1
|
Eslami A, Hajizadeh Moghaddam A, Khanjani Jelodar S, Ranjbar M. Quercetin-loaded nanophytosome ameliorates early life stress-induced hippocampal oxido-inflammatory damages. IBRO Neurosci Rep 2025; 18:491-497. [PMID: 40177702 PMCID: PMC11964764 DOI: 10.1016/j.ibneur.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Phytosome-based nanocarriers have emerged as innovative drug delivery systems in recent years, demonstrating significant potential in the treatment of neurodegenerative disorders. This study aimed to evaluate the therapeutic efficacy of quercetin-loaded nanophytosome (QNP) in modulating the oxido-inflammatory response in a rat model of early life stress (ELS) induced by maternal isolation (MI). To establish the ELS model, male rat pups were isolated from their dam for 3 hours daily from postnatal days 1-9. Following the lactation period (postpartum days 1-21), treatments with quercetin (10 and 40 mg/kg) and QNP (10 and 40 mg/kg) were administered continuously for 21 days. Cognitive behaviors, oxidative stress markers, hippocampal dopamine levels, and mRNA expression of TNF-α and IL-6 were assessed after ELS induction. Treatment with QNP (40 mg/kg) significantly improved cognitive function (P < 0.01), increased hippocampal dopamine levels (P < 0.001), and reduced oxidative stress (P < 0.01) as well as the expression of TNF-α (P < 0.001) and IL-6 (P < 0.001). In conclusion, QNP demonstrates potent hippocampal anti-oxidoinflammatory effects, making it a promising therapeutic candidate for mitigating the adverse effects of maternal isolation-induced early life stress.
Collapse
Affiliation(s)
- Ali Eslami
- Department of Animal Sciences, Faculty of Sciences, University of Mazandaran, Babolsar, Iran
| | | | | | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
2
|
Chaudhary K, Singh L, Rai PD. Innovative nanocarriers in arthritis therapy: the role of herbal cubosomes. Inflammopharmacology 2025; 33:1833-1860. [PMID: 40122993 DOI: 10.1007/s10787-025-01714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Both osteoarthritis (OA) and rheumatoid arthritis (RA) are long-lasting inflammatory disorders that impact the joints. While conventional treatments like NSAIDs and DMARDs are effective, they often have adverse side effects. OBJECTIVE The aim of this review is to explore the possibilities of using herbal treatments in treating the symptoms of arthritis, their stability and bioavailability. Traditional therapies often lead to adverse side effects, prompting a search for safer alternatives, particularly in herbal medicines. This review explores the innovative use of herbal cubosomes as advanced nanocarriers for arthritis therapy. Cubosomes, a type of self-assembled lipid nanoparticle, exhibit unique structural characteristics that enhance the delivery and bioavailability of encapsulated herbal compounds. METHOD Access was gained to PubMed, Scopus database, Google Scholar and Web of Science for the literature search. The results were later screened according to the titles, abstracts, and availability of full texts. RESULTS The expository evaluation of the literature revealed that Key herbal components, such as Withania somnifera (Ashwagandha), Curcuma longa (Turmeric) and Boswellia serrata (Frankincense) are emphasized for their anti-inflammatory characteristics and possible advantages in managing arthritis. The herbal cubosomes enhance drug absorption, retention, and release kinetics in arthritic conditions. The difficulties in delivering and maintaining herbal substances are also discussed, with a focus on how nanotechnology can help get over these obstacles. CONCLUSION Overall, the integration of herbal cubosomes in arthritis therapy presents a promising approach that could result in safer and more efficient treatment alternatives, warranting further research and clinical exploration.
Collapse
Affiliation(s)
- Kajal Chaudhary
- Research Scholar, Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, 250005, India.
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, 250005, India
| | - Pallavi Dinanath Rai
- Department of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Uttar Pradesh, 201310, India
| |
Collapse
|
3
|
Siddiqui SN, Haider MF, Rahman MA. Innovative approaches in breast cancer therapy: repurposing nanocarriers for enhanced outcomes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04012-2. [PMID: 40167629 DOI: 10.1007/s00210-025-04012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Breast cancer is one of the most prevalent cancers globally, affecting over 685,000 women annually. While traditional treatment modalities such as surgery, chemotherapy, and radiation therapy have contributing to improved survival rates; however, they are often plagued by limitations such as systemic toxicity, lack of targeted therapy, development of resistance, and collateral damage to healthy tissues. While targeted therapies and endocrine treatment have provided more personalized approaches, challenges like side effects and limited effectiveness in specific subtypes remain. Nanotechnology offers new avenues for addressing these challenges, particularly through the development of advanced nanocarrier systems. Nanocarrier systems are designed to enhance drug targeting, improve bioavailability, reduce side effects, and combat drug resistance. These advanced delivery systems facilitate controlled release, higher drug concentration at target sites, and the potential for combination therapies, thus improving treatment outcomes. Breast cancer clinical trials assess treatment effectiveness, providing critical insights through their statuses and outcomes. The aim of this study is to explore the potential of nanocarrier systems in overcoming the limitation of traditional therapy, enhancing the effectiveness of drug delivery, and enhancing overall treatment outcomes for breast cancer treatment.
