1
|
Monteil M, Sanchez-Ballester NM, Aubert A, Gimello O, Begu S, Soulairol I. HME coupled with FDM 3D printing of a customized oral solid form to treat pediatric epilepsy. Int J Pharm 2025; 673:125345. [PMID: 39952419 DOI: 10.1016/j.ijpharm.2025.125345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Interest in hot-melt extrusion (HME) and fused deposition material (FDM) printing has increased in recent years, for the production of tailored medications for patients with specific requirements, such as pediatrics. Liquid forms are often preferred for children but these forms are less stable than oral solid forms (such as tablets or powder), requiring preservative not always suitable for children. Then, the aim of this study is to develop a dose-adapted dispersible 3D printed forms using HME with FDM to treat pediatric epilepsy. Polyethylene oxide (PEO)-based 3D printed forms were developed with sodium valproate (VAL) as model drug at different concentrations. The effects of polyethylene glycol (PEG)'s molecular weight (PEG6K and PEG35K) used as plasticizer on the formulations' mechanical, thermal and rheological properties were investigated. Formulation with 10 % (w/w) of VAL were printed with PEG6K and PEG35K, while only PEG35K was suitable for extruding and printing a formulation containing 30 % (w/w) of VAL due to its rheological properties. Steric exclusion chromatography coupled with refraction index was used to quantify VAL content, indicating uniform concentration in the filament after extrusion. Dissolution test in acidic media display over 80 % of VAL released within 20 to 25 min, reaching the Eur. Ph. Criteria of a rapid release. The outcomes of this study present suitable formulations to produce personalized dispersible form using HME with FDM 3D printing to treat pediatric epilepsy (1 month to 4 years old patients with dosage from 18 to 247 mg/kg/day) for the treatment of epilepsy.
Collapse
Affiliation(s)
- M Monteil
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - N M Sanchez-Ballester
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - A Aubert
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - O Gimello
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - S Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - I Soulairol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France.
| |
Collapse
|
2
|
Mondéjar-Parreño G, Sánchez-Pérez P, Cruz FM, Jalife J. Promising tools for future drug discovery and development in antiarrhythmic therapy. Pharmacol Rev 2025; 77:100013. [PMID: 39952687 DOI: 10.1124/pharmrev.124.001297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Arrhythmia refers to irregularities in the rate and rhythm of the heart, with symptoms spanning from mild palpitations to life-threatening arrhythmias and sudden cardiac death. The complex molecular nature of arrhythmias complicates the selection of appropriate treatment. Current therapies involve the use of antiarrhythmic drugs (class I-IV) with limited efficacy and dangerous side effects and implantable pacemakers and cardioverter-defibrillators with hardware-related complications and inappropriate shocks. The number of novel antiarrhythmic drugs in the development pipeline has decreased substantially during the last decade and underscores uncertainties regarding future developments in this field. Consequently, arrhythmia treatment poses significant challenges, prompting the need for alternative approaches. Remarkably, innovative drug discovery and development technologies show promise in helping advance antiarrhythmic therapies. In this article, we review unique characteristics and the transformative potential of emerging technologies that offer unprecedented opportunities for transitioning from traditional antiarrhythmics to next-generation therapies. We assess stem cell technology, emphasizing the utility of innovative cell profiling using multiomics, high-throughput screening, and advanced computational modeling in developing treatments tailored precisely to individual genetic and physiological profiles. We offer insights into gene therapy, peptide, and peptibody approaches for drug delivery. We finally discuss potential strengths and weaknesses of such techniques in reducing adverse effects and enhancing overall treatment outcomes, leading to more effective, specific, and safer therapies. Altogether, this comprehensive overview introduces innovative avenues for personalized rhythm therapy, with particular emphasis on drug discovery, aiming to advance the arrhythmia treatment landscape and the prevention of sudden cardiac death. SIGNIFICANCE STATEMENT: Arrhythmias and sudden cardiac death account for 15%-20% of deaths worldwide. However, current antiarrhythmic therapies are ineffective and have dangerous side effects. Here, we review the field of arrhythmia treatment underscoring the slow progress in advancing the cardiac rhythm therapy pipeline and the uncertainties regarding evolution of this field. We provide information on how emerging technological and experimental tools can help accelerate progress and address the limitations of antiarrhythmic drug discovery.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain; Department of Medicine, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
