1
|
G P, Verma RK, Shukla R. Leveraging Nanoscience and Strategic Delivery for the Expedition of Osteoporosis. AAPS PharmSciTech 2025; 26:129. [PMID: 40341672 DOI: 10.1208/s12249-025-03120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/17/2025] [Indexed: 05/10/2025] Open
Abstract
Osteoporosis is a globally affecting bone disease characterized by reduced bone mineral density, in which women are more insidious to the disease. It accounts for 8.9 million fractures annually, and about 50% of repeated hip fractures cause permanent disabilities. With the knowledge of determinants and pathology, various FDA-approved drugs and therapies are available for the management of the disease, but the challenges associated with those therapies lead to the adoption of nanotechnology in osteoporosis management. The nanosystems developed for the management of osteoporosis are nanogenerators, nanobubbles, microneedles, nanogels, implantable delivery systems, nanoparticles, nanofibrous scaffolds, and nanocements that probably address the current challenges related to the diagnosis and cure. In view of targeted accumulation of the cargo, various moieties assisted the nanocarrier system for selective distribution to bone, and the development of different types of nanotechnology-based delivery systems has been briefed in this review.
Collapse
Affiliation(s)
- Pramoda G
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Rahul K Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab, 160062, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
2
|
Gao Y, Lai Y, Wang H, Su J, Chen Y, Mao S, Guan X, Cai Y, Chen J. Antimicrobial peptide GL13K-Modified titanium in the epigenetic regulation of osteoclast differentiation via H3K27me3. Front Bioeng Biotechnol 2024; 12:1497265. [PMID: 39512654 PMCID: PMC11540686 DOI: 10.3389/fbioe.2024.1497265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Implant surface designs have advanced to address challenges in oral rehabilitation for healthy and compromised bone. Several studies have analyzed the effects of altering material surfaces on osteogenic differentiation. However, the crucial role of osteoclasts in osseointegration has often been overlooked. Overactive osteoclasts can compromise implant stability. In this study, we employed a silanization method to alter pure titanium to produce a surface loaded with the antimicrobial peptide GL13K that enhanced biocompatibility. Pure titanium (Ti), silanization-modified titanium, and GL13K-modified titanium (GL13K-Ti) were co-cultured with macrophages. Our findings indicated that GL13K-Ti partially inhibited osteoclastogenesis and expression of osteoclast-related genes and proteins by limiting the formation of the actin ring, an important structure for osteoclast bone resorption. Our subsequent experiments confirmed the epigenetic role in regulating this process. GL13K-Ti was found to impact the degree of methylation modifications of H3K27 in the NFATc1 promoter region following RANKL-induced osteoclastic differentiation. In conclusion, our study unveils the potential mechanism of methylation modifications, a type of epigenetic regulatory modality, on osteoclastogenesis and activity on the surface of a material. This presents novel concepts and ideas for further broadening the clinical indications of oral implants and targeting the design of implant surfaces.
Collapse
Affiliation(s)
- Yuerong Gao
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Yingzhen Lai
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Hong Wang
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Jingjing Su
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
- Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Yan Chen
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - ShunJie Mao
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Xin Guan
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Yihuang Cai
- Department of Stomatology, Engineering Research Center of Fujian University for Stomatological Biomaterials, Xiamen Medical College, Xiamen, Fujian, China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
4
|
Zhang M, Xu F, Cao J, Dou Q, Wang J, Wang J, Yang L, Chen W. Research advances of nanomaterials for the acceleration of fracture healing. Bioact Mater 2024; 31:368-394. [PMID: 37663621 PMCID: PMC10474571 DOI: 10.1016/j.bioactmat.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The bone fracture cases have been increasing yearly, accompanied by the increased number of patients experiencing non-union or delayed union after their bone fracture. Although clinical materials facilitate fracture healing (e.g., metallic and composite materials), they cannot fulfill the requirements due to the slow degradation rate, limited osteogenic activity, inadequate osseointegration ability, and suboptimal mechanical properties. Since early 2000, nanomaterials successfully mimic the nanoscale features of bones and offer unique properties, receiving extensive attention. This paper reviews the achievements of nanomaterials in treating bone fracture (e.g., the intrinsic properties of nanomaterials, nanomaterials for bone defect filling, and nanoscale drug delivery systems in treating fracture delayed union). Furthermore, we discuss the perspectives on the challenges and future directions of developing nanomaterials to accelerate fracture healing.
