1
|
Ibrahim JS, Hanafi N, Sliem MA, El-Tayeb TA. Enhanced Photothermal Tumor Ablation Using Polypyrrole-Gold Nanocomposites Activated by Polarized Polychromatic Low-Energy Light: An In Vivo Study. JOURNAL OF BIOPHOTONICS 2025; 18:e202400488. [PMID: 39915096 DOI: 10.1002/jbio.202400488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 04/08/2025]
Abstract
Photothermal therapy (PTT) offers a minimally invasive approach for cancer treatment, using light energy to selectively heat and destroy cancer cells. Success in PTT depends on efficient, stable, and biocompatible photothermal agents. This study investigates polypyrrole@gold nanocomposites (PPy@Au NCs) as photothermal agents combined with polarized polychromatic low-energy light (PPLEL) to target tumors and limit disease progression. In vivo experiments on Ehrlich carcinoma-bearing female Swiss albino mice demonstrated that PPy@Au NCs selectively accumulated in tumor tissue and, when activated by PPLEL, generated sufficient heat for effective tumor ablation. This approach enhanced treatment efficacy and presented a cost-effective solution due to the affordability of both the nanocomposite and light source. Histopathological analysis confirmed significant tumor reduction, suggesting that this synergistic combination offers a promising cancer treatment strategy. Findings support further research and potential clinical applications in photothermal cancer therapy.
Collapse
Affiliation(s)
- Jilan S Ibrahim
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| | - Neamat Hanafi
- Department of Radiation Biology, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud A Sliem
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
- Department of Chemistry, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | - Tarek A El-Tayeb
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Riaz S, Ali S, Summer M, Akhtar U, Noor S, Haqqi R, Farooq MA, Sardar I. Multifunctional Magnetic Nanoparticles for Targeted Drug Delivery Against Cancer: A Review of Mechanisms, Applications, Consequences, Limitations, and Tailoring Strategies. Ann Biomed Eng 2025:10.1007/s10439-025-03712-3. [PMID: 40140150 DOI: 10.1007/s10439-025-03712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
Magnetic nanoparticles (MNPs) have revolutionized cancer therapy by serving as effective drug transporters through active and passive targeting of tumor sites in conjugation with external alternating magnetic fields (AMFs), thus minimizing off-target effects. This precise targeting strategy guarantees a focused and controlled drug release at the tumor site, reducing the drawbacks of standard drug delivery systems and enhancing treatment effectiveness. Magnetic nanoparticles usually follow in magnetic hyperthermia (MHT) therapy, where AMFs raise the temperature at the tumor site, efficiently eliminating cancer cells and presenting a hopeful complement to conventional cancer treatments. In addition, side effects are reduced by launching a smart drug delivery system (SDDSs) in which treatment efficacy is enhanced by reducing the dosage frequency. Intrinsic properties of MNPs are measured when they serve as contrast agents in magnetic resonance imaging (MRI), providing a diagnostic aspect to their therapeutic capabilities and enabling medical professionals to monitor and record treatment outcomes with precision and higher accuracy. This comprehensive review highlights the multifaceted potential of MNPs in reshaping cancer treatment, emphasizing their role in targeted drug delivery, hyperthermia therapy, and imaging applications, and underscoring their transformative impact on the future of oncological care.
Collapse
Affiliation(s)
- Shumaila Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Urva Akhtar
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Rimsha Haqqi
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Adeel Farooq
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Iqra Sardar
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Batsukh T, Tsend-Ayush A. Herbal drug‑based nanotherapy for hepatocellular carcinoma: Quercetin‑contained nanocarrier as a multipurpose therapeutic agent against hepatocellular carcinoma (Review). Biomed Rep 2025; 22:29. [PMID: 39720296 PMCID: PMC11668132 DOI: 10.3892/br.2024.1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
Cancer remains one of the leading causes of morbidity and mortality worldwide, with hepatocellular carcinoma (HCC) accounting for ~75% of all primary liver cancers and exhibiting a high incidence rate. Unfortunately, the response rate to chemotherapeutic agents for liver cancer is relatively low, primarily due to the development of drug resistance and the lack of targeted therapeutic agents. The present study focused on the anticancer mechanisms of quercetin and the development of innovative nanocarriers designed to enhance its efficacy against HCC while mitigating drug resistance. Quercetin demonstrates a diverse array of biological activities, making it a promising candidate for therapeutic applications. Its mechanisms include inhibition of tumor cell cycle, induction of apoptosis, modulation of reactive oxygen species and inhibition of chemotherapeutic resistance. Given these properties, extensive research has been conducted in pharmaceutical engineering to develop well-designed nanocarriers that incorporate quercetin. These nanocarriers aim to improve the bioavailability and targeting of quercetin, thereby enhancing its therapeutic efficacy against HCC and overcoming the challenges associated with anticancer drug resistance. Through this approach, quercetin could potentially play a pivotal role in the future of HCC treatment, providing a synergistic effect when combined with traditional chemotherapy leading to improved patient outcomes.
Collapse
Affiliation(s)
- Tserendolgor Batsukh
- Department of Pharmacy Administration and Technology, Mongolian University of Pharmaceutical Sciences, Ulaanbaatar 18130, Mongolia
| | - Altansukh Tsend-Ayush
- Department of Molecular Biology and Genetics, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| |
Collapse
|
4
|
Song J, Hu Y, Yang S, Liu D, Tseng Y, Li L. Predicting the Key Properties of a Modified Product to Pre-Select a Pluronic F127 Modification Scheme for Preparing High-Quality Nano-Micelles. Polymers (Basel) 2025; 17:349. [PMID: 39940552 PMCID: PMC11821254 DOI: 10.3390/polym17030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Hydrophobic modification alters the properties of Pluronic F127 to form micelles more efficiently and enhances its drug-loading capacity. However, selecting the appropriate hydrophobic group for modification is laborious. In this paper, we propose an efficient approach for predicting key parameters to select hydrophobic groups for F127 modification prior to synthesis, in order to improve the formability and stability of the micelles. The results of nuclear magnetic resonance and isothermal titration calorimetry were utilized to establish a function for predicting the hydrophile-lipophile balance, critical micelle concentration, and Gibbs free energy of the products based on the structure of raw material. These predicted values can assist us in selecting suitable hydrophobic groups for F127 modification. Subsequently, we successfully tested our method and validated our work using pharmaceutical evaluation methods, such as appearance observation, particle size measurement, drug loading determination, equilibrium binding rate assessment, storage stability testing, and the plotting of accumulation release curves. Therefore, we suggest that our work could provide a model linking the molecular structure to properties, with the purpose of pre-selecting modification products that have advantages in micelle preparation. This can facilitate the application of F127 in preparing nano-micelles.
Collapse
Affiliation(s)
- Jizheng Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (J.S.)
| | - Yu Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (J.S.)
| | - Shiyu Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (J.S.)
| | - Dexue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (J.S.)
| | - Yiider Tseng
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Lingjun Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (J.S.)
| |
Collapse
|
5
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
6
|
Yang Q, Hu Z, Jiang H, Wang J, Han H, Shi W, Qian H. Recent advances, strategies, and future perspectives of peptide-based drugs in clinical applications. Chin J Nat Med 2025; 23:31-42. [PMID: 39855829 DOI: 10.1016/s1875-5364(25)60800-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 01/27/2025]
Abstract
Peptide-based therapies have attracted considerable interest in the treatment of cancer, diabetes, bacterial infections, and neurodegenerative diseases due to their promising therapeutic properties and enhanced safety profiles. This review provides a comprehensive overview of the major trends in peptide drug discovery and development, emphasizing preclinical strategies aimed at improving peptide stability, specificity, and pharmacokinetic properties. It assesses the current applications and challenges of peptide-based drugs in these diseases, illustrating the pharmaceutical areas where peptide-based drugs demonstrate significant potential. Furthermore, this review analyzes the obstacles that must be overcome in the future, aiming to provide valuable insights and references for the continued advancement of peptide-based drugs.
Collapse
Affiliation(s)
- Qimeng Yang
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhipeng Hu
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hongyu Jiang
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jialing Wang
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Han Han
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Shi
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hai Qian
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Behairy SM, Al-Maaqar SM, Al-Shaeri MA. Impact of SWCNT-conjugated senna leaf extract on breast cancer cells: A potential apoptotic therapeutic strategy. Open Life Sci 2024; 19:20220994. [PMID: 39759104 PMCID: PMC11699557 DOI: 10.1515/biol-2022-0994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 01/07/2025] Open
Abstract
Breast cancer (BC) has a prevalence rate of 21.8% among Saudi women and ranks as the third leading cause of death in Western nations. Nanotechnology offers innovative methods for targeted BC therapy, and this study explores the use of single-walled carbon nanotubes (SWCNTs) for delivering the senna leaf extract. The study evaluated the effects of increasing dosages of senna leaf extract conjugated to SWCNTs on MCF-7 cells. Cell viability was assessed using the MTT assay, while Giemsa staining revealed morphological changes. Additionally, the comet assay and agarose gel electrophoresis were employed to evaluate the pro-apoptotic potential. The potential of mitochondrial membrane and the production of reactive oxygen species (ROS) were investigated using the JC-1 dye. The results indicated that treated cells exhibited apoptotic characteristics, including elevated ROS levels and decreased mitochondrial membrane potential. In summary, the application of nanotechnology to deliver the senna leaf extract shows promise as a herbal treatment for BC, suggesting a potential breakthrough in combating this widespread and deadly disease.