3
|
Ianno V, Vurpillot S, Prillieux S, Espeau P. Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects. Pharmaceutics 2024; 16:441. [PMID: 38675103 PMCID: PMC11054634 DOI: 10.3390/pharmaceutics16040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Three-dimensional printing (3DP) technology in pharmaceutical areas is leading to a significant change in controlled drug delivery and pharmaceutical product development. Pharmaceutical industries and academics are becoming increasingly interested in this innovative technology due to its inherent inexpensiveness and rapid prototyping. The 3DP process could be established in the pharmaceutical industry to replace conventional large-scale manufacturing processes, particularly useful for personalizing pediatric drugs. For instance, shape, size, dosage, drug release and multi-drug combinations can be tailored according to the patient's needs. Pediatric drug development has a significant global impact due to the growing needs for accessible age-appropriate pediatric medicines and for acceptable drug products to ensure adherence to the prescribed treatment. Three-dimensional printing offers several significant advantages for clinical pharmaceutical drug development, such as the ability to personalize medicines, speed up drug manufacturing timelines and provide on-demand drugs in hospitals and pharmacies. The aim of this article is to highlight the benefits of extrusion-based 3D printing technology. The future potential of 3DP in pharmaceuticals has been widely shown in the last few years. This article summarizes the discoveries about pediatric pharmaceutical formulations which have been developed with extrusion-based technologies.
Collapse
Affiliation(s)
- Veronica Ianno
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
- Delpharm Reims, 51100 Reims, France; (S.V.); (S.P.)
| | | | | | - Philippe Espeau
- CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité, 75006 Paris, France;
| |
Collapse
|
4
|
Figueiredo S, Fernandes AI, Carvalho FG, Pinto JF. Exploring Environmental Settings to Improve the Printability of Paroxetine-Loaded Filaments by Fused Deposition Modelling. Pharmaceutics 2023; 15:2636. [PMID: 38004614 PMCID: PMC10675712 DOI: 10.3390/pharmaceutics15112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The successful integration of hot-melt extrusion (HME) and fused deposition modelling (FDM) depends on a better understanding of the impact of environmental conditions on the printability of formulations, since they significantly affect the properties of the raw materials, whose control is crucial to enable three-dimensional printing (3DP). Hence, the objective of this work was to investigate the correlation between the environmental settings and the properties of paroxetine (PRX)-loaded filaments, previously produced by HME, which affect printability by FDM. The influence of different drying methods of the physical mixtures (PMs) and HME-filaments (FILs) on the quality and printability of these products was also assessed. The printability of FILs was evaluated in terms of the water content, and the mechanical and thermal properties of the products. Stability studies and physicochemical, thermal, and in vitro dissolution tests were carried out on the 3D-printed tablets. Stability studies demonstrated the high ductility of the PRX loaded FILs, especially under high humidity conditions. Under low humidity storage conditions (11% RH), the FILs became stiffer and were successfully used to feed the FDM printer. Water removal was slow when carried out passively in a controlled atmosphere (desiccator) or accelerated by using active drying methods (heat or microwave). Pre-drying of the PRX/excipients and/or PMs did not show any positive effect on the printability of the FIL. On the contrary, dry heat and, preferably, microwave mediated drying processes were shown to reduce the holding time required for successful FDM printing, enabling on-demand production at the point of care.
Collapse
Affiliation(s)
- Sara Figueiredo
- iMed.Ulisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (S.F.); (J.F.P.)