Collapse
Affiliation(s)
- Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fan Xu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jingcheng Cao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Qingqing Dou
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| |
Collapse
|
5
|
Büssemaker H, Meinshausen AK, Bui VD, Döring J, Voropai V, Buchholz A, Mueller AJ, Harnisch K, Martin A, Berger T, Schubert A, Bertrand J. Silver-integrated EDM processing of TiAl6V4 implant material has antibacterial capacity while optimizing osseointegration. Bioact Mater 2024; 31:497-508. [PMID: 37736105 PMCID: PMC10509668 DOI: 10.1016/j.bioactmat.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/29/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Periprosthetic joint infections (PJI) are a common reason for orthopedic revision surgeries. It has been shown that the silver surface modification of a titanium alloy (Ti-6Al-4V) by PMEDM (powder mixed electrical discharge machining) exhibits an antibacterial effect on Staphylococcus spp. adhesion. Whether the thickness of the silver-modified surface influences the adhesion and proliferation of bacteria as well as the ossification processes and in-vivo antibacterial capacity has not been investigated before. Therefore, the aim of this work is to investigate the antibacterial effect as well as the in vitro ossification process depending on the thickness of PMEDM silver modified surfaces. The attachment of S. aureus on the PMEDM modified surfaces was significantly lower than on comparative control samples, independently of the tested surface properties. Bacterial proliferation, however, was not affected by the silver content in the surface layer. We observed a long-term effect of antibacterial capacity in vitro, as well as in vivo. An induction of ROS, as indicator for oxidative stress, was observed in the bacteria, but not in osteoblast-like cells. No influence on the in vitro osteoblast function was observed, whereas osteoclast formation was drastically reduced on the silver surface. No changes in cell death, the metabolic activity and oxidative stress was measured in osteoblasts. We show that already small amounts of silver exhibit a significant antibacterial capacity while not influencing the osteoblast function. Therefore, PMEDM using silver nano-powder admixed to the dielectric represents a promising technology to shape and concurrently modify implant surfaces to reduce infections while at the same time optimizing bone ingrowth of endoprosthesis.
Collapse
Affiliation(s)
- Hilmar Büssemaker
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | | | - Viet Duc Bui
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
| | - Joachim Döring
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Vadym Voropai
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Adrian Buchholz
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Andreas J. Mueller
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Karsten Harnisch
- Institute of Materials and Joining Technology, Otto-von-Guericke University, Magdeburg, Germany
| | - André Martin
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
| | - Thomas Berger
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
| | - Andreas Schubert
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Ko W, Lee D, Kim SJ, Han GH, Lee D, Sheen SH, Sohn S. Injection of a PMMA-doped MSC spheroid gel for the treatment of painful osteoporotic vertebral compression fractures. Bioeng Transl Med 2023; 8:e10577. [PMID: 38023703 PMCID: PMC10658584 DOI: 10.1002/btm2.10577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 12/01/2023] Open
Abstract
We aimed to develop a biocompatible treatment to overcome the limitations of polymethyl methacrylate (PMMA) vertebroplasty for osteoporotic compression fracture patients. We synthesized an injectable hydrogel containing PMMA. Mesenchymal stem cell (MSC) spheroids were included in the injectable PMMA-doped gel (= PMMA-doped spheroid gel). In vitro, the osteogenic/anti-inflammatory effects of the embedded spheroids were investigated by the quantitative real-time polymerase chain reaction method. In vivo, we used ovariectomy (OVX)-induced osteoporotic rats with injured femurs to investigate the pain-relief effects. The OVX rats were divided into four groups according to the materials injected (non, PMMA, PMMA gel, and PMMA-spheroid gel) into the lesion. The immunofluorescence (IF) intensity levels of painful markers in dorsal root ganglia (DRG) were measured. In vitro, a volumetric ratio of the gel of 8 (gel):2 (PMMA) was non-cytotoxic for MSCs and promoted the expression of osteogenic/anti-inflammatory markers. In vivo, the values of several bone parameters in the PMMA-doped spheroid gel group showed remarkable increases compared to those in the PMMA group. In addition, the IF intensity levels of the painful markers were noticeably decreased in the PMMA-spheroid gel group. We, therefore, suggest that this treatment can be useful for osteoporotic vertebral compression fracture patients.