Collapse
Affiliation(s)
- Sabreen Mohammed Behairy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Mohammed Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Environmental Protection & Sustainability Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Biology, Faculty of Education, Al-Baydha University, Al-Baydha, Yemen
| | - Majed Ahmed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Environmental Protection & Sustainability Research Group, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Drittone D, Schipilliti FM, Arrivi G, Mazzuca F. Cytoreductive surgery followed by hyperthermic intraperitoneal chemotherapy applications in upper and lower gastrointestinal cancer, a review. Oncol Rev 2024; 18:1496141. [PMID: 39659741 PMCID: PMC11628282 DOI: 10.3389/or.2024.1496141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Peritoneal metastases (PM) are the spread of tumor forms into the peritoneum as metastases from another organ. PM is a frequent condition in metastatic gastrointestinal cancer (colorectal, gastric, pancreatic, appendiceal, and cholangiocarcinoma); their presence confers a poor prognosis, reducing patient survival. The standard treatment consists of systemic chemotherapy according to current guidelines. In recent years, scientific evidence has shown how combined cytoreductive surgery (CRS) techniques followed by hyperthermic intraperitoneal chemotherapy (HIPEC) can improve survival in this patient population. Despite the results still obtained, using this combined technique is still under discussion. This review aims to highlight the benefits and limitations of this combined procedure, which is already widely used to treat peritoneal metastases in gynecological tumors.
Collapse
Affiliation(s)
- Denise Drittone
- Medical Oncology Unit, Sant’Andrea Hospital in Rome, Rome, Italy
| | | | - Giulia Arrivi
- Oncology Unit, Department of Clinical and Molecular Medicine, Azienda Ospedaliera Universitaria Sant’Andrea, Sapienza University of Rome, Rome, Italy
- PhD School in Translational Medicine and Oncology, Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Federica Mazzuca
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
10
|
Rezaei Aghdam H, Peymani M, Salehzadeh A, Rouhi L, Zarepour A, Zarrabi A. Precision Nanomedicine: Lapatinib-Loaded Chitosan-Gold Nanoparticles Targeting LINC01615 for Lung Cancer Therapy. AAPS J 2024; 27:4. [PMID: 39562465 DOI: 10.1208/s12248-024-00990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play essential roles as oncogenic factors in cancer progression by influencing cell proliferation, apoptosis, and metastasis pathways. This study aims to investigate the expression changes of LINC01615 in prevalent cancers, explore its correlation with patient mortality rates, and introduce a novel therapeutic approach to reduce LINC01615 expression. Using The Cancer Genome Atlas (TCGA) data, the expression changes of LINC01615 in various cancers were analyzed, and its relationship with patient survival rates through Cox regression analysis weas assessed. Co-expressed pathways related to LINC01615 were identified via network analysis. Potential drugs to decrease LINC01615 expression were identified using the GSE38376 study. Besides, chitosan-coated nanoparticles were fabricated and functionalized with the identified drug, Lapatinib, to examine their effect on lung cancer cell lines and changes in LINC01615 expression. Our results indicated elevated LINC01615 expression in various common cancers, particularly in lung cancer, which was associated with poor prognosis in lung, breast, and kidney cancers. Co-expression network analysis suggested links to metastasis-related genes. Lapatinib, identified through GEO data, was found to modulate LINC01615 expression effectively. Chitosan-gold nanoparticles conjugated with Lapatinib significantly reduced LINC01615 expression in lung cancer cell lines while enhancing apoptosis rates. Therefore, these nanoparticles could be considered a promising therapeutic candidate for treating cancers with overexpression of LINC01615.
Collapse
Affiliation(s)
- Hadi Rezaei Aghdam
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Leila Rouhi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Sariyer, Istanbul, Türkiye.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan.
| |
Collapse
|
11
|
Guan C, Han Y, Ling Z, Meng X, Zhang B, Dong W, Zhang D, Chen K. Nanomaterials: breaking the bottleneck of breast cancer drug resistance. Front Immunol 2024; 15:1492546. [PMID: 39606228 PMCID: PMC11599193 DOI: 10.3389/fimmu.2024.1492546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Drug resistance poses a significant challenge in the treatment of breast cancer. In recent years, a variety of nanomaterials have been discovered and synthesized that can selectively target tumor cells and play a crucial role in the advancement of breast cancer therapies. As our understanding of tumor heterogeneity deepens, the emerging potential of nanomaterials in addressing drug resistance has garnered considerable attention. These materials not only selectively target tumor cells but also possess unique properties that make them promising options for cancer treatment, including low toxicity, excellent biocompatibility, ease of preparation, the ability to carry antitumor drugs, and customizable surface functions. In this review, we will comprehensively summarize two key developments in breast cancer treatment: the application of antitumor drugs and nanomaterials. We will explore the mechanisms by which nanomaterials improve drug resistance in breast cancer, targeted nanotherapy strategies to mitigate this resistance, and recent research advancements in anticancer nanomaterials. This overview aims to highlight the significant role of nanomaterials in breast cancer treatment and provide a theoretical framework for identifying optimal treatment strategies in the future.
Collapse
Affiliation(s)
- Chao Guan
- The First Clinical College of China Medical University, Shenyang, Liaoning, China
| | - Yahao Han
- Laboratory Animal Science of China Medical University, Shenyang, Liaoning, China
| | - Zhenzheng Ling
- The First Clinical College of China Medical University, Shenyang, Liaoning, China
| | - Xiang Meng
- The First Clinical College of China Medical University, Shenyang, Liaoning, China
| | - Baolin Zhang
- The Fourth Clinical College of China Medical University, Shenyang, Liaoning, China
| | - Wanwei Dong
- Laboratory Animal Science of China Medical University, Shenyang, Liaoning, China
| | - Di Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Keyan Chen
- Laboratory Animal Science of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Yadav S, Singh A, Palei NN, Pathak P, Verma A, Yadav JP. Chitosan-Based Nanoformulations: Preclinical Investigations, Theranostic Advancements, and Clinical Trial Prospects for Targeting Diverse Pathologies. AAPS PharmSciTech 2024; 25:263. [PMID: 39500815 DOI: 10.1208/s12249-024-02948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/15/2024] [Indexed: 12/12/2024] Open
Abstract
Chitosan, a biocompatible and biodegradable polymer, has attracted significant interest in the development of nanoformulations for targeted drug delivery and therapeutic applications. The versatility of chitosan lies in its modifiable functional groups, which can be tailored to diverse applications. Nanoparticles derived from chitosan and its derivatives typically exhibit a positive surface charge and mucoadhesive properties, enabling them to adhere to negatively charged biological membranes and gradually release therapeutic agents. This comprehensive review investigates the manifold roles of chitosan-based nanocarriers, ranging from preclinical research to theranostic applications and clinical trials, across a spectrum of diseases, including neurological disorders, cardiovascular diseases, cancer, wound healing, gastrointestinal disorders, and pulmonary diseases. The exploration starts with an overview of preclinical studies, emphasizing the potential of chitosan-based nanoformulations in optimizing drug delivery, improving therapeutic outcomes, and mitigating adverse effects in various disease categories. Advancements in theranostic applications of chitosan-based nanoformulations highlight their adaptability to diverse diseases. As these nanoformulations progress toward clinical translation, this review also addresses the regulatory challenges associated with their development and proposes potential solutions.
Collapse
Affiliation(s)
- Seema Yadav
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Abhishek Singh
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Narahari N Palei
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India.
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to Be University), Hyderabad Campus, Visakhapatnam, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
13
|
Kang Y, Zhang S, Wang G, Yan Z, Wu G, Tang L, Wang W. Nanocarrier-Based Transdermal Drug Delivery Systems for Dermatological Therapy. Pharmaceutics 2024; 16:1384. [PMID: 39598508 PMCID: PMC11597219 DOI: 10.3390/pharmaceutics16111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Dermatoses are among the most prevalent non-fatal conditions worldwide. Given this context, it is imperative to introduce safe and effective dermatological treatments to address the diverse needs and concerns of individuals. Transdermal delivery technology offers a promising alternative compared to traditional administration methods such as oral or injection routes. Therefore, this review focuses on the recent achievements of nanocarrier-based transdermal delivery technology for dermatological therapy, which summarizes diverse delivery strategies to enhance skin penetration using various nanocarriers including vesicular nanocarriers, lipid-based nanocarriers, emulsion-based nanocarriers, and polymeric nanocarrier according to the pathogenesis of common dermatoses. The fundamentals of transdermal delivery including skin physiology structure and routes of penetration are introduced. Moreover, mechanisms to enhance skin penetration due to the utilization of nanocarriers such as skin hydration, system deformability, disruption of the stratum corneum, surface charge, and tunable particle size are outlined as well.