- LEF-Infosaúde, Laboratório de Estudos Farmacêuticos, Rua das Ferrarias del Rei nº6, Urbanização da Fábrica da Pólvora, 2730-269 Barcarena, Portugal;
| | - Ana I. Fernandes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, Quinta da Granja, 2829-511 Caparica, Portugal
| | - Fátima G. Carvalho
- LEF-Infosaúde, Laboratório de Estudos Farmacêuticos, Rua das Ferrarias del Rei nº6, Urbanização da Fábrica da Pólvora, 2730-269 Barcarena, Portugal;
| | - João F. Pinto
- iMed.Ulisboa—Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (S.F.); (J.F.P.)
| |
Collapse
|
5
|
Creteanu A, Lisa G, Vasile C, Popescu MC, Spac AF, Tantaru G. Development of Solid Lipid Nanoparticles for Controlled Amiodarone Delivery. Methods Protoc 2023; 6:97. [PMID: 37888029 PMCID: PMC10609381 DOI: 10.3390/mps6050097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
In various drug delivery systems, solid lipid nanoparticles are dominantly lipid-based nanocarriers. Amiodarone hydrochloride is an antiarrhythmic agent used to treat severe rhythm disturbances. It has variable and hard-to-predict absorption in the gastrointestinal tract because of its low solubility and high permeability. The aims of this study were to improve its solubility by encapsulating amiodarone into solid lipid nanoparticles using two excipients-Compritol® 888 ATO (pellets) (C888) as a lipid matrix and Transcutol® (T) as a surfactant. Six types of amiodarone-loaded solid lipid nanoparticles (AMD-SLNs) were obtained using a hot homogenization technique followed by ultrasonication with varying sonication parameters. AMD-SLNs were characterized by their size distribution, polydispersity index, zeta potential, entrapment efficiency, and drug loading. Based on the initial evaluation of the entrapment efficiency, only three solid lipid nanoparticle formulations (P1, P3, and P5) were further tested. They were evaluated through scanning electron microscopy, Fourier-transform infrared spectrometry, near-infrared spectrometry, thermogravimetry, differential scanning calorimetry, and in vitro dissolution tests. The P5 formulation showed optimum pharmaco-technical properties, and it had the greatest potential to be used in oral pharmaceutical products for the controlled delivery of amiodarone.
Collapse
Affiliation(s)
- Andreea Creteanu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, 73 Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania
| | - Cornelia Vasile
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iași, Romania
| | - Maria-Cristina Popescu
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, 700487 Iași, Romania
| | - Adrian Florin Spac
- Department of Phisico Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania
| | - Gladiola Tantaru
- Department of Analytical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania
| |
Collapse
|
6
|
Shojaie F, Ferrero C, Caraballo I. Development of 3D-Printed Bicompartmental Devices by Dual-Nozzle Fused Deposition Modeling (FDM) for Colon-Specific Drug Delivery. Pharmaceutics 2023; 15:2362. [PMID: 37765330 PMCID: PMC10535423 DOI: 10.3390/pharmaceutics15092362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Dual-nozzle fused deposition modeling (FDM) is a 3D printing technique that allows for the simultaneous printing of two polymeric filaments and the design of complex geometries. Hence, hybrid formulations and structurally different sections can be combined into the same dosage form to achieve customized drug release kinetics. The objective of this study was to develop a novel bicompartmental device by dual-nozzle FDM for colon-specific drug delivery. Hydroxypropylmethylcellulose acetate succinate (HPMCAS) and polyvinyl alcohol (PVA) were selected as matrix-forming polymers of the outer pH-dependent and the inner water-soluble compartments, respectively. 5-Aminosalicylic acid (5-ASA) was selected as the model drug. Drug-free HPMCAS and drug-loaded PVA filaments suitable for FDM were extruded, and their properties were assessed by thermal, X-ray diffraction, microscopy, and texture analysis techniques. 5-ASA (20% w/w) remained mostly crystalline in the PVA matrix. Filaments were successfully printed into bicompartmental devices combining an outer cylindrical compartment and an inner spiral-shaped compartment that communicates with the external media through an opening. Scanning electron microscopy and X-ray tomography analysis were performed to guarantee the quality of the 3D-printed devices. In vitro drug release tests demonstrated a pH-responsive biphasic release pattern: a slow and sustained release period (pH values of 1.2 and 6.8) controlled by drug diffusion followed by a faster drug release phase (pH 7.4) governed by polymer relaxation/erosion. Overall, this research demonstrates the feasibility of the dual-nozzle FDM technique to obtain an innovative 3D-printed bicompartmental device for targeting 5-ASA to the colon.