Collapse
Affiliation(s)
- Wan‐Kyu Ko
- Department of Neurosurgery, CHA Bundang Medical CenterCHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Life ScienceCHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Daye Lee
- Department of Neurosurgery, CHA Bundang Medical CenterCHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Life ScienceCHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Seong Jun Kim
- Department of Neurosurgery, CHA Bundang Medical CenterCHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Life ScienceCHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Gong Ho Han
- Department of Neurosurgery, CHA Bundang Medical CenterCHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Life ScienceCHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Donghyun Lee
- Preclinical Research CenterDaegu‐Gyeongbuk Medical Innovation Foundation (DGMIF)DaeguRepublic of Korea
| | - Seung Hun Sheen
- Department of Neurosurgery, CHA Bundang Medical CenterCHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA Bundang Medical CenterCHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| |
Collapse
|
7
|
Han GH, Kim SJ, Ko WK, Hong JB, Sheen SH, Cho MJ, Sohn S. Anti-Inflammatory Effects of Tegoprazan in Lipopolysaccharide-Stimulated Bone-Marrow-Derived Macrophages. Int J Mol Sci 2023; 24:14589. [PMID: 37834036 PMCID: PMC10572893 DOI: 10.3390/ijms241914589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The purpose of this study was to investigate the anti-inflammatory effect of tegoprazan (TEGO) in lipopolysaccharide (LPS)-stimulated bone-marrow-derived macrophages (BMMs). To this end, compared to methylprednisolone (MP; positive control), we evaluated whether TEGO effectively differentiates LPS-stimulated BMMs into M2-phenotype macrophages. Moreover, the expression of pro- and anti-inflammatory cytokines genes influenced by TEGO was measured using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. TEGO was found to reduce nitric oxide (NO) production in BMMs significantly. In addition, TEGO significantly decreased and increased the gene expression levels of pro-inflammatory and anti-inflammatory cytokines, respectively. In addition, we evaluated the phosphorylated values of the extracellular signal-regulatory kinase (ERK) and p38 in the mitogen-activated protein (MAP) kinase signaling pathway through Western blotting. TEGO significantly reduced the phosphorylated values of the ERK and p38. In other words, TEGO suppressed the various pro-inflammatory responses in LPS-induced BMMs. These results show that TEGO has the potential to be used as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Gong-Ho Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si 13496, Gyeonggi-do, Republic of Korea; (G.-H.H.); (S.-J.K.); (W.-K.K.); (S.-H.S.)
- Department of Life Science, CHA University, Boondagger, Seongnam-si 13493, Gyeonggi-do, Republic of Korea
| | - Seong-Jun Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si 13496, Gyeonggi-do, Republic of Korea; (G.-H.H.); (S.-J.K.); (W.-K.K.); (S.-H.S.)
- Department of Life Science, CHA University, Boondagger, Seongnam-si 13493, Gyeonggi-do, Republic of Korea
| | - Wan-Kyu Ko
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si 13496, Gyeonggi-do, Republic of Korea; (G.-H.H.); (S.-J.K.); (W.-K.K.); (S.-H.S.)
