequently, the encapsulation efficiency is determined by HPLC-DAD. The proposed optimized formulation-with the goal of maximizing Zeta potential and minimizing particle size-has shown good accordance with predicted values of Zeta potential and dimensions, as well as a high value of encapsulated Triamcinolone Acetonide. Experimental values obtained from the optimized synthesis reports a dimension of 683 ± 5 nm, which differs by 3% from the predicted value, and a Zeta potential of -38.0 ± 7.6 mV (12% difference from the predicted value).
Collapse
Affiliation(s)
- Luigi Talarico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Simone Pepi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Surama Susino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Claudia Bonechi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Ilaria Clemente
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (S.P.); (S.S.); (G.L.); (C.B.); (M.C.); (I.C.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
- Siena Research Group—Center for Colloids and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| |
Collapse
|
10
|
Shi J, Yang J, Xu H, Luo Q, Sun J, Zhang Y, Liang Z, Zhao N, Zhang J. Preparation of a Sunitinib loaded microemulsion for ocular delivery and evaluation for the treatment of corneal neovascularization in vitro and in vivo. Front Pharmacol 2023; 14:1157084. [PMID: 37497104 PMCID: PMC10366539 DOI: 10.3389/fphar.2023.1157084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Corneal neovascularization (CNV) is a pathological condition that can disrupt corneal transparency, thus harming visual acuity. However, there is no effective drug to treat CNV. Sunitinib (STB), a small-molecule multiple receptor tyrosine kinase inhibitor, was shown to have an effect on CNV. The purpose of this study was to develop an STB microemulsion (STB-ME) eye drop to inhibit CNV by topical application. Methods: We successfully prepared an STB-ME by the phase inversion emulsification method, and the physicochemical properties of STB-MEs were investigated. The short-term storage stability, cytotoxicity to human corneal epithelial cells, drug release, ocular irritation, ocular pharmacokinetics and the inhibitory effect on CNV were evaluated in vitro and in vivo. Results: The optimal formulation of STB-ME is composed of oleic acid, CRH 40, Transcutol P, water and sodium hyaluronate (SH). It is a uniform spherical particle with a mean droplet size of 18.74 ± 0.09 nm and a polydispersity index of 0.196 ± 0.004. In the in vitro drug release results, STB-ME showed sustained release and was best fitted by a Korsmeyer-Peppas model (R 2 = 0.9960). The results of the ocular pharmacokinetics in rabbits showed that the formulation containing SH increased the bioavailability in the cornea (2.47-fold) and conjunctiva (2.14-fold). STB-ME (0.05% and 0.1%), administered topically, suppressed alkali burn-induced CNV in mice more effectively than saline, and high-dose (0.1%) STB-ME had similar efficacy to dexamethasone (0.025%). Conclusion: This study provides a promising formulation of STB-ME for the inhibition of CNV by topical administration, which has the excellent characteristics of effectiveness, sustained release and high ocular bioavailability.
Collapse
Affiliation(s)
- Jieran Shi
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qing Luo
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jun Sun
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yali Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Khan S, Sharma A, Jain V. An Overview of Nanostructured Lipid Carriers and its Application in Drug Delivery through Different Routes. Adv Pharm Bull 2023; 13:446-460. [PMID: 37646052 PMCID: PMC10460807 DOI: 10.34172/apb.2023.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/24/2022] [Accepted: 09/09/2022] [Indexed: 09/01/2023] Open
Abstract
Nanostructured Lipid Carriers (NLC) are nano-sized colloidal drug delivery system that contains a lipid mixture consisting of both solid and liquid lipids in their core. This Lipid-Based Nanosystem is introduced as a biocompatible, non-toxic, and safe nano-drug delivery system as compared to polymeric or metallic nanoparticles. Due to its safety, stability, and high drug loading capacity compared to other lipid-based nanocarriers, NLC gained the attention of researchers to formulate safe and effective drug carriers. The ability to increase drug solubility and permeability while encapsulating the drug in a lipidic shell makes them an ideal carrier for drug delivery through difficult-to-achieve routes. Surface modification of NLC and the use of various additives result in drug targeting and increased residence time. With such qualities, NLCs can be used to treat a variety of diseases such as cancer, infections, neurodegenerative diseases, hypertension, diabetes, and pain management. This review focuses on the recent developments being made to deliver the drugs and genes through different routes via these nanocarriers. Here, we also discuss about historical background, structure, types of NLC and commonly employed techniques for manufacturing lipid-based nanocarriers.