Collapse
Affiliation(s)
| | - Carmen Ferrero
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González No. 2, 41012 Sevilla, Spain; (F.S.); (I.C.)
| | | |
Collapse
|
7
|
Wang S, Chen X, Han X, Hong X, Li X, Zhang H, Li M, Wang Z, Zheng A. A Review of 3D Printing Technology in Pharmaceutics: Technology and Applications, Now and Future. Pharmaceutics 2023; 15:pharmaceutics15020416. [PMID: 36839738 PMCID: PMC9962448 DOI: 10.3390/pharmaceutics15020416] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/28/2023] Open
Abstract
Three-dimensional printing technology, also called additive manufacturing technology, is used to prepare personalized 3D-printed drugs through computer-aided model design. In recent years, the use of 3D printing technology in the pharmaceutical field has become increasingly sophisticated. In addition to the successful commercialization of Spritam® in 2015, there has been a succession of Triastek's 3D-printed drug applications that have received investigational new drug (IND) approval from the Food and Drug Administration (FDA). Compared with traditional drug preparation processes, 3D printing technology has significant advantages in personalized drug manufacturing, allowing easy manufacturing of preparations with complex structures or drug release behaviors and rapid manufacturing of small batches of drugs. This review summaries the mechanisms of the most commonly used 3D printing technologies, describes their characteristics, advantages, disadvantages, and applications in the pharmaceutical industry, analyzes the progress of global commercialization of 3D printed drugs and their problems and challenges, reflects the development trends of the 3D printed drug industry, and guides researchers engaged in 3D printed drugs.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xuejun Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiaolu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiaoxuan Hong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xiang Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meng Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.W.); (A.Z.); Tel.: +86-(0)10-66874665 (Z.W.); +86-(0)10-66931694 (A.Z.)
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- Correspondence: (Z.W.); (A.Z.); Tel.: +86-(0)10-66874665 (Z.W.); +86-(0)10-66931694 (A.Z.)
| |
Collapse
|
8
|
Deon M, dos Santos J, de Andrade DF, Beck RCR. A critical review of traditional and advanced characterisation tools to drive formulators towards the rational development of 3D printed oral dosage forms. Int J Pharm 2022; 628:122293. [DOI: 10.1016/j.ijpharm.2022.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 10/31/2022]
|
9
|
Fabrication of three dimensional printed tablets in flexible doses: A comprehensive study from design to evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Lafeber I, Ruijgrok EJ, Guchelaar HJ, Schimmel KJM. 3D Printing of Pediatric Medication: The End of Bad Tasting Oral Liquids?-A Scoping Review. Pharmaceutics 2022; 14:416. [PMID: 35214148 PMCID: PMC8880000 DOI: 10.3390/pharmaceutics14020416] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
3D printing of pediatric-centered drug formulations can provide suitable alternatives to current treatment options, though further research is still warranted for successful clinical implementation of these innovative drug products. Extensive research has been conducted on the compliance of 3D-printed drug products to a pediatric quality target product profile. The 3D-printed tablets were of particular interest in providing superior dosing and release profile similarity compared to conventional drug manipulation and compounding methods, such as oral liquids. In the future, acceptance of 3D-printed tablets in the pediatric patient population might be better than current treatments due to improved palatability. Further research should focus on expanding clinical knowledge, providing regulatory guidance and expansion of the product range, including dosage form possibilities. Moreover, it should enable the use of diverse good manufacturing practice (GMP)-ready 3D printing techniques for the production of various drug products for the pediatric patient population.