Collapse
Affiliation(s)
| | - Md Faheem Haider
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Md Azizur Rahman
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
4
|
Mardiana L, Milanda T, Hadisaputri YE, Chaerunisaa AY. Phytosome-Enhanced Secondary Metabolites for Improved Anticancer Efficacy: Mechanisms and Bioavailability Review. Drug Des Devel Ther 2025; 19:201-218. [PMID: 39816849 PMCID: PMC11734513 DOI: 10.2147/dddt.s483404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/24/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Phytosome technology, an advanced lipid-based delivery system, offers a promising solution for enhancing the bioavailability and therapeutic efficacy of secondary metabolites, particularly in cancer treatment. These metabolites, such as flavonoids, terpenoids, and alkaloids, possess significant anticancer potential but are often limited by poor solubility and low absorption. This review aims to investigate how phytosome encapsulation improves the pharmacokinetic profiles and anticancer effectiveness of these bioactive compounds. Patients and Methods This comprehensive review is based on an analysis of recent literature retrieved from PubMed, Scopus, and ScienceDirect databases. It focuses on findings from preclinical and in vitro studies that examine the pharmacokinetic enhancements provided by phytosome technology when applied to secondary metabolites. Results Phytosome-encapsulated secondary metabolites exhibit significantly improved solubility, absorption, distribution, and cellular uptake compared to non-encapsulated forms. This enhanced bioavailability facilitates more effective inhibition of cancer pathways, including NF-κB and PI3K/AKT, leading to increased anticancer efficacy in preclinical models. Conclusion Phytosome technology has demonstrated its potential to overcome bioavailability challenges, resulting in safer and more effective therapeutic options for cancer treatment. This review highlights the potential of phytosome-based formulations as a novel approach to anticancer therapy, supporting further development in preclinical, in vitro, and potential clinical applications.
Collapse
Affiliation(s)
- Lia Mardiana
- Doctoral Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Islam Kalimantan Muhammad Arsyad Al-Banjari, Banjarmasin, 70123, Indonesia
| | - Tiana Milanda
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Yuni Elsa Hadisaputri
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
5
|
Sindhi K, Kanugo A. Recent Developments in Nanotechnology and Immunotherapy for the Diagnosis and Treatment of Pancreatic Cancer. Curr Pharm Biotechnol 2025; 26:143-168. [PMID: 38415488 DOI: 10.2174/0113892010284407240212110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/29/2024]
Abstract
Pancreatic cancer kills millions of people worldwide each year and is one of the most prevalent causes of mortality that requires prompt therapy. A large number of people suffering from pancreatic cancer are detected at an advanced stage, with incurable and drug-resistant tumor, hence the overall survival rate of pancreatic cancer is less. The advance phase of this cancer is generated because of expression of the cancer-causing gene, inactivation of the tumorsuppressing gene, and deregulation of molecules in different cellular signalling pathways. The prompt diagnosis through the biomarkers significantly evades the progress and accelerates the survival rates. The overexpression of Mesothelin, Urokinase plasminogen activator, IGFR, Epidermal growth factor receptor, Plectin-1, Mucin-1 and Zinc transporter 4 were recognized in the diagnosis of pancreatic cancer. Nanotechnology has led to the development of nanocarriersbased formulations (lipid, polymer, inorganic, carbon based and advanced nanocarriers) which overcome the hurdles of conventional therapy, chemotherapy and radiotherapy which causes toxicity to adjacent healthy tissues. The biocompatibility, toxicity and large-scale manufacturing are the hurdles associated with the nanocarriers-based approaches. Currently, Immunotherapybased techniques emerged as an efficient therapeutic alternative for the prevention of cancer. Immunological checkpoint targeting techniques have demonstrated significant efficacy in human cancers. Recent advancements in checkpoint inhibitors, adoptive T cell therapies, and cancer vaccines have shown potential in overcoming the immune evasion mechanisms of pancreatic cancer cells. Combining these immunotherapeutic approaches with nanocarriers holds great promise in enhancing the antitumor response and improving patient survival.