Collapse
Affiliation(s)
- Yunxiang Kang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
| | - Sunxin Zhang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guoqi Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ziwei Yan
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guyuan Wu
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lu Tang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Wang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
14
|
Ma R, Li Y, Yin S, Gao Y, Zhao G. Interstitial pneumonia development after chemotherapy in B-cell non-hodgkin's lymphoma patients: clinical profiles and risk factors. Am J Cancer Res 2024; 14:4484-4494. [PMID: 39417196 PMCID: PMC11477814 DOI: 10.62347/btgq7302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Interstitial pneumonia (IP) is a significant adverse effect of chemotherapy in B-cell non-Hodgkin's lymphoma (NHL) patients. This study aimed to identify the clinical characteristics, risk factors, and treatment outcomes associated with IP in these patients. A retrospective review of 615 NHL patients treated at the Fourth Hospital of Hebei Medical University from 2016 to 2021 identified 50 patients with IP post-chemotherapy as the case group. A propensity score matched control group of 55 patients without pneumonia was established. Clinical profiles, risk factors, and treatment outcomes were evaluated. The IP incidence was 8.13% (50/615) in B-cell NHL patients. Multivariate analysis revealed liposomes, elevated lactate dehydrogenase (LDH), and erythrocyte sedimentation rate (ESR) as independent risk factors for IP. Receiver Operating Characteristic (ROC) curve analyses suggested that alterations in LDH and ESR could predict IP risk. The conclusion suggests that IP is associated with liposomal doxorubicin-induced lung injury and other cytotoxic chemotherapy, possibly due to Rituximab (RTX)-induced immune imbalance. Given the potential of IP with pulmonary infections, high-risk patients may need prophylactic antibiotics and appropriate corticosteroid therapy.
Collapse
Affiliation(s)
- Ruijuan Ma
- Department of Hematology, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Yuan Li
- Department of Hematology, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Shaoning Yin
- Department of Hematology, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Yuhuan Gao
- Department of Hematology, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| | - Guimin Zhao
- Department of Hematology, The Fourth Hospital of Hebei Medical University Shijiazhuang 050000, Hebei, China
| |
Collapse
|
15
|
Sharma S, Chakraborty M, Yadav D, Dhullap A, Singh R, Verma RK, Bhattacharya S, Singh S. Strategic Developments in Polymer-Functionalized Liposomes for Targeted Colon Cancer Therapy: An Updated Review of Clinical Trial Data and Future Horizons. Biomacromolecules 2024; 25:5650-5669. [PMID: 39162323 DOI: 10.1021/acs.biomac.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Liposomes, made up of phospholipid bilayers, are efficient nanocarriers for drug delivery because they can encapsulate both hydrophilic and lipophilic drugs. Conventional cancer treatments sometimes involve considerable toxicities and adverse drug reactions (ADRs), which limits their clinical value. Despite liposomes' promise in addressing these concerns, clinical trials have revealed significant limitations, including stability, targeted distribution, and scaling challenges. Recent clinical trials have focused on enhancing liposome formulations to increase therapeutic efficacy while minimizing negative effects. Notably, the approval of liposomal medications like Doxil demonstrates their potential in cancer treatment. However, the intricacy of liposome preparation and the requirement for comprehensive regulatory approval remain substantial impediments. Current clinical trial updates show continued efforts to improve liposome stability, targeting mechanisms, and payload capacity in order to address these issues. The future of liposomal drug delivery in cancer therapy depends on addressing these challenges in order to provide patients with more effective and safer treatment alternatives.
Collapse
Affiliation(s)
- Satyam Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Moitrai Chakraborty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Dharmendra Yadav
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Aniket Dhullap
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Sankha Bhattacharya
- SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur, Dist. Dhule, Maharashtra 425405, India
| | - Sanjiv Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| |
Collapse
|
16
|
Zeynalzadeh E, Khodadadi E, Khodadadi E, Ahmadian Z, Kazeminava F, Rasoulzadehzali M, Samadi Kafil H. Navigating the neurological frontier: Macromolecular marvels in overcoming blood-brain barrier challenges for advanced drug delivery. Heliyon 2024; 10:e35562. [PMID: 39170552 PMCID: PMC11336773 DOI: 10.1016/j.heliyon.2024.e35562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The blood-brain interface poses formidable obstacles in addressing neurological conditions such as Alzheimer's, Multiple Sclerosis, brain cancers, and cerebrovascular accidents. Serving as a safeguard against potential threats in the blood, this barrier hinders direct drug delivery to affected cells, necessitating specialized transport mechanisms. Within the realm of nanotechnology, the creation of nanoscale carriers, including macromolecules such as polymers, lipids, and metallic nanoparticles, is gaining prominence. These carriers, tailored in diverse forms and sizes and enriched with specific functional groups for enhanced penetration and targeting, are capturing growing interest. This revised abstract explores the macromolecular dimension in understanding how nanoparticles interact with the blood-brain barrier. It re-evaluates the structure and function of the blood-brain barrier, highlighting macromolecular nanocarriers utilized in drug delivery to the brain. The discussion delves into the intricate pathways through which drugs navigate the blood-brain barrier, emphasizing the distinctive attributes of macromolecular nanocarriers. Additionally, it explores recent innovations in nanotechnology and unconventional approaches to drug delivery. Ultimately, the paper addresses the intricacies and considerations in developing macromolecular-based nanomedicines for the brain, aiming to advance the creation and evolution of nanomedicines for neurological ailments.
Collapse
Affiliation(s)
- Elham Zeynalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Rasoulzadehzali
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Tang L, Yin Y, Zhang Z, Fu C, Cao Y, Liu H, Feng J, Gao J, Shang J, Wang W. Size-switchable and dual-targeting nanomedicine for cancer chemoimmunotherapy by potentiating deep tumor penetration and antitumor immunity. CHEMICAL ENGINEERING JOURNAL 2024; 493:152590. [DOI: 10.1016/j.cej.2024.152590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Varpe P, Joga R, Aglave G, Vasu P, Yerram S, Bellapu KK, Srivastava S, Kumar S. Esterase responsive release of anti-cancer agents from conjugated lipid nanocarrier and the regulatory considerations. Pharm Pat Anal 2024; 13:31-43. [PMID: 39324857 PMCID: PMC11449025 DOI: 10.1080/20468954.2024.2347796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 09/27/2024]
Abstract
The release of active agents in tumors rather than normal tissues, limits systemic exposure and toxicities. Targeting over-expressed esterase enzyme in the tumor microenvironment can selectively release immune-active agents like Programmed Death-1 (PD-1) and PD-1 ligand inhibitors from ester-sensitive lipid nanocarriers, offering a novel approach compared with conventional therapies. PD-1 and PD-L1 association cause T-cell inactivation, whereas blocking their association improves their cytotoxic mechanism. The patent application US2022/0080051-A1 discloses a novel immune-active agent conjugated with lipid to form a nanocarrier for esterase-sensitive release. These nanocarriers selectively enter leaky vasculature of tumors through enhanced permeability and retention effect, undergo ester cleavage to release agents, and are reported to increase bioavailability by 24 times. Further, with other agents or alone it achieves targeted synergistic cancer therapy. Also, the current patent spotlight delves into the crucial formulation considerations necessary for obtaining successful approval of lipidic nano products from relevant regulatory authorities.
Collapse
Affiliation(s)
- Priya Varpe
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Gayatri Aglave
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Pavan Vasu
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Sravani Yerram
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Kiran Kumar Bellapu
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana , 500037, India
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education & Research-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
- Department of Pharmaceutics, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, Rajasthan 303121, India
| |
Collapse
|
19
|
Matus MF, Häkkinen H. Rational Design of Targeted Gold Nanoclusters with High Affinity to Integrin αvβ3 for Combination Cancer Therapy. Bioconjug Chem 2024. [PMID: 39008847 DOI: 10.1021/acs.bioconjchem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The unique attributes of targeted nano-drug delivery systems (TNDDSs) over conventional cancer therapies in suppressing off-target effects make them one of the most promising options for cancer treatment. There is evidence that the density of surface-conjugated ligands is a crucial factor in achieving the desired therapeutic efficacy of TNDDSs, but this is hardly manageable in conventional nanomaterials. In this context, ligand-protected gold nanoclusters (AuNCs) are excellent candidates for developing new TNDDSs with a unique control on their surface functionalities, thus helping to achieve enhanced delivery performance. Here, we study the interactions and binding free energies between ten different functionalized Au144(SR)60 (SR = thiolate ligand) nanoclusters and integrin αvβ3 using molecular dynamics simulations and the umbrella sampling method to obtain the optimal formulations. The AuNCs were functionalized with anticancer drugs (5-fluorouracil or signaling pathways inhibitors, such as capivasertib, linifanib, tanespimycin, and taselisib) and integrin-targeting peptides (RGD4C or QS13), and we identified the optimal mixed ligand layer to enhance their binding affinity to the cancer cell receptor. The results showed that changing the proportions of the same type of ligands on the surface of AuNCs led to differences of up to 38 kcal/mol in computed binding free energies. RGD4C as the targeting peptide resulted in greater affinity for αvβ3, and in most formulations studied, a higher amount of drug than peptide was needed. Polar and charged residues, such as Ser123, Asp150, Tyr178, Arg214, and Asp251 were found to play a significant role in AuNC binding. Our simulations also revealed that Mn2+ cations are crucial for stabilizing the αvβ3-AuNC complex. These findings demonstrate the potential of carefully designing the surface composition of TNDDSs to optimize their target affinity and specificity.