- Department of Life Science, CHA University, Boondagger, Seongnam-si 13493, Gyeonggi-do, Republic of Korea
| | - Je-Beom Hong
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 16419, Republic of Korea;
| | - Seung-Hun Sheen
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si 13496, Gyeonggi-do, Republic of Korea; (G.-H.H.); (S.-J.K.); (W.-K.K.); (S.-H.S.)
| | - Min-Jai Cho
- Department of Neurosurgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Seowon-gu, Cheongju-si 28644, Chungcheong-do, Republic of Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam-si 13496, Gyeonggi-do, Republic of Korea; (G.-H.H.); (S.-J.K.); (W.-K.K.); (S.-H.S.)
| |
Collapse
|
8
|
Hu Y, Huang J, Chen C, Wang Y, Hao Z, Chen T, Wang J, Li J. Strategies of Macrophages to Maintain Bone Homeostasis and Promote Bone Repair: A Narrative Review. J Funct Biomater 2022; 14:18. [PMID: 36662065 PMCID: PMC9864083 DOI: 10.3390/jfb14010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Bone homeostasis (a healthy bone mass) is regulated by maintaining a delicate balance between bone resorption and bone formation. The regulation of physiological bone remodeling by a complex system that involves multiple cells in the skeleton is closely related to bone homeostasis. Loss of bone mass or repair of bone is always accompanied by changes in bone homeostasis. However, due to the complexity of bone homeostasis, we are currently unable to identify all the mechanisms that affect bone homeostasis. To date, bone macrophages have been considered a third cellular component in addition to osteogenic spectrum cells and osteoclasts. As confirmed by co-culture models or in vivo experiments, polarized or unpolarized macrophages interact with multiple components within the bone to ensure bone homeostasis. Different macrophage phenotypes are prone to resorption and formation of bone differently. This review comprehensively summarizes the mechanisms by which macrophages regulate bone homeostasis and concludes that macrophages can control bone homeostasis from osteoclasts, mesenchymal cells, osteoblasts, osteocytes, and the blood/vasculature system. The elaboration of these mechanisms in this narrative review facilitates the development of macrophage-based strategies for the treatment of bone metabolic diseases and bone defects.
Collapse
Affiliation(s)
- Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jinghuan Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200000, China
| | - Chunying Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| |
Collapse
|
9
|
Ko W, Kim SJ, Han GH, Lee D, Jeong D, Lee SJ, Han I, Hong JB, Sheen SH, Sohn S. Transplantation of neuron-inducing grafts embedding positively charged gold nanoparticles for the treatment of spinal cord injury. Bioeng Transl Med 2022; 7:e10326. [PMID: 36176600 PMCID: PMC9472004 DOI: 10.1002/btm2.10326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
In this study, we aimed to investigate the recovery after traumatic spinal cord injury (SCI) by inducing cellular differentiation of transplanted neural stem cells (NSCs) into neurons. We dissociated NSCs from the spinal cords of Fisher 344 rat embryos. An injectable gel crosslinked with glycol chitosan and oxidized hyaluronate was used as a vehicle for NSC transplantation. The gel graft containing the NSC and positively charged gold nanoparticles (pGNP) was implanted into spinal cord lesions in Sprague-Dawley rats (NSC-pGNP gel group). Cellular differentiation of grafted NSCs into neurons (stained with β-tubulin III [also called Tuj1]) was significantly increased in the NSC-pGNP gel group (***p < 0.001) compared to those of two control groups (NSC and NSC gel groups) in the SCI conditions. The NSC-pGNP gel group showed the lowest differentiation into astrocytes (stained with glial fibrillary acidic protein). Regeneration of damaged axons (stained with biotinylated dextran amines) within the lesion was two-fold higher in the NSC-pGNP gel group than that in the NSC gel group. The highest locomotor scores were also found in the NSC-pGNP gel group. These outcomes suggest that neuron-inducing pGNP gel graft embedding embryonic spinal cord-derived NSCs can be a useful type of stem cell therapy after SCI.