Collapse
Affiliation(s)
- Shadab Khan
- Mahakal Institute of Pharmaceutical Studies, Ujjain, India
| | | | - Vikas Jain
- Mahakal Institute of Pharmaceutical Studies, Ujjain, India
| |
Collapse
|
12
|
Gugleva V, Andonova V. Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms. Pharmaceuticals (Basel) 2023; 16:ph16030474. [PMID: 36986574 PMCID: PMC10058782 DOI: 10.3390/ph16030474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sufficient ocular bioavailability is often considered a challenge by the researchers, due to the complex structure of the eye and its protective physiological mechanisms. In addition, the low viscosity of the eye drops and the resulting short ocular residence time further contribute to the observed low drug concentration at the target site. Therefore, various drug delivery platforms are being developed to enhance ocular bioavailability, provide controlled and sustained drug release, reduce the number of applications, and maximize therapy outcomes. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) exhibit all these benefits, in addition to being biocompatible, biodegradable, and susceptible to sterilization and scale-up. Furthermore, their successive surface modification contributes to prolonged ocular residence time (by adding cationic compounds), enhanced penetration, and improved performance. The review highlights the salient characteristics of SLNs and NLCs concerning ocular drug delivery, and updates the research progress in this area.
Collapse
Affiliation(s)
- Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 55 Marin Drinov Str., 9000 Varna, Bulgaria
| |
Collapse
|
13
|
González-Fernández FM, Delledonne A, Nicoli S, Gasco P, Padula C, Santi P, Sissa C, Pescina S. Nanostructured Lipid Carriers for Enhanced Transscleral Delivery of Dexamethasone Acetate: Development, Ex Vivo Characterization and Multiphoton Microscopy Studies. Pharmaceutics 2023; 15:pharmaceutics15020407. [PMID: 36839729 PMCID: PMC9961953 DOI: 10.3390/pharmaceutics15020407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Corticosteroids, although highly effective for the treatment of both anterior and posterior ocular segment inflammation, still nowadays struggle for effective drug delivery due to their poor solubilization capabilities in water. This research work aims to develop nanostructured lipid carriers (NLC) intended for periocular administration of dexamethasone acetate to the posterior segment of the eye. Pre-formulation studies were initially performed to find solid and liquid lipid mixtures for dexamethasone acetate solubilization. Pseudoternary diagrams at 65 °C were constructed to select the best surfactant based on the macroscopic transparency and microscopic isotropy of the systems. The resulting NLC, obtained following an organic solvent-free methodology, was composed of triacetin, Imwitor® 491 (glycerol monostearate >90%) and tyloxapol with Z-average = 106.9 ± 1.2 nm, PDI = 0.104 ± 0.019 and zeta potential = -6.51 ± 0.575 mV. Ex vivo porcine sclera and choroid permeation studies revealed a considerable metabolism in the sclera of dexamethasone acetate into free dexamethasone, which demonstrated higher permeation capabilities across both tissues. In addition, the NLC behavior once applied onto the sclera was further studied by means of multiphoton microscopy by loading the NLC with the fluorescent probe Nile red.
Collapse
Affiliation(s)
- Felipe M. González-Fernández
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy
- Correspondence: (F.M.G.-F.); (S.P.)
| | - Andrea Delledonne
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Paolo Gasco
- Nanovector S.r.l., Via Livorno, 60, 10144 Torino, Italy
| | - Cristina Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Patrizia Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy
- Correspondence: (F.M.G.-F.); (S.P.)
| |
Collapse
|
14
|
de Almeida Campos L, Fin MT, Santos KS, de Lima Gualque MW, Freire Cabral AKL, Khalil NM, Fusco-Almeida AM, Mainardes RM, Mendes-Giannini MJS. Nanotechnology-Based Approaches for Voriconazole Delivery Applied to Invasive Fungal Infections. Pharmaceutics 2023; 15:pharmaceutics15010266. [PMID: 36678893 PMCID: PMC9863752 DOI: 10.3390/pharmaceutics15010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.