Collapse
Affiliation(s)
| | - Hannu Häkkinen
- Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
20
|
Cao Y, Tang L, Fu C, Yin Y, Liu H, Feng J, Gao J, Shu W, Li Z, Zhu Y, Wang W. Black Phosphorus Quantum Dot Loaded Bioinspired Nanoplatform Synergized with aPD-L1 for Multimode Cancer Immunotherapy. NANO LETTERS 2024; 24:6767-6777. [PMID: 38771956 DOI: 10.1021/acs.nanolett.4c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Efforts to prolong the blood circulation time and bypass immune clearance play vital roles in improving the therapeutic efficacy of nanoparticles (NPs). Herein, a multifunctional nanoplatform (BPP@RTL) that precisely targets tumor cells is fabricated by encapsulating ultrasmall phototherapeutic agent black phosphorus quantum dot (BPQD), chemotherapeutic drug paclitaxel (PTX), and immunomodulator PolyMetformin (PM) in hybrid membrane-camouflaged liposomes. Specifically, the hybrid cell membrane coating derived from the fusion of cancer cell membrane and red blood cell membrane displays excellent tumor targeting efficiency and long blood circulation property due to the innate features of both membranes. After collaboration with aPD-L1-based immune checkpoint blockade therapy, a boosted immunotherapeutic effect is obtained due to elevated dendritic cell maturation and T cell activation. Significantly, laser-irradiated BPP@RTL combined with aPD-L1 effectively eliminates primary tumors and inhibits lung metastasis in 4T1 breast tumor model, offering a promising treatment plan to develop personalized antitumor strategy.
Collapse
Affiliation(s)
- Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jingwen Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jifan Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weijie Shu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zixuan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuanbo Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
21
|
Pan X, Huang W, Nie G, Wang C, Wang H. Ultrasound-Sensitive Intelligent Nanosystems: A Promising Strategy for the Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303180. [PMID: 37871967 DOI: 10.1002/adma.202303180] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Indexed: 10/25/2023]
Abstract
Neurological diseases are a major global health challenge, affecting hundreds of millions of people worldwide. Ultrasound therapy plays an irreplaceable role in the treatment of neurological diseases due to its noninvasive, highly focused, and strong tissue penetration capabilities. However, the complexity of brain and nervous system and the safety risks associated with prolonged exposure to ultrasound therapy severely limit the applicability of ultrasound therapy. Ultrasound-sensitive intelligent nanosystems (USINs) are a novel therapeutic strategy for neurological diseases that bring greater spatiotemporal controllability and improve safety to overcome these challenges. This review provides a detailed overview of therapeutic strategies and clinical advances of ultrasound in neurological diseases, focusing on the potential of USINs-based ultrasound in the treatment of neurological diseases. Based on the physical and chemical effects induced by ultrasound, rational design of USINs is a prerequisite for improving the efficacy of ultrasound therapy. Recent developments of ultrasound-sensitive nanocarriers and nanoagents are systemically reviewed. Finally, the challenges and developing prospects of USINs are discussed in depth, with a view to providing useful insights and guidance for efficient ultrasound treatment of neurological diseases.
Collapse
Affiliation(s)
- Xueting Pan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Ranasinghe R, Mathai M, Abdullah Alshawsh M, Zulli A. Nanocarrier-mediated cancer therapy with cisplatin: A meta-analysis with a promising new paradigm. Heliyon 2024; 10:e28171. [PMID: 39839154 PMCID: PMC11747978 DOI: 10.1016/j.heliyon.2024.e28171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 01/23/2025] Open
Abstract
Aims Cisplatin is a frontline chemotherapeutic utilized to attenuate multiple cancers in the clinic. Given its side-effects, a new cisplatin formulation which could prevent cytotoxicity, metabolic deficiencies and metastasis is much needed. This study investigates whether nanocarriers can provide a better mode of drug delivery in preclinical cancer models seeking a potent anticancer therapeutic agent. Materials and methods The PubMed database was searched, and 242 research articles were screened from which 94 articles qualified for selection from those published by December 31, 2023 and the data was synthesized using the Review Manager software. Key findings Cisplatin encapsulated as a nanomedicine confirmed the versatility of nanocarriers in significantly diminishing cancer cell viability, half maximal inhibitory concentration, tumour volume, biodistribution of platinum in tumours and kidney; at p < 0.00001 and a 95% confidence interval. Significance An estimated 19.3 million global cancer incidence is reported with 50% mortality worldwide for which nanocarrier-mediated cisplatin therapy is most promising. Our findings offer new vistas for future cancer treatment when combined with chemo-immunotherapy that utilizes the recently advanced nanozymes.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| | - Michael Mathai
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| | - Mohammed Abdullah Alshawsh
- Department of Paediatrics, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Anthony Zulli
- Institute for Health and Sport, College of Health and Medicine, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Radwan AM, Gebreel DT, Allam S, El-Atrash A, Tousson E. Chitosan and Grifola Frondosa nanoparticles insulate liver dysfunction in EAC-bearing mice. Toxicol Res (Camb) 2024; 13:tfae050. [PMID: 38559757 PMCID: PMC10980792 DOI: 10.1093/toxres/tfae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/19/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Abstract
Background Ehrlich ascites carcinoma (EAC) is a rapidly growing and undifferentiated tumor that can prompt oxidative stress and liver toxicity, whereas chitosan and Grifola Frondosa have widely recognized biological qualities. Therefore, our study designed to assess the potential ameliorative ability of chitosan nanoparticles (CS NPs) and Grifola Frondosa nanoparticles (GF-loaded casein NPs) on EAC-induced hepatic injury in mice. Methods A total of 60 female albino mice were segregated into 6 groups (10 mice each), G1, control group; G2, CS NPs group; G3, GF-loaded casein NPs group; G4, EAC group; G5, EAC treated with CS NPs; G6, EAC treated with GF-loaded casein NPs. Results According to the findings, EAC considerably increased serum activities of ALT, AST, ALP as well as LDL, cholesterol, and triglycerides levels coincided with marked decrease in albumin and total protein content in liver tissue. At the same time, it drastically lowered GSH levels and catalase activity while significantly elevating MDA levels. In addition, EAC caused DNA damage and apoptosis by decreasing Bcl-2 while increasing p53 expressions. However, either CS NPs or GF-loaded casein NPs therapy improved liver architecture and functioning, increased antioxidant parameters, and prevented hepatocyte death in EAC mice. Conclusions Our findings concluded that CS NPs and GF-loaded casein NPs have insulating functions against EAC-induced hepatic damage in mice.
Collapse
Affiliation(s)
- Aliaa M Radwan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, El Geish street, Tanta, Gharbia Governorate 31527, Egypt
| | - Doaa T Gebreel
- Medical Equipment Department, Faculty of Allied Medical Sciences, Pharos University, Canal El Mahmoudia Street, beside, Green Plaza 21648, Alexandria, Egypt
| | - Sahar Allam
- Zoology Department, Faculty of Science, Tanta University, El Geish street, Tanta, Gharbia Governorate 31527, Egypt
| | - Afaf El-Atrash
- Zoology Department, Faculty of Science, Tanta University, El Geish street, Tanta, Gharbia Governorate 31527, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, El Geish street, Tanta, Gharbia Governorate 31527, Egypt
| |
Collapse
|
24
|
Ara N, Hafeez A. Nanocarrier-Mediated Drug Delivery via Inhalational Route for Lung Cancer Therapy: A Systematic and Updated Review. AAPS PharmSciTech 2024; 25:47. [PMID: 38424367 DOI: 10.1208/s12249-024-02758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is one of the most severe lethal malignancies, with approximately 1.6 million deaths every year. Lung cancer can be broadly categorised into small and non-small-cell lung cancer. The traditional chemotherapy is nonspecific, destroys healthy cells and produces systemic toxicity; targeted inhalation drug delivery in conjunction with nanoformulations has piqued interest as an approach for improving chemotherapeutic drug activity in the treatment of lung cancer. Our aim is to discuss the impact of polymer and lipid-based nanocarriers (polymeric nanoparticles, liposomes, niosomes, nanostructured lipid carriers, etc.) to treat lung cancer via the inhalational route of drug administration. This review also highlights the clinical studies, patent reports and latest investigations related to lung cancer treatment through the pulmonary route. In accordance with the PRISMA guideline, a systematic literature search was carried out for published works between 2005 and 2023. The keywords used were lung cancer, pulmonary delivery, inhalational drug delivery, liposomes in lung cancer, nanotechnology in lung cancer, etc. Several articles were searched, screened, reviewed and included. The analysis demonstrated the potential of polymer and lipid-based nanocarriers to improve the entrapment of drugs, sustained release, enhanced permeability, targeted drug delivery and retention impact in lung tissues. Patents and clinical observations further strengthen the translational potential of these carrier systems for human use in lung cancer. This systematic review demonstrated the potential of pulmonary (inhalational) drug delivery approaches based on nanocarriers for lung cancer therapy.