Collapse
Affiliation(s)
- Wan‐Kyu Ko
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Biomedical ScienceCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Seong Jun Kim
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Biomedical ScienceCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Gong Ho Han
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Biomedical ScienceCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Daye Lee
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of Biomedical ScienceCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Dabin Jeong
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
- Department of BiologyLawrence UniversityAppletonWisconsinUSA
| | - Sang Jin Lee
- Department of Dental Materials, School of DentistryKyung Hee UniversitySeoulRepublic of Korea
| | - In‐Bo Han
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Je Beom Hong
- Department of NeurosurgeryKangbuk Samsung Hospital, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Seung Hun Sheen
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| | - Seil Sohn
- Department of NeurosurgeryCHA Bundang Medical Center, CHA UniversitySeongnam‐siGyeonggi‐doRepublic of Korea
| |
Collapse
|
10
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
11
|
Ko WC, Wang SJ, Hsiao CY, Hung CT, Hsu YJ, Chang DC, Hung CF. Pharmacological Role of Functionalized Gold Nanoparticles in Disease Applications. Molecules 2022; 27:1551. [PMID: 35268651 PMCID: PMC8911979 DOI: 10.3390/molecules27051551] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Gold has always been regarded as a symbol of nobility, and its shiny golden appearance has always attracted the attention of many people. Gold has good ductility, molecular recognition properties, and good biocompatibility. At present, gold is being used in many fields. When gold particles are as small as several nanometers, their physical and chemical properties vary with their size in nanometers. The surface area of a nano-sized gold surface has a special effect. Therefore, gold nanoparticles can, directly and indirectly, give rise to different biological activities. For example, if the surface of the gold is sulfided. Various substances have a strong chemical reactivity and are easy to combine with sulfhydryl groups; hence, nanogold is often used in biomedical testing, disease diagnosis, and gene detection. Nanogold is easy to bind to proteins, such as antibodies, enzymes, or cytokines. In fact, scientists use nanogold to bind special antibodies, as a tool for targeting cancer cells. Gold nanoparticles are also directly cytotoxic to cancer cells. For diseases caused by inflammation and oxidative damage, gold nanoparticles also have antioxidant and anti-inflammatory effects. Based on these unique properties, gold nanoparticles have become the most widely studied metal nanomaterials. Many recent studies have further demonstrated that gold nanoparticles are beneficial for humans, due to their functional pharmacological properties in a variety of diseases. The content of this review will be the application of gold nanoparticles in treating or diagnosing pressing diseases, such as cancers, retinopathy, neurological diseases, skin disorders, bowel diseases, bone cartilage disorders, cardiovascular diseases, infections, and metabolic syndrome. Gold nanoparticles have shown very obvious therapeutic and application potential.
Collapse
Affiliation(s)
- Wen-Chin Ko
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (W.-C.K.); (S.-J.W.)
- Division of Cardiac Electrophysiology, Department of Cardiovascular Center, Cathay General Hospital, Taipei 10630, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (W.-C.K.); (S.-J.W.)
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Science, Chang Guang University of Science and Technology, Taoyuan 33303, Taiwan;
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Chen-Ting Hung
- Graduate Institute and Department of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan;
| | - Yu-Jou Hsu
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Der-Chen Chang
- Department of Mathematics and Statistics and Department of Computer Science, Georgetown University, Washington, DC 20057, USA;
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (W.-C.K.); (S.-J.W.)
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
He J, Guo H, Zhang M, Wang M, Sun L, Zhuang Y. Purification and Characterization of a Novel Calcium-Binding Heptapeptide from the Hydrolysate of Tilapia Bone with Its Osteogenic Activity. Foods 2022; 11:468. [PMID: 35159617 PMCID: PMC8834476 DOI: 10.3390/foods11030468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a calcium-binding peptide was obtained by hydrolyzing tilapia bone and its osteogenic activity was evaluated. Animal protease was selected from nine enzymes, and its hydrolysate was purified through preparative and semi-preparative reverse phase high-performance liquid chromatography. The purified peptide was identified as DGPSGPK (656.32 Da) and its calcium-binding capacity reached 111.98 µg/mg. The peptide calcium chelate (DGPSGPK-Ca) was obtained, and its structure was characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and mass spectrometry (MS). The results of XRD and SEM showed that DGPSGPK-Ca was formed as a new compound. The carboxyl and amino groups of Lys and Asp residues may be the chelating sites of DGPSGPK according to the FTIR and MS results. The molecular simulation showed the carbonyl groups of Asp, Pro, Ser, and Lys residues involved in the binding of calcium. The interaction of DGPSGPK and different integrins was evaluated by molecular docking simulation, and the main forces involved were electrostatic interaction forces, hydrogen bonding and hydrophobic interactions. Furthermore, DGPSGPK could inhibit the differentiation of osteoclast and promote the proliferation, differentiation and mineralization of osteoblasts.