Collapse
Affiliation(s)
- Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Kelvin Sousa Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| |
Collapse
|
15
|
Diclofenac Loaded Biodegradable Nanoparticles as Antitumoral and Antiangiogenic Therapy. Pharmaceutics 2022; 15:pharmaceutics15010102. [PMID: 36678731 PMCID: PMC9866337 DOI: 10.3390/pharmaceutics15010102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer is identified as one of the main causes of death worldwide, and an effective treatment that can reduce/eliminate serious adverse effects is still an unmet medical need. Diclofenac, a non-steroidal anti-inflammatory drug (NSAID), has demonstrated promising antitumoral properties. However, the prolonged use of this NSAID poses several adverse effects. These can be overcome by the use of suitable delivery systems that are able to provide a controlled delivery of the payload. In this study, Diclofenac was incorporated into biodegradable polymeric nanoparticles based on PLGA and the formulation was optimized using a factorial design approach. A monodisperse nanoparticle population was obtained with a mean size of ca. 150 nm and negative surface charge. The release profile of diclofenac from the optimal formulation followed a prolonged release kinetics. Diclofenac nanoparticles demonstrated antitumoral and antiangiogenic properties without causing cytotoxicity to non-tumoral cells, and can be pointed out as a safe, promising and innovative nanoparticle-based formulation with potential antitumoral effects.
Collapse
|
16
|
Cvenkel B, Kolko M. Devices and Treatments to Address Low Adherence in Glaucoma Patients: A Narrative Review. J Clin Med 2022; 12:jcm12010151. [PMID: 36614952 PMCID: PMC9821329 DOI: 10.3390/jcm12010151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Poor adherence to topical glaucoma medications has been linked to worse visual field outcomes in glaucoma patients. Therefore, identifying and overcoming the adherence barriers are expected to slow down the progression of disease. The most common barriers to adherence, in addition to the lack of knowledge, include forgetfulness, side effects of medications, difficulties with drop instillation and low self-efficacy. Symptoms and signs of ocular surface disease, which importantly reduce patients' quality of life, are decreased by using preservative-free topical medications. Sustained drug delivery systems using different vehicles seem promising for relieving the burden of drop administration. Currently, only the bimatoprost sustained-release intracameral implant is available for clinical use and single administration. In the era of digitalization, smart drug delivery-connected devices may aid adherence and, by sharing data with care providers, improve monitoring and adjusting treatment. Selective laser trabeculoplasty as first-line treatment delays the need for drops, whereas minimally invasive glaucoma procedures with and without devices combined with cataract surgery increase the likelihood of patients with early-to-moderate glaucoma to remain drop free or reduce the number of drops needed to control intraocular pressure. The aim of this narrative review is to present and discuss devices and treatments that may improve adherence by reducing the need for drops and side effects of medications and aiding in glaucoma monitoring. For the future, there is a need for studies focusing on clinically important outcomes, quality of life and the cost of intervention with longer post-interventional follow up.
Collapse
Affiliation(s)
- Barbara Cvenkel
- Department of Ophthalmology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| |
Collapse
|
17
|
da Ana R, Fonseca J, Karczewski J, Silva AM, Zielińska A, Souto EB. Lipid-Based Nanoparticulate Systems for the Ocular Delivery of Bioactives with Anti-Inflammatory Properties. Int J Mol Sci 2022; 23:ijms232012102. [PMID: 36292951 PMCID: PMC9603520 DOI: 10.3390/ijms232012102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/26/2022] Open
Abstract
The complexity of the eye structure and its physiology turned ocular drug administration into one of the most challenging topics in the pharmaceutical field. Ocular inflammation is one of the most common ophthalmic disorders. Topical administration of anti-inflammatory drugs is also commonly used as a side treatment in tissue repair and regeneration. The difficulty in overcoming the eye barriers, which are both physical and chemical, reduces drug bioavailability, and the frequency of administration must be increased to reach the therapeutic effect. However, this can cause serious side effects. Lipid nanoparticles seem to be a great alternative to ocular drug delivery as they are composed from natural excipients and can encapsulate both hydrophilic and lipophilic drugs of different sources, and their unique properties, as their excellent biocompatibility, safety and adhesion allow to increase the bioavailability, compliance and achieve a sustained drug release. They are also very stable, easy to produce and scale up, and can be lyophilized or sterilized with no significant alterations to the release profile and stability. Because of this, lipid nanoparticles show a great potential to be an essential part of the new therapeutic technologies in ophthalmology to deliver synthetic and natural anti-inflammatory drugs. In fact, there is an increasing interest in natural bioactives with anti-inflammatory activities, and the use of nanoparticles for their site-specific delivery. It is therefore expected that, in the near future, many more studies will promote the development of new nanomedicines resulting in clinical studies of new drugs formulations.