Collapse
Affiliation(s)
- Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
25
|
Mostafa NA, Hamdi SAH, Fol MF. Potential anthelmintic effect of chitosan on Syphacia muris infecting Wistar rats: biochemical, immunological, and histopathological studies. Sci Rep 2024; 14:2825. [PMID: 38310115 PMCID: PMC10838320 DOI: 10.1038/s41598-024-52309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Natural products extracted from animal sources have many biological activities, such as chitosan, which is being researched for its medicinal or therapeutic potential. Syphacia muris is the most well-known intestinal nematode, infecting laboratory rats and influencing their immune systems. In this study, we looked at the anthelminthic activity of chitosan particles against S. muris infection using biochemical, immunological, and histopathological methods. Chitosan particles were characterized using Fourier-transform infrared spectroscopy (FTIR). Rats were separated into four groups, each consisting of seven individuals (n = 7). The first group was the control (non-infected), the second group was infected, and both groups received 0.5 ml of 1% glacial acetic acid orally. The third group was the infected group (treated), and the fourth group (normal) received 0.5 ml of 30 mg/kg/day chitosan dissolved in 1% glacial acetic acid for 14 days using gavage. Liver and kidney parameters, oxidative stress markers, serum levels of cytokines (IFN-γ, IL-5, IL-13, IL-33, and IL-10), as well as immunoglobulins (total IgE and IgG), were assessed. Histological examinations of host tissues (intestine, liver, kidney, and spleen) were also performed. Following chitosan treatment, a significant decrease in worm count (P < 0.05) was indicated; this was associated with an enhancement of biochemical and oxidative stress biomarkers, which were altered due to infection. Moreover, immunological analysis revealed a significant drop in INF-γ, IL-5, IL-13, and IL-33 levels and total immunoglobulins (IgE and IgG) as well as an improvement in rat tissues. Conclusively, this study showed the anthelminthic effect of chitosan against S. muris infection.
Collapse
Affiliation(s)
- Nesma A Mostafa
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Salwa A H Hamdi
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mona F Fol
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
26
|
Nag S, Mitra O, Tripathi G, Adur I, Mohanto S, Nama M, Samanta S, Gowda BHJ, Subramaniyan V, Sundararajan V, Kumarasamy V. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagnosis Photodyn Ther 2024; 45:103959. [PMID: 38228257 DOI: 10.1016/j.pdpdt.2023.103959] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
Breast cancer (BC) remains an enigmatic fatal modality ubiquitously prevalent in different parts of the world. Contemporary medicines face severe challenges in remediating and healing breast cancer. Due to its spatial specificity and nominal invasive therapeutic regime, photothermal therapy (PTT) has attracted much scientific attention down the lane. PTT utilizes a near-infrared (NIR) light source to irradiate the tumor target intravenously or non-invasively, which is converted into heat energy over an optical fibre. Dynamic progress in nanomaterial synthesis was achieved with specialized visual, physicochemical, biological, and pharmacological features to make up for the inadequacies and expand the horizon of PTT. Numerous nanomaterials have substantial NIR absorption and can function as efficient photothermal transducers. It is achievable to limit the wavelength range of an absorbance peak for specific nanomaterials by manipulating their synthesis, enhancing the precision and quality of PTT. Along the same lines, various nanomaterials are conjugated with a wide range of surface-modifying chemicals, including polymers and antibodies, which may modify the persistence of the nanomaterial and diminish toxicity concerns. In this article, we tend to put forth specific insights and fundamental conceptualizations on pre-existing PTT and its advances upon conjugation with different biocompatible nanomaterials working in synergy to combat breast cancer, encompassing several strategies like immunotherapy, chemotherapy, photodynamic therapy, and radiotherapy coupled with PTT. Additionally, the role or mechanisms of nanoparticles, as well as possible alternatives to PTT, are summarized as a distinctive integral aspect in this article.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, Bandar Sunway 47500 Selangor Darul Ehsan, Malaysia.
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Garima Tripathi
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Israrahmed Adur
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India; School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences (JCSMHS), Monash University Malaysia, Bandar Sunway 47500 Selangor Darul Ehsan, Malaysia.
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
27
|
Kariminia S, Shamsipur M, Barati A. Fluorescent folic acid-chitosan/carbon dot for pH-responsive drug delivery and bioimaging. Int J Biol Macromol 2024; 254:127728. [PMID: 38287587 DOI: 10.1016/j.ijbiomac.2023.127728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Nowadays, one of the most important reasons of death in the world is cancer. With the development of nanotechnology, advanced methods for treatment of cancer have introduced. In this work, the fluorescent carbon dots (CDs) were prepared from chitosan as the second abundant polysaccharide present in the nature. The surface of CDs was modified with chitosan (CDs/CS) and then the amino groups of chitosan were conjugated with activated folic acid (CDs/CS-FA) for controlled delivery of doxorubicin (DOX) as anticancer drug against HeLa cancer cells. The DOX loading efficiency of fluorescent CDs/CS-FA was high and nearly 60 %. Due to pH sensitive swelling/deswelling of CS, the percentage of cumulative DOX release could reach 90 % at cancer tissue (pH of 5.0) and 52 % at normal tissue (pH of 7.4) within 30 h. The cytotoxicity study revealed that the synthesized CDs were highly compatible on HeLa cells with cell viability 97-88 %. Cellular imaging shows that the entry of CDs/CS-FA to HeLa cells causes a green fluorescence, while the CDs/CS without FA have a negligible fluorescence. These results are due to the important role of FA in cell internalization. Thus, the CDs/CS-FA nanocarrier is suitable candidate for controlled pH sensitive drug delivery and cellular imaging.
Collapse
Affiliation(s)
| | | | - Ali Barati
- Faculty of Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
28
|
Liu S, Xu M, Zhong L, Tong X, Qian S. Recent Advances in Nanobiotechnology for the Treatment of Non-Hodgkin's Lymphoma. Mini Rev Med Chem 2024; 24:895-907. [PMID: 37724679 DOI: 10.2174/1389557523666230915103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023]
Abstract
Lymphoma is the eighth most common type of cancer worldwide. Currently, lymphoma is mainly classified into two main groups: Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), with NHL accounting for 80% to 90% of the cases. NHL is primarily divided into B, T, and natural killer (NK) cell lymphoma. Nanotechnology is developing rapidly and has made significant contributions to the field of medicine. This review summarizes the advancements of nanobiotechnology in recent years and its applications in the treatment of NHL, especially in diffuse large B cell lymphoma (DLBCL), primary central nervous system lymphoma (PCNSL), and follicular lymphoma (FL). The technologies discussed include clinical imaging, targeted drug delivery, photodynamic therapy (PDT), and thermodynamic therapy (TDT) for lymphoma. This review aims to provide a better understanding of the use of nanotechnology in the treatment of non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Shuxian Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Minghao Xu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Lei Zhong
- Tongxiang Hospital of Traditional Chinese Medicine, Zhejiang, China
| | - Xiangmin Tong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Suying Qian
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, China
| |
Collapse
|
29
|
Puri A, Mohite P, Maitra S, Subramaniyan V, Kumarasamy V, Uti DE, Sayed AA, El-Demerdash FM, Algahtani M, El-Kott AF, Shati AA, Albaik M, Abdel-Daim MM, Atangwho IJ. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed Pharmacother 2024; 170:116083. [PMID: 38163395 DOI: 10.1016/j.biopha.2023.116083] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Abhijeet Puri
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India
| | - Popat Mohite
- AETs St. John Institute of Pharmacy & Research, Palghar, Maharshtra 401404, India.
| | - Swastika Maitra
- Centre for Global Health Research, Saveetha Medical College and Hospital, Chennai, India; Department of Science and Engineering, Novel Global Community and Educational Foundation, Hebasham, Australia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, 600077, India..
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Daniel E Uti
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damounhour University, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mai Albaik
- Chemistry Department, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Item J Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
30
|
Honari A, Sirsi SR. The Evolution and Recent Trends in Acoustic Targeting of Encapsulated Drugs to Solid Tumors: Strategies beyond Sonoporation. Pharmaceutics 2023; 15:1705. [PMID: 37376152 DOI: 10.3390/pharmaceutics15061705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite recent advancements in ultrasound-mediated drug delivery and the remarkable success observed in pre-clinical studies, no delivery platform utilizing ultrasound contrast agents has yet received FDA approval. The sonoporation effect was a game-changing discovery with a promising future in clinical settings. Various clinical trials are underway to assess sonoporation's efficacy in treating solid tumors; however, there are disagreements on its applicability to the broader population due to long-term safety issues. In this review, we first discuss how acoustic targeting of drugs gained importance in cancer pharmaceutics. Then, we discuss ultrasound-targeting strategies that have been less explored yet hold a promising future. We aim to shed light on recent innovations in ultrasound-based drug delivery including newer designs of ultrasound-sensitive particles specifically tailored for pharmaceutical usage.