Collapse
Affiliation(s)
- Jinlun He
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Hao Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Mei Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Meng Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, China
| |
Collapse
|
13
|
Lobeglitazone Exerts Anti-Inflammatory Effect in Lipopolysaccharide-Induced Bone-Marrow Derived Macrophages. Biomedicines 2021; 9:biomedicines9101432. [PMID: 34680549 PMCID: PMC8533245 DOI: 10.3390/biomedicines9101432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 02/02/2023] Open
Abstract
The purpose of this study is to elucidate the anti-inflammatory effect of lobeglitazone (LOBE) in lipopolysaccharide (LPS)-induced bone-marrow derived macrophages (BMDMs). We induced nitric oxide (NO) production and pro-inflammatory gene expression through LPS treatment in BMDMs. The changes of NO release and expression of pro-inflammatory mediators by LOBE were assessed via NO quantification assay and a real-time quantitative polymerase chain reaction (RT-qPCR), respectively. In addition, the regulatory effect of LOBE on activation of mitogen-activated protein kinase (MAPK) signaling pathway was investigated by measuring the phosphorylation state of extracellular regulatory protein (ERK) and c-Jun N-terminal kinase (JNK) proteins by Western blot. Our results show that LOBE significantly reduced LPS-induced NO production and pro-inflammatory gene expression of interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and monocyte chemoattractant protein-1 (MCP-1). Moreover, LOBE reduced phosphorylation levels of ERK and JNK of MAPK signaling pathway. In conclusion, LOBE exerts an anti-inflammatory effect in LPS-induced BMDMs by suppression of NO production and pro-inflammatory gene expression, and this effect is potentially through inhibition of the MARK signaling pathway.
Collapse
|
14
|
Ko WK, Lee SJ, Kim SJ, Han GH, Han IB, Hong JB, Sheen SH, Sohn S. Direct Injection of Hydrogels Embedding Gold Nanoparticles for Local Therapy after Spinal Cord Injury. Biomacromolecules 2021; 22:2887-2901. [PMID: 34097404 DOI: 10.1021/acs.biomac.1c00281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we created a hydrogel composed of glycol chitosan (gC) and oxidized hyaluronate (oHA). Gold nanoparticles (GNPs) were conjugated with ursodeoxycholic acid (UDCA). The GNP-UDCA complex was embedded into gC-oHA (CHA) hydrogels to form a CHA-GNP-UDCA gel. This CHA-GNP-UDCA gel was injected once into an epicenter of an injured region in SCI rats. Near-infrared (NIR) irradiation was then applied to the lesion as a means of local therapy. To optimize the viscosity for injection into a lesion, several volume ratios of gC and oHA were investigated using scanning electron microscopy and a rotating rheometer. The optimally synthesized CHA-GNP-UDCA gel under NIR irradiation suppressed the production of inflammatory cytokines in vitro. In addition, the optimized CHA-GNP-UDCA gel under NIR irradiation inhibited the cystic cavity of the lesion and significantly improved the hindlimb function. The production of inflammatory cytokines following SCI was significantly inhibited in the CHA-GNP-UDCA gel + NIR group. CHA-GNP-UDCA gels with NIR irradiation can therefore have therapeutic effects for those with spinal cord injuries.
Collapse
Affiliation(s)
- Wan-Kyu Ko
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea.,Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Sang Jin Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Seong Jun Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea.,Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Gong Ho Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea.,Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - In-Bo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea
| | - Je Beom Hong
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Seung Hun Sheen
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea
| | - Seil Sohn
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13496, Republic of Korea
| |
Collapse
|