Collapse
Affiliation(s)
- Raquel da Ana
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joel Fonseca
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznan, Poland
- Correspondence: (A.Z.); (E.B.S.)
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- REQUIMTE/UCIBIO, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Correspondence: (A.Z.); (E.B.S.)
| |
Collapse
|
18
|
Advances in the Application of Nanomaterials to the Treatment of Melanoma. Pharmaceutics 2022; 14:pharmaceutics14102090. [PMID: 36297527 PMCID: PMC9610396 DOI: 10.3390/pharmaceutics14102090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma can be divided into cutaneous melanoma, uveal melanoma, mucosal melanoma, etc. It is a very aggressive tumor that is prone to metastasis. Patients with metastatic melanoma have a poor prognosis and shorter survival. Although current melanoma treatments have been dramatically improved, there are still many problems such as systemic toxicity and the off-target effects of drugs. The use of nanoparticles may overcome some inadequacies of current melanoma treatments. In this review, we summarize the limitations of current therapies for cutaneous melanoma, uveal melanoma, and mucosal melanoma, as well as the adjunct role of nanoparticles in different treatment modalities. We suggest that nanomaterials may have an effective intervention in melanoma treatment in the future.
Collapse
|
19
|
Chauhan A, Fitzhenry L, Serro AP. Recent Advances in Ophthalmic Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14102075. [PMID: 36297511 PMCID: PMC9606937 DOI: 10.3390/pharmaceutics14102075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Anuj Chauhan
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, South East Technological University, X91 K0EK Waterford, Ireland
| | - Ana Paula Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
20
|
Recent progress in colloidal nanocarriers loaded in situ gel in ocular therapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Luo Q, Yang J, Xu H, Shi J, Liang Z, Zhang R, Lu P, Pu G, Zhao N, Zhang J. Sorafenib-loaded nanostructured lipid carriers for topical ocular therapy of corneal neovascularization: development, in-vitro and in vivo study. Drug Deliv 2022; 29:837-855. [PMID: 35277107 PMCID: PMC8920403 DOI: 10.1080/10717544.2022.2048134] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sorafenib (SRB), a multikinase inhibitor, is effective in reducing experimental corneal neovascularization (CNV) after oral administration; however, its therapeutic use in ocular surface disorders is restricted due to poor solubility and limited bioavailability. This study aimed to develop and optimize SRB-loaded nanostructured lipid carriers (SRB-NLCs) for topical ocular delivery by a central composite design response surface methodology (CCD-RSM). It was spherical and uniform in morphology with an average particle size of 111.87 ± 0.93 nm and a narrow size distribution. The in vitro drug release from the released SRB-NLC formulation was well fitted to Korsmeyer Peppas release kinetics. The cell counting kit-8 (CCK-8) cell viability assay demonstrated that SRB-NLC was not obviously cytotoxic to human corneal epithelial cells (HCECs). An in vivo ocular irritation test showed that SRB-NLC was well tolerated by rabbit eyes. Ocular pharmacokinetics revealed 6.79-fold and 1.24-fold increase in the area under concentration-time curves (AUC0-12h) over 12 h in rabbit cornea and conjunctiva, respectively, treated with one dose of SRB-NLC compared with those treated with SRB suspension. Moreover, SRB-NLC (0.05% SRB) and dexamethasone (0.025%) similarly suppressed corneal neovascularization in mice. In conclusion, the optimized SRB-NLC formulation demonstrated excellent physicochemical properties and good tolerance, sustained release, and enhanced ocular bioavailability. It is safe and potentially effective for the treatment of corneal neovascularization.