Collapse
Affiliation(s)
- Arvin Honari
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shashank R Sirsi
- Department of Bioengineering, Erik Johnson School of Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
31
|
Wang H, Shao W, Lu X, Gao C, Fang L, Yang X, Zhu P. Synthesis, characterization, and in vitro anti-tumor activity studies of the hyaluronic acid-mangiferin-methotrexate nanodrug targeted delivery system. Int J Biol Macromol 2023; 239:124208. [PMID: 36972827 DOI: 10.1016/j.ijbiomac.2023.124208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
In this study, to increase the accumulation of MTX in the tumor site and reduce the toxicity to normal tissues by MA, a novel nano-drug delivery system comprised of hyaluronic acid (HA)-mangiferin (MA)-methotrexate (MTX) (HA-MA-MTX) was developed by a self-assembly strategy. The advantage of the nano-drug delivery system is that MTX can be used as a tumor-targeting ligand of the folate receptor (FA), HA can be used as another tumor-targeting ligand of the CD44 receptor, and MA serves as an anti-inflammatory agent. 1HNMR and FT-IR results confirmed that HA, MA, and MTX were well coupled together by the ester bond. DLS and AFM images revealed that the size of HA-MA-MTX nanoparticles was about ~138 nm. In vitro cell experiments proved that HA-MA-MTX nanoparticles have a positive effect on inhibiting K7 cancer cells while having relatively lower toxicity to normal MC3T3-E1 cells than MTX does. All these results indicated that the prepared HA-MA-MTX nanoparticles can be selectively ingested by K7 tumor cells through FA and CD44 receptor-mediated endocytosis, thus inhibiting the growth of tumor tissues and reducing the nonspecific uptake toxicity caused by chemotherapy. Therefore, these self-assembled HA-MA-MTX NPs could be a potential anti-tumor drug delivery system.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital of Jiangsu Province, Wuxi 214105, PR China
| | - Wanfei Shao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xianyi Lu
- Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital of Jiangsu Province, Wuxi 214105, PR China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Ling Fang
- Department of Dermatology, Wuxi Xishan People's Hospital, Wuxi, Jiangsu 214105, China
| | - Xiaojun Yang
- The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou 215006, Jiangsu Province, China.
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
32
|
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023; 15:868. [PMID: 36986729 PMCID: PMC10058002 DOI: 10.3390/pharmaceutics15030868] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.
Collapse
Affiliation(s)
- Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
33
|
Singh N, Reddy KP, Das P, Kishor BK, Datta P. Complex formulation strategies to overcome the delivery hurdles of laptinib in metastatic breast cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
34
|
Feng Z, Kang G, Wang J, Gao X, Wang X, Ye Y, Liu L, Zhao J, Liu X, Huang H, Cao X. Breaking through the therapeutic ceiling of inflammatory bowel disease: Dual-targeted therapies. Biomed Pharmacother 2023; 158:114174. [PMID: 36587559 DOI: 10.1016/j.biopha.2022.114174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Emerging biologics and small-molecule drugs have changed the clinical status quo of inflammatory bowel disease (IBD). However, current treatments remain at a standstill in terms of response and remission in many cases. Accumulating evidence indicates that dual-targeted therapy (DTT) could be promising in overcoming the existing ceiling of IBD treatment. However, data on the efficacy and safety of DTT on Crohn's disease and ulcerative colitis are still limited or insufficient. Moreover, there is a lack of studies delineating the mechanisms of DTT. Given that various targeted drugs have different targets among the extensive redundant inflammatory networks, DTT could result in various outcomes. In this review, we have summarized the current data on the safety, effectiveness, and clinical development status of novel targeted drugs related to refractory IBD, and have explored the mechanism of action of therapy. We have categorized therapeutic agents into "Therapeutic Agents Targeting Cellular Signaling Pathways" and "Therapeutic Agents Targeting Leukocyte Trafficking" based on the different therapeutic targets, and also by classifying therapeutic agents targeting the cellular signaling pathways into "JAK-dependent" and "JAK-independent," and placed the existing drug combinations into 3 categories based on their mechanisms, namely, overlapping, synergistic, and complementary effects. Lastly, we have proposed the possible mechanisms of DTT to conceive a theoretical framework for clinical decision-making and further drug development and research from an IBD standpoint.
Collapse
Affiliation(s)
- Zelin Feng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Jiewen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoli Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yulin Ye
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Limin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100016, China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|
35
|
Hasannia M, Lamei K, Abnous K, Taghdisi SM, Nekooei S, Nekooei N, Ramezani M, Alibolandi M. Targeted poly(L-glutamic acid)-based hybrid peptosomes co-loaded with doxorubicin and USPIONs as a theranostic platform for metastatic breast cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102645. [PMID: 36549556 DOI: 10.1016/j.nano.2022.102645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Peptosomes, as a vesicular polypeptide-based system and a versatile carrier for co-delivery of hydrophilic and hydrophobic materials, provide great delivery opportunities due to the intrinsic biocompatibility and biodegradability of the polypeptides backbone. In the current study, a novel poly(L-glutamic acid)-block-polylactic acid di-block copolymer (PGA-PLA) was synthesized in two steps. Firstly, γ-benzyl L-glutamate-N-carboxy anhydride (BLG-NCA) and 3,6-dimethyl-1,4-dioxane-2,5-dione were polymerized using N-hexylamine and benzyl alcohol as initiators to produce poly(γ-benzyl L-glutamate (PBLG) and polylactic acid. Then, PBLG was deprotected to produce PGA. Secondly, PGA was conjugated to the benzyl-PLGA to fabricate PGA-PLA diblock copolymer. The synthesized diblock copolymer was used for the encapsulation of doxorubicin, as hydrophilic anticancer and ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) as hydrophobic contrast agent within aqueous core and bilayer of vesicular peptosome, respectively via double emulsion method. The prepared peptosomes (Pep@USPIONs-DOX) controlled the release of DOX (<15 % of the encapsulated DOX release up to 240 h of incubation at the physiological conditions) while increasing the stability and solubility of the hydrophobic USPIONs. Then, AS1411 DNA aptamer was decorated on the surface of the PGA-PLA peptosomes (Apt-Pep@USPIONs-DOX). The prepared targeted and non-targeted platforms showed spherical morphology with hydrodynamic sizes of 265 ± 52 and 229 ± 44 nm respectively. In vitro cellular cytotoxicity and cellular uptake were studied in nucleolin positive (4T1) and nucleolin negative (CHO) cell lines. Cellular uptake of the targeted formulation was greater than that of non-targeted peptosome, while cellular internalization of these peptosomes was identical in CHO cells. Moreover, targeted peptosomes showed greater toxicity than non-targeted peptosome in 4T1 cell line. The prepared theranostic targeted peptosomes demonstrated improved capability in terms of survival rate, biodistribution, tumor suppression efficiency, and MR imaging in the 4T1 tumor-bearing mice.
Collapse
Affiliation(s)
- Maliheh Hasannia
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Lamei
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Nekooei
- Department of Radiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Manan FAA, Yusof NA, Abdullah J, Nurdin A. Central Composite Design for Optimization of Mitomycin C-Loaded Quantum Dots/Chitosan Nanoparticles as Drug Nanocarrier Vectors. Pharmaceutics 2023; 15:pharmaceutics15010209. [PMID: 36678837 PMCID: PMC9862130 DOI: 10.3390/pharmaceutics15010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the most devastating diseases that leads to a high degree of mortality worldwide. Hence, extensive efforts have been devoted to the development of drug nanocarrier vectors as a potential new cancer treatment option. The main goal of this treatment is to deliver an anticancer medicine successfully and effectively to the patient's cells using non-toxic nanocarriers. Here, we present a drug delivery system to emphasize the optimization of an anticancer drug-loaded formulation using Mitomycin C (MMC) encapsulated in chitosan nanocarrier conjugated with a bioimaging fluorescence probe of Mn:ZnS quantum dots (MMC@CS-Mn:ZnS). Additionally, the Response Surface Methodology (RSM), which uses a quadratic model to forecast the behaviour of the nano-drug delivery system, was used to assess the optimization of encapsulation efficiency. In this investigation, the core points of the Central Composite Design (CCD) model were used with 20 runs and 6 replications. The encapsulation efficiency (EE%) was measured using UV-Vis spectroscopy at 362 nm. The highest EE% is 55.31 ± 3.09 under the optimum parameters of incubation time (105 min), concentration of MMC (0.875 mg/mL), and concentration of nanocarriers (5.0 mg/mL). Physicochemical characterizations for the nanocarriers were accessed using a nanosizer and field-emission scanning electron microscopy (FESEM). Three independent variables for the evaluation of the encapsulation efficiency were used, in which the incubation time, concentration of MMC, concentration of nanocarriers, and correlation for each variable were studied. Furthermore, the MMC drug release efficiency was carried out in four different solution pHs of 5.5, 6.0, 6.5, 7.0, and pH 7.5, and the highest cumulative drug release of 81.44% was obtained in a pH 5.5 release medium, followed by cumulative releases of 68.55%, 50.91%, 41.57%, and 32.45% in release mediums with pH 6.0, pH 6.5, pH 7.0, and pH 7.5. Subsequently, five distinct mathematical models-pseudo-first-order, pseudo-second-order, Hixson-Crowell, Korsmeyer-Peppas, and Higuchi kinetic models-were used to fit all of the drug release data. The Korsmeyers-Peppas model was found to fit it well, highlighting its importance for the log of cumulative drug release proportional to the log of time at the equilibrium state. The correlation coefficient value (R2) was obtained as 0.9527, 0.9735, 0.9670, 0.9754, and 0.9639 for the drug release in pH 5.5, pH 6.0, pH 6.5, pH 7.0, and pH 7.5, respectively. Overall, from the analysis, the as-synthesized MMC nanocarrier (MMC@CS-Mn:ZnS) synergistically elucidates the underlying efficient delivery of MMC and leverages the drug loading efficiency, and all these factors have the potential for the simultaneous curbing of non-muscle invasive bladder cancer reoccurrence and progression when applied to the real-time disease treatment.