Collapse
Affiliation(s)
- Iris Lafeber
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| | - Elisabeth J. Ruijgrok
- Department of Hospital Pharmacy, Erasmus MC—Sophia Children’s Hospital, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| | - Kirsten J. M. Schimmel
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| |
Collapse
|
11
|
Roulon S, Soulairol I, Cazes M, Lemierre L, Payre N, Delbreilh L, Alié J. D-Sorbitol Physical Properties Effects on Filaments Used by 3D Printing Process for Personalized Medicine. Molecules 2021; 26:molecules26103000. [PMID: 34070087 PMCID: PMC8158342 DOI: 10.3390/molecules26103000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022] Open
Abstract
Fused filament fabrication (FFF) is a process used to manufacture oral forms adapted to the needs of patients. Polyethylene oxide (PEO) filaments were produced by hot melt extrusion (HME) to obtain a filament suitable for the production of amiodarone hydrochloride oral forms by FFF 3D printing. In order to produce personalized oral forms adapted to the patient characteristics, filaments used by FFF must be controlled in terms of mass homogeneity along filament. This work highlights the relation between filament mass homogeneity and its diameter. This is why the impact of filler excipients physical properties was studied. It has been showed that the particle’s size distribution of the filler can modify the filament diameter variability which has had an impact on the mass of oral forms produced by FFF. Through this work it was shown that D-Sorbitol from Carlo Erba allows to obtain a diameter variability of less than 2% due to its unique particle’s size distribution. Using the filament produced by HME and an innovating calibration method based on the filament length, it has been possible to carry out three dosages of 125 mg, 750 mg and 1000 mg by 3D printing with acceptable mass uniformity.
Collapse
Affiliation(s)
- Stéphane Roulon
- Group of Materials Physics, UNIROUEN Normandie, INSA Rouen, CNRS, Normandie University, Av. Université, 76801 St Etienne du Rouvray, France
- Solid State Characterization and 3D Printing Laboratory, SMO-A Department, Sanofi R&D, 371 rue du Pr. Joseph Blayac, 34080 Montpellier, France; (M.C.); (L.L.); (N.P.)
- Correspondence: (S.R.); (L.D.); (J.A.); Tel.: +336-2150-4482 (S.R.); +332-3295-5084 (L.D.); +334-9977-5896 (J.A.)
| | - Ian Soulairol
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France;
- ICGM, University Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Maxime Cazes
- Solid State Characterization and 3D Printing Laboratory, SMO-A Department, Sanofi R&D, 371 rue du Pr. Joseph Blayac, 34080 Montpellier, France; (M.C.); (L.L.); (N.P.)
| | - Léna Lemierre
- Solid State Characterization and 3D Printing Laboratory, SMO-A Department, Sanofi R&D, 371 rue du Pr. Joseph Blayac, 34080 Montpellier, France; (M.C.); (L.L.); (N.P.)
| | - Nicolas Payre
- Solid State Characterization and 3D Printing Laboratory, SMO-A Department, Sanofi R&D, 371 rue du Pr. Joseph Blayac, 34080 Montpellier, France; (M.C.); (L.L.); (N.P.)
| | - Laurent Delbreilh
- Group of Materials Physics, UNIROUEN Normandie, INSA Rouen, CNRS, Normandie University, Av. Université, 76801 St Etienne du Rouvray, France
- Correspondence: (S.R.); (L.D.); (J.A.); Tel.: +336-2150-4482 (S.R.); +332-3295-5084 (L.D.); +334-9977-5896 (J.A.)
| | - Jean Alié
- Solid State Characterization and 3D Printing Laboratory, SMO-A Department, Sanofi R&D, 371 rue du Pr. Joseph Blayac, 34080 Montpellier, France; (M.C.); (L.L.); (N.P.)
- Correspondence: (S.R.); (L.D.); (J.A.); Tel.: +336-2150-4482 (S.R.); +332-3295-5084 (L.D.); +334-9977-5896 (J.A.)
| |
Collapse
|