Collapse
Affiliation(s)
- Qing Luo
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jieran Shi
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Rui Zhang
- Department of Ophthalmology, Henan University People’s Hospital, Zhengzhou, China
| | - Ping Lu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Guojuan Pu
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
22
|
Jacob S, Nair AB, Shah J, Gupta S, Boddu SHS, Sreeharsha N, Joseph A, Shinu P, Morsy MA. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy-An Overview on Recent Advances. Pharmaceutics 2022; 14:533. [PMID: 35335909 PMCID: PMC8955373 DOI: 10.3390/pharmaceutics14030533] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to complicated anatomical and physical properties, targeted drug delivery to ocular tissues continues to be a key challenge for formulation scientists. Various attempts are currently being made to improve the in vivo performance of therapeutic molecules by encapsulating them in various nanocarrier systems or devices and administering them via invasive/non-invasive or minimally invasive drug administration methods. Biocompatible and biodegradable lipid nanoparticles have emerged as a potential alternative to conventional ocular drug delivery systems to overcome various ocular barriers. Lipid-based nanocarrier systems led to major technological advancements and therapeutic advantages during the last few decades of ocular therapy, such as high precorneal residence time, sustained drug release profile, minimum dosing frequency, decreased drug toxicity, targeted site delivery, and, therefore, an improvement in ocular bioavailability. In addition, such formulations can be given as fine dispersion in patient-friendly droppable preparation without causing blurred vision and ocular sensitivity reactions. The unique advantages of lipid nanoparticles, namely, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and liposomes in intraocular targeted administration of various therapeutic drugs are extensively discussed. Ongoing and completed clinical trials of various liposome-based formulations and various characterization techniques designed for nanoemulsion in ocular delivery are tabulated. This review also describes diverse solid lipid nanoparticle preparation methods, procedures, advantages, and limitations. Functionalization approaches to overcome the drawbacks of lipid nanoparticles, as well as the exploration of new functional additives with the potential to improve the penetration of macromolecular pharmaceuticals, would quickly progress the challenging field of ocular drug delivery systems.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
23
|
Zibetti C. Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells 2022; 11:cells11050806. [PMID: 35269428 PMCID: PMC8908986 DOI: 10.3390/cells11050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal neurogenesis is driven by concerted actions of transcription factors, some of which are expressed in a continuum and across several cell subtypes throughout development. While seemingly redundant, many factors diversify their regulatory outcome on gene expression, by coordinating variations in chromatin landscapes to drive divergent retinal specification programs. Recent studies have furthered the understanding of the epigenetic contribution to the progression of age-related macular degeneration, a leading cause of blindness in the elderly. The knowledge of the epigenomic mechanisms that control the acquisition and stabilization of retinal cell fates and are evoked upon damage, holds the potential for the treatment of retinal degeneration. Herein, this review presents the state-of-the-art approaches to investigate the retinal epigenome during development, disease, and reprogramming. A pipeline is then reviewed to functionally interrogate the epigenetic and transcriptional networks underlying cell fate specification, relying on a truly unbiased screening of open chromatin states. The related work proposes an inferential model to identify gene regulatory networks, features the first footprinting analysis and the first tentative, systematic query of candidate pioneer factors in the retina ever conducted in any model organism, leading to the identification of previously uncharacterized master regulators of retinal cell identity, such as the nuclear factor I, NFI. This pipeline is virtually applicable to the study of genetic programs and candidate pioneer factors in any developmental context. Finally, challenges and limitations intrinsic to the current next-generation sequencing techniques are discussed, as well as recent advances in super-resolution imaging, enabling spatio-temporal resolution of the genome.
Collapse
Affiliation(s)
- Cristina Zibetti
- Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, Building 36, 0455 Oslo, Norway
| |
Collapse
|
24
|
Wen S, Qin C, Shen L, Liu D, Zhu S, Lin Q. Surface Self-Assembly Construction of Therapeutic Contact Lens with Bacterial "Kill-Releasing" and Drug-Reloading Capabilities for Efficient Bacterial Keratitis Treatment. ACS Biomater Sci Eng 2022; 8:1329-1341. [PMID: 35129952 DOI: 10.1021/acsbiomaterials.1c01557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial keratitis, an ophthalmic emergency, can cause corneal perforation and even endophthalmitis, thus leading to severe visual impairment. To achieve effective treatment of bacterial keratitis, good bioavailability of antimicrobial drugs on the ocular surface is desired. In this investigation, a layer-by-layer (LBL) self-assembly combined with the host-guest recognition was used to construct an antibacterial coating on the surface of corneal contact lens (CLs) to improve drug bioavailability and achieve successful treatment of bacterial keratitis. First, a radical copolymerization of acrylic acid (AA) and 1-adamantan-1-ylmethyl acrylate (AdA) was carried out to synthesize a polyanionic copolymer P(AA-co-AdA) (defined as PAcA). Then, PAcA copolymer combined with poly(ethyleneimine) (PEI) was used for a layer-by-layer (LBL) self-assembly to fabricate multilayer films on the surface of CLs. An antibacterial conjugate, β-cyclodextrin-levofloxacin (β-CD-LEV), was successfully synthesized and utilized to generate antibacterial coating through a host-guest interaction between AdA and β-CD-LEV. The antibacterial ability and treatment effect of bacterial keratitis was evaluated by in vitro assay and in vivo test in an animal model of staphylococcal keratitis, demonstrating that the antibacterial coating had good antibacterial and germicidal efficacy both in vivo and in vitro. We believe that this work will provide a promising strategy for the treatment of bacterial keratitis.