Collapse
Affiliation(s)
- Fariza Aina Abd Manan
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, UPM Serdang, Serdang 43400, Selangor, Malaysia
- Correspondence: (F.A.A.M.); (N.A.Y.)
| | - Nor Azah Yusof
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, UPM Serdang, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Serdang 43400, Selangor, Malaysia
- Correspondence: (F.A.A.M.); (N.A.Y.)
| | - Jaafar Abdullah
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, UPM Serdang, Serdang 43400, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Serdang 43400, Selangor, Malaysia
| | - Armania Nurdin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
37
|
Sherif AY, Harisa GI, Shahba AA, Alanazi FK, Qamar W. Optimization of Gefitinib-Loaded Nanostructured Lipid Carrier as a Biomedical Tool in the Treatment of Metastatic Lung Cancer. Molecules 2023; 28:molecules28010448. [PMID: 36615641 PMCID: PMC9823586 DOI: 10.3390/molecules28010448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Gefitinib (GEF) is utilized in clinical settings for the treatment of metastatic lung cancer. However, premature drug release from nanoparticles in vivo increases the exposure of systemic organs to GEF. Herein, nanostructured lipid carriers (NLC) were utilized not only to avoid premature drug release but also due to their inherent lymphatic tropism. Therefore, the present study aimed to develop a GEF-NLC as a lymphatic drug delivery system with low drug release. Design of experiments was utilized to develop a stable GEF-NLC as a lymphatic drug delivery system for the treatment of metastatic lung cancer. The in vitro drug release of GEF from the prepared GEF-NLC formulations was studied to select the optimum formulation. MTT assay was utilized to study the cytotoxic activity of GEF-NLC compared to free GEF. The optimized GEF-NLC formulation showed favorable physicochemical properties: <300 nm PS, <0.2 PDI, <−20 ZP values with >90% entrapment efficiency. Interestingly, the prepared formulation was able to retain GEF with only ≈57% drug release within 24 h. Furthermore, GEF-NLC reduced the sudden exposure of cultured cells to GEF and produced the required cytotoxic effect after 48 and 72 h incubation time. Consequently, optimized formulation offers a promising approach to improve GEF’s therapeutic outcomes with reduced systemic toxicity in treating metastatic lung cancer.
Collapse
Affiliation(s)
- Abdelrahman Y. Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Gamaleldin I. Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmad A. Shahba
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
38
|
Chronobiology and Nanotechnology for Personalized Cancer Therapy. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
39
|
Jaragh-Alhadad L, Samir M, Harford TJ, Karnik S. Low-density lipoprotein encapsulated thiosemicarbazone metal complexes is active targeting vehicle for breast, lung, and prostate cancers. Drug Deliv 2022; 29:2206-2216. [PMID: 35815732 PMCID: PMC9278447 DOI: 10.1080/10717544.2022.2096713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cancer is a leading cause of death worldwide and affects society in terms of the number of lives lost. Current cancer treatments are based on conventional chemotherapy which is nonspecific in targeting cancer. Therefore, intensive efforts are underway to better target cancer-specific cells while minimizing the side effects on healthy tissues by using LDL particles as active drug delivery vehicles. The goal is to encapsulate anticancer agents thiosemicarbazone metal-ligand complexes into LDL particles to increase the cytotoxic effect of the agent by internalization through LDL receptors into MCF7, A549, and C42 cancer cell lines as segregate models for biological evaluations targeting tubulin. Zeta potential data of LDL-particles encapsulated anticancer agents showed an acceptable diameter range between 66-91 nm and uniform particle morphology. The results showed cell proliferation reduction in all tested cell lines. The IC50 values of LDL encapsulated thiosemicarbazone metal-ligand complexes treated with MCF7, A549, and C42 ranged between 1.18-6.61 µM, 1.17-9.66 µM, and 1.01-6.62 µM, respectively. Western blot analysis showed a potent decrease in tubulin expression when the cell lines were treated with LDL particles encapsulated with thiosemicarbazone metal-ligand complexes as anticancer agents. In conclusion, the data provide strong evidence that LDL particles are used as an active drug delivery strategy for cancer therapy.
Collapse
Affiliation(s)
- Laila Jaragh-Alhadad
- Department of Chemistry, Faculty of Science, Kuwait University, Kuwait, Safat, Kuwait
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Mayada Samir
- Department of Chemistry, Faculty of Science, Kuwait University, Kuwait, Safat, Kuwait
| | - Terri J. Harford
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Sadashiva Karnik
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
- Cleveland Clinic Learner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
40
|
Li J, Yuan M, Qiu T, Lu M, Zhan S, Bai Y, Yang M, Liu X, Zhang X. A glutathione-sensitive drug delivery system based on carboxymethyl chitosan co-deliver Rose Bengal and oxymatrine for combined cancer treatment. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:650-673. [PMID: 36272104 DOI: 10.1080/09205063.2022.2139977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
At present, monotherapy of tumor has not met the clinical needs, due to high doses, poor efficacy, and the emergence of drug resistance. Combination therapy can effectively solve these problems, which is a better option for tumor suppression. Based on this, we developed a novel glutathione-sensitive drug delivery nanoparticle system (OMT/CMCS-CYS-RB NPs) for oral cancer treatment. Briefly, carboxymethyl chitosan (CMCS) was used as a carrier to simultaneously load Rose Bengal (RB) and oxymatrine (OMT). The OMT/CMCS-CYS-RB NPs prepared by ion crosslinking were spheres with a stable structure. In addition, the nanoparticles can be excited in vitro to generate a large amount of singlet oxygen, which has a good photodynamic effect. In vitro anti-tumor activity study showed that the nanoparticles after the laser enhanced therapeutic efficacy on tumor cells compared with the free drug and exhibited well security. Furthermore, OMT/CMCS-CYS-RB NPs could inhibit the PI3K/AKT signaling pathway in oxidative stress, and realize tumor apoptosis through mitochondria-related pathways. In conclusion, this combination delivery system for delivering RB and OMT is a safe and effective strategy, which may provide a new avenue for the tumor treatment.
Collapse
Affiliation(s)
- Juncan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ming Yuan
- Wuhan Wuchang District Center for Disease Control and Prevention, Wuhan, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Mengli Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Siwen Zhan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yuting Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
41
|
Calixarenes as Host Molecules for Drug Carriers in the Cosmetic and Medical Field. Macromol Res 2022. [DOI: 10.1007/s13233-022-0094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Liposomes- A promising strategy for drug delivery in anticancer applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
43
|
Kiani Nejad Z, Akbar Khandar A, Khatamian M. Graphene quantum dots based MnFe 2O 4@SiO 2 magnetic nanostructure as a pH-sensitive fluorescence resonance energy transfer (FRET) system to enhance the anticancer effect of the drug. Int J Pharm 2022; 628:122254. [PMID: 36191812 DOI: 10.1016/j.ijpharm.2022.122254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022]
Abstract
Among the various methods of targeted drug delivery, magnetic nanoparticles been considered for a long time due to local drug delivery, reduction of side effects, and controlled drug release. In this work, fluorescence resonance energy transfer (FRET) system MnFe2O4@SiO2@ graphene quantum dots /DAU with 49.08 emu-1 magnetism was prepared as pH-sensitive nanoplatform to enhance the anti-cancer effect of daunorubicin (DAU) drug (in the obtained FRET system, DAU act as acceptor molecule and graphene quantum dots act as donor molecule). The efficiency of the drug loaded on the nanoplatform in vitro is 78%. DAU drug release from nanoplatform at pHs of 7.4 and 5.5 during 48 h is 21% and 60%, respectively. Release sensitive to pH facilitates the application of prepared nanoplatform for DAU delivery. The results of MTT-assay and annexin V-FITC/PI show that MnFe2O4@SiO2@ graphene quantum dots /DAU induces cell apoptosis by inhibiting the growth of more than 95% of MCF-7 cells. Also, according to the results, it was found that MnFe2O4@SiO2@ graphene quantum dots /DAU can inhibit 66.65% cell cycle in the sub-G1 phase. Therefore, due to the anti-cancer activity of MnFe2O4@SiO2@ graphene quantum dots /DAU, this biological nanoscale can be considered a candidate for drug delivery.
Collapse
Affiliation(s)
- Zahra Kiani Nejad
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-14766, Iran
| | - Ali Akbar Khandar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-14766, Iran.
| | - Massoumeh Khatamian
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-14766, Iran
| |
Collapse
|
44
|
Chang Q, Chang L, Li M, Fan L, Bao S, Wang X, Liu L. Nanobiotherapeutic strategies to target immune microenvironment of triple-negative breast cancer. Am J Cancer Res 2022; 12:4083-4102. [PMID: 36225648 PMCID: PMC9548023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the subtype with the least favourable outcomes in breast cancer. Besides chemotherapy, there is a chronic lack of other effective treatments. Advances in omic technologies have liberated us from the ambiguity of TNBC heterogeneity in terms of cancer cell and immune microenvironment in recent years. This new understanding of TNBC pathology has already led to the exploitation of novel nanoparticulate systems, including tumor vaccines, oncolytic viruses, and antibody derivatives. The revolutionary ideas in the therapeutic landscape provide new opportunities for TNBC patients. Translating these experimental medicines into clinical benefit is both appreciated and challenging. In this review, we describe the prospective nanobiotherapy of TNBC that has been developed to overcome clinical obstacles, and provide our vision for this booming field at the overlap of cancer biotherapy and nanomaterial design.