Collapse
Affiliation(s)
- Shimin Wen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Chen Qin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Liangliang Shen
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dong Liu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Siqing Zhu
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- Department of Biomaterials, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
25
|
Shahab MS, Rizwanullah M, Sarim Imam S. Formulation, optimization and evaluation of vitamin E TPGS emulsified dorzolamide solid lipid nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Development of novel lipid matrix for improved sustained release effect of a hydrophilic drug via response surface methodology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Bonilla L, Espina M, Severino P, Cano A, Ettcheto M, Camins A, García ML, Souto EB, Sánchez-López E. Lipid Nanoparticles for the Posterior Eye Segment. Pharmaceutics 2021; 14:90. [PMID: 35056986 PMCID: PMC8779178 DOI: 10.3390/pharmaceutics14010090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 01/18/2023] Open
Abstract
This review highlights the application of lipid nanoparticles (Solid Lipid Nanoparticles, Nanostructured Lipid Carriers, or Lipid Drug Conjugates) as effective drug carriers for pathologies affecting the posterior ocular segment. Eye anatomy and the most relevant diseases affecting the posterior segment will be summarized. Moreover, preparation methods and different types and subtypes of lipid nanoparticles will also be reviewed. Lipid nanoparticles used as carriers to deliver drugs to the posterior eye segment as well as their administration routes, pharmaceutical forms and ocular distribution will be discussed emphasizing the different targeting strategies most recently employed for ocular drug delivery.
Collapse
Affiliation(s)
- Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (L.B.); (M.E.); (A.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (L.B.); (M.E.); (A.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Patricia Severino
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Av. Murilo Dantas 300, Aracaju 49032-490, Brazil;
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (L.B.); (M.E.); (A.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
| | - Miren Ettcheto
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Antoni Camins
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (L.B.); (M.E.); (A.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Eliana B. Souto
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (L.B.); (M.E.); (A.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
| |
Collapse
|
28
|
Sorafenib Repurposing for Ophthalmic Delivery by Lipid Nanoparticles: A Preliminary Study. Pharmaceutics 2021; 13:pharmaceutics13111956. [PMID: 34834371 PMCID: PMC8622456 DOI: 10.3390/pharmaceutics13111956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
Uveal melanoma is the second most common melanoma and the most common intraocular malignant tumour of the eye. Among various treatments currently studied, Sorafenib was also proposed as a promising drug, often administered with other compounds in order to avoid resistance mechanisms. Despite its promising cellular activities, the use of Sorafenib by oral administration is limited by its severe side effects and the difficulty to reach the target. The encapsulation into drug delivery systems represents an interesting strategy to overcome these limits. In this study, different lipid nanoparticulate formulations were prepared and compared in order to select the most suitable for the encapsulation of Sorafenib. In particular, two solid lipids (Softisan or Suppocire) at different concentrations were used to produce solid lipid nanoparticles, demonstrating that higher amounts were able to achieve smaller particle sizes, higher homogeneity, and longer physical stability. The selected formulations, which demonstrated to be biocompatible on Statens Seruminstitut Rabbit Cornea cells, were modified to improve their mucoadhesion, evaluating the effect of two monovalent cationic lipids with two lipophilic chains. Sorafenib encapsulation allowed obtaining a sustained and prolonged drug release, thus confirming the potential use of the developed strategy to topically administer Sorafenib in the treatment of uveal melanoma.
Collapse
|
29
|
Development of Lactoferrin-Loaded Liposomes for the Management of Dry Eye Disease and Ocular Inflammation. Pharmaceutics 2021; 13:pharmaceutics13101698. [PMID: 34683990 PMCID: PMC8539938 DOI: 10.3390/pharmaceutics13101698] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED) is a high prevalent multifactorial disease characterized by a lack of homeostasis of the tear film which causes ocular surface inflammation, soreness, and visual disturbance. Conventional ophthalmic treatments present limitations such as low bioavailability and side effects. Lactoferrin (LF) constitutes a promising therapeutic tool, but its poor aqueous stability and high nasolacrimal duct drainage hinder its potential efficacy. In this study, we incorporate lactoferrin into hyaluronic acid coated liposomes by the lipid film method, followed by high pressure homogenization. Pharmacokinetic and pharmacodynamic profiles were evaluated in vitro and ex vivo. Cytotoxicity and ocular tolerance were assayed both in vitro and in vivo using New Zealand rabbits, as well as dry eye and anti-inflammatory treatments. LF loaded liposomes showed an average size of 90 nm, monomodal population, positive surface charge and a high molecular weight protein encapsulation of 53%. Biopharmaceutical behaviour was enhanced by the nanocarrier, and any cytotoxic effect was studied in human corneal epithelial cells. Developed liposomes revealed the ability to reverse dry eye symptoms and possess anti-inflammatory efficacy, without inducing ocular irritation. Hence, lactoferrin loaded liposomes could offer an innovative nanotechnological tool as suitable approach in the treatment of DED.
Collapse
|
30
|
Kumari S, Dandamudi M, Rani S, Behaeghel E, Behl G, Kent D, O’Reilly NJ, O’Donovan O, McLoughlin P, Fitzhenry L. Dexamethasone-Loaded Nanostructured Lipid Carriers for the Treatment of Dry Eye Disease. Pharmaceutics 2021; 13:905. [PMID: 34207223 PMCID: PMC8234689 DOI: 10.3390/pharmaceutics13060905] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
Dry eye disease (DED) or keratoconjunctivitis sicca is a chronic multifactorial disorder of the ocular surface caused by tear film dysfunction. Symptoms include dryness, irritation, discomfort and visual disturbance, and standard treatment includes the use of lubricants and topical steroids. Secondary inflammation plays a prominent role in the development and propagation of this debilitating condition. To address this we have investigated the pilot scale development of an innovative drug delivery system using a dexamethasone-encapsulated cholesterol-Labrafac™ lipophile nanostructured lipid carrier (NLC)-based ophthalmic formulation, which could be developed as an eye drop to treat DED and any associated acute exacerbations. After rapid screening of a range of laboratory scale pre-formulations, the chosen formulation was prepared at pilot scale with a particle size of 19.51 ± 0.5 nm, an encapsulation efficiency of 99.6 ± 0.5%, a PDI of 0.08, and an extended stability of 6 months at 4 °C. This potential ophthalmic formulation was observed to have high tolerability and internalization capacity for human corneal epithelial cells, with similar behavior demonstrated on ex vivo porcine cornea studies, suggesting suitable distribution on the ocular surface. Further, ELISA was used to study the impact of the pilot scale formulation on a range of inflammatory biomarkers. The most successful dexamethasone-loaded NLC showed a 5-fold reduction of TNF-α production over dexamethasone solution alone, with comparable results for MMP-9 and IL-6. The ease of formulation, scalability, performance and biomarker assays suggest that this NLC formulation could be a viable option for the topical treatment of DED.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Madhuri Dandamudi
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Sweta Rani
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Elke Behaeghel
- Pharmaceutical Department, UC Leuven-Limburg, Campus Gasthuisberg Herestraat 49, 3000 Leuven, Belgium;
| | - Gautam Behl
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - David Kent
- The Vision Clinic, R95 XC98 Kilkenny, Ireland;
| | - Niall J. O’Reilly
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Orla O’Donovan
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Peter McLoughlin
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group, Pharmaceutical and Molecular Biotechnology Research Centre, Waterford Institute of Technology, X91 K0EK Waterford, Ireland; (S.K.); (M.D.); (S.R.); (G.B.); (N.J.O.); (O.O.); (P.M.)
| |
Collapse
|