Collapse
Affiliation(s)
- Qing Chang
- Department of Radiotherapy, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
- Jilin Provincial Key Laboratory of Early Screening and Health Management for Cancer, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
- Biotechnology and Medical Materials Engineering Research Center of Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
| | - Liang Chang
- Xi’an Technological UniversityXi’an, Shanxi, China
| | - Mo Li
- The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Liwen Fan
- Department of Radiotherapy, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
| | - Shunchao Bao
- Department of Radiotherapy, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
| | - Xinyu Wang
- The Second Hospital of Jilin UniversityChangchun, Jilin, China
| | - Linlin Liu
- Department of Radiotherapy, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
- Jilin Provincial Key Laboratory of Early Screening and Health Management for Cancer, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
- Biotechnology and Medical Materials Engineering Research Center of Jilin Province, China-Japan Union Hospital of Jilin UniversityChangchun, Jilin, China
| |
Collapse
|
45
|
The Current State of the Art in PARP Inhibitor-Based Delivery Nanosystems. Pharmaceutics 2022; 14:pharmaceutics14081647. [PMID: 36015275 PMCID: PMC9413625 DOI: 10.3390/pharmaceutics14081647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Poly (adenosine diphosphate [ADP]–ribose) polymerases inhibitors (PARPi), the first clinically approved drug that exhibits synthetic lethality, are moving to the forefront of cancer treatments. Currently, the oral bioavailability of PARPi is quite low; thus, it is a major challenge to effectively and safely deliver PARPi during clinical cancer therapy. Nanotechnology has greatly advanced the development of drug delivery. Based on the basic characteristics and various forms of nanoparticles, drug delivery systems can prolong the time that drugs circulate, realize the controlled release of drugs, provide drugs with an active targeting ability, and spatiotemporally present combination treatment. Furthermore, nanosystems may not only enhance drug efficiency but also reduce adverse side effects. This review focuses on strategies involving nanoparticle-based delivery for PARPi, including single administration and codelivery with other agents. We believe that nanosystems have great potential in advancing PARPi efficacy for cancer therapy.
Collapse
|
46
|
Pham DT, Nguyen LP, Pham QTH, Pham CK, Pham DTN, Viet NT, Nguyen HVT, Tran TQ, Nguyen DT. A low-cost, flexible extruder for liposomes synthesis and application for Murrayafoline A delivery for cancer treatment. J Biomater Appl 2022; 37:872-880. [PMID: 35786069 DOI: 10.1177/08853282221112491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liposomal encapsulation is a drug delivery strategy with many advantages, such as improved bioavailability, ability to carry large drug loads, as well as controllability and specificity towards various targeted diseased tissues. Currently, most preparation techniques require an additional extrusion or filtering step to obtain monodisperse liposomes with the size of less than 100 nm. In this study, a compact liposome extruder was designed at a cost of $4.00 and used to synthesize liposome suspensions with defined particle size and high homogeneity for Murrayafoline A (Mu-A) loading and release. The synthesized MuA-loaded liposomes displayed a biphasic drug release and remained stable under the storage condition of 4°C. They also significantly reduced the viability of HepG2 cells in the cancer spheroids by 25%. The low-cost, flexible liposome extruder would allow the researchers to study liposomes and their applications in a cost-effective manner.
Collapse
Affiliation(s)
- Dan The Pham
- 61797Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | | | | | - Chi Khanh Pham
- 61797Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Dung Thuy Nguyen Pham
- Institute of Applied Technology and Sustainable Development, 384731Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Nguyen Thanh Viet
- Institute of Applied Technology and Sustainable Development, 384731Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | | | - Toan Quoc Tran
- 61797Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | | |
Collapse
|
47
|
Zeng Y, Qiu Y, Jiang W, Shen J, Yao X, He X, Li L, Fu B, Liu X. Biological Features of Extracellular Vesicles and Challenges. Front Cell Dev Biol 2022; 10:816698. [PMID: 35813192 PMCID: PMC9263222 DOI: 10.3389/fcell.2022.816698] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicles with a lipid bilayer membrane on the outside, which are widely found in various body fluids and contain biological macromolecules such as DNA, RNA, lipids and proteins on the inside. EVs were once thought to be vesicles for the removal of waste materials, but are now known to be involved in a variety of pathophysiological processes in many diseases. This study examines the advantage of EVs and the challenges associated with their application. A more rational use of the advantageous properties of EVs such as composition specificity, specific targeting, circulatory stability, active penetration of biological barriers, high efficient drug delivery vehicles and anticancer vaccines, oxidative phosphorylation activity and enzymatic activity, and the resolution of shortcomings such as isolation and purification methods, storage conditions and pharmacokinetics and biodistribution patterns during drug delivery will facilitate the clinical application of EVs.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bingmei Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, United States
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Ye Zeng, ; Xiaoheng Liu,
| |
Collapse
|
48
|
Vascular bursts-mediated tumor accumulation and deep penetration of spherical nucleic acids for synergistic radio-immunotherapy. JOURNAL OF CONTROLLED RELEASE : OFFICIAL JOURNAL OF THE CONTROLLED RELEASE SOCIETY 2022; 348:1050-1065. [PMID: 35750133 DOI: 10.1016/j.jconrel.2022.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022]
Abstract
While nanomedicines have attracted great interests for tumor therapy, their targeting and intra-tumoral penetrating efficiencies have been questioned. Here, we report a two-step low-dose radiotherapy (RT) strategy to realize significant accumulation and deep penetration of spherical nucleic acids (SNAs)-based nanomedicine for synergistic radio-immunotherapy. The first step RT was employed to recruit large amounts of macrophages into tumor. The tumor infiltrated macrophages not only served as nanoparticles drug depots, but also elicited dynamic bursts extravasation to enhance nanoparticles accumulation. We optimized the spatiotemporal combination of RT and SNAs administration for higher level of SNAs delivery, and the delivered SNAs promote M2-to-M1 phenotype switch of macrophages to increase phagocytosis of nanoparticles by 6-fold, resulting in positive feedback with even higher accumulation and intra-tumor penetration of SNAs. Through vascular bursts and macrophage repolarization, as high as 25-fold enhancement of nanoparticles accumulation was achieved as compared to passive targeting of nanoparticles, and the nanoparticles were eventually distributed throughout the tumor tissue with efficient deep penetration. Finally, SNAs in tumor simultaneously sensitized the second dose of RT and remodeled tumor immune microenvironment, resulting in a synergistic anticancer therapy in combination of anti-PD-L1 antibody (αPD-L1) with no noticeable side effects caused by either RT or αPD-L1.
Collapse
|
49
|
A comprehensive insight into the antineoplastic activities and molecular mechanisms of deoxypodophyllotoxin: Recent trends, challenges, and future outlook. Eur J Pharmacol 2022; 928:175089. [PMID: 35688183 DOI: 10.1016/j.ejphar.2022.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Lignans constitute an important group of polyphenols, which have been demonstrated to potently suppress cancer cell proliferation. Numerous in vitro and in vivo studies indicate that deoxypodophyllotoxin as a natural lignan possesses potent anticancer activities against various types of human cancer. The purpose of current review is to provide the reader with the latest findings in understanding the anticancer effects and molecular mechanisms of deoxypodophyllotoxin. This review comprehensively describes the influence of deoxypodophyllotoxin on signaling cascades and molecular targets implicated in cancer cell proliferation and invasion. A number of various signaling molecules and pathways, including apoptosis, necroptosis, cell cycle, angiogenesis, vascular disruption, ROS, MMPs, glycolysis, and microtubules as well as NF-κB, PI3K/Akt/mTOR, and MAPK cascades have been reported to be responsible for the anticancer activities of deoxypodophyllotoxin. The results of present review suggest that the cyclolignan deoxypodophyllotoxin can be developed as a novel and potent anticancer agent, especially as an alternative option for treatment of resistant tumors to chemotherapy.
Collapse
|
50
|
Eras A, Castillo D, Suárez M, Vispo NS, Albericio F, Rodriguez H. Chemical Conjugation in Drug Delivery Systems. Front Chem 2022; 10:889083. [PMID: 35720996 PMCID: PMC9204480 DOI: 10.3389/fchem.2022.889083] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is one of the diseases with the highest mortality rate. Treatments to mitigate cancer are usually so intense and invasive that they weaken the patient to cure as dangerous as the own disease. From some time ago until today, to reduce resistance generated by the constant administration of the drug and improve its pharmacokinetics, scientists have been developing drug delivery system (DDS) technology. DDS platforms aim to maximize the drugs’ effectiveness by directing them to reach the affected area by the disease and, therefore, reduce the potential side effects. Erythrocytes, antibodies, and nanoparticles have been used as carriers. Eleven antibody–drug conjugates (ADCs) involving covalent linkage has been commercialized as a promising cancer treatment in the last years. This review describes the general features and applications of DDS focused on the covalent conjugation system that binds the antibody carrier to the cytotoxic drug.
Collapse
Affiliation(s)
- Alexis Eras
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Danna Castillo
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Margarita Suárez
- Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, La Habana, Cuba
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| | - Fernando Albericio
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
- CIBER-BBN, Networking Centre of Bioengineering, Biomaterials, and Nanomedicine and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| | - Hortensia Rodriguez
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| |
Collapse
|