Collapse
Affiliation(s)
- Komal Sindhi
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, 425405, India
| | - Abhishek Kanugo
- Department of Pharmaceutics, SVKM NMIMS School of Pharmacy and Technology Management, Shirpur, 425405, India
- Department of Pharmaceutical Quality Assurance, SVKM Institute of Pharmacy, Dhule, 424001, India
| |
Collapse
|
6
|
Dereiah S, Ghori MU, Conway BR. A Systematic Review of Spironolactone Nano-Formulations for Topical Treatment of Skin Hyperandrogenic Disorders and Chronic Wounds. Pharmaceutics 2024; 17:27. [PMID: 39861676 PMCID: PMC11768432 DOI: 10.3390/pharmaceutics17010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP's low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs). Methods: A search strategy was developed, and the relevant literature was systematically searched using databases such as Scopus, PubMed, and Google Scholar. The review process, including screening, inclusion, and exclusion criteria, adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A comprehensive analysis of 13 eligible research articles, corresponding to 15 studies, highlights key aspects such as encapsulation efficiency, stability, particle size, and in vitro and in vivo efficacy. Six studies focused on lipid nanoparticles (LNPs), including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), which were found to improve SP's bioavailability and skin permeation. Another six studies investigated vesicular nanoparticles (VNPs), such as ethosomes and niosomes, demonstrating superior skin targeting and penetration capabilities. Two studies on polymeric nanoparticles (PNPs) showed effectiveness in delivering SP to hair follicles for the treatment of alopecia and acne. Additionally, one study on SP-loaded nanofibers indicated significant potential for topical rosacea therapy. Conclusions: SP-loaded nanocarrier systems represent promising advancements in targeted topical therapy. However, further clinical studies are required to optimize their safety, efficacy, and delivery mechanisms.
Collapse
Affiliation(s)
- Saedah Dereiah
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK; (S.D.); (M.U.G.)
| | - Muhammad Usman Ghori
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK; (S.D.); (M.U.G.)
| | - Barbara R. Conway
- Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK; (S.D.); (M.U.G.)
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield HD1 3DH, UK
| |
Collapse
|
7
|
Kumar G, Virmani T, Chhabra V, Virmani R, Pathak K, Akhtar MS, Hussain Asim M, Arshad S, Siddique F, Fonte P. Transforming cancer treatment: The potential of nanonutraceuticals. Int J Pharm 2024; 667:124919. [PMID: 39515676 DOI: 10.1016/j.ijpharm.2024.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Chemotherapy in the management of cancer is constrained by limitations like off-target effects, poor bioavailability, and dose-dependent toxicity. Nutraceuticals have been explored as an innovative strategy to overcome chemotherapy drawbacks.However, the clinical utility of nutraceuticals is restricted due to their complex structures, less water solubility, reduced stability, decreased bioavailability and more obstacles in the gastrointestinal tract. Nanonutraceuticals are nanosized nutraceutical particles having enhanced solubility, improved bioavailability, stability, and targeted delivery to specific cells. Nutraceuticals can be co-delivered with other chemotherapeutic drugs in nanocarriers to elicit synergistic effects. The targeting of nutraceuticals against cancer cells can be enabled by coupling ligands with the nanocarriers, which direct to the overexpressed receptors found at the surface of the cancer cells. Transitioning a nanonutraceutical from pre-clinical research to clinical trials is a pivotal step. This focus on advancing their application holds great potential for impacting clinical research and improving the treatment landscape for cancer patients. This review focuses on the role of nutraceuticals for cancer treatment, various nanocarriers for the efficient delivery of nutraceuticals along with co-administration of nutraceuticals with chemotherapeutic drugs using nanocarriers. Also, emphasize the targeting of ligands coupled nanocarriers to the cancer cells along with patents and clinical trials for nanonutraceuticals.
Collapse
Affiliation(s)
- Girish Kumar
- Amity Institute of Pharmacy, Amity University Greater Noida, Uttar Pradesh 201308, India
| | - Tarun Virmani
- Amity Institute of Pharmacy, Amity University Greater Noida, Uttar Pradesh 201308, India.
| | - Vaishnavi Chhabra
- National Institute of Pharmaceutical Education & Research, Mohali, Punjab 160062, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah, Uttar Pradesh 206001, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | | | - Shumaila Arshad
- Doctor's Institute of Health Sciences, 3-Km Sargodha Bypass Road, Sargodha 40100, Pakistan
| | - Farzana Siddique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Pedro Fonte
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Faro 8005-139, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, Faro 8005-139, Portugal; iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
| |
Collapse
|
8
|
Karnam S, Jindal AB, Paul AT. Quality by design-based optimization of teriflunomide and quercetin combinational topical transferosomes for the treatment of rheumatoid arthritis. Int J Pharm 2024; 666:124829. [PMID: 39406305 DOI: 10.1016/j.ijpharm.2024.124829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease. Combination therapy is anticipated to surpass monotherapy by targeting multiple pathways involved in RA progression. The present aim is to develop a combination of Teriflunomide (TFD) and Quercetin (QCN) loaded transferosomal gel to enhance permeability and achieve localized delivery to joint tissues. TFD or QCN transferosomes were optimized employing a 3-level, 3-factorial design Box-Behnken design (BBD). The transferosomes exhibited sustained in-vitro drug release. The topical combination gel underwent thorough evaluation of rheology, and also ex-vivo studies showed enhanced permeability through rat skin. The synergistic combination of TFD and QCN effectively suppressed NO, TNF-α and IL-6 levels in in-vitro RAW 264.7 cells. The cytotoxicity in HaCaT cell lines indicates non-toxicity of the gel, further confirmed by skin irritation study conducted in rats. The in-vivo anti-arthritic activity was evaluated in complete freund's adjuvant induced rat paw edema model illustrates the effectiveness of the combination transferosomal gel compared to other treatment groups. In conclusion, the topical delivery of TFD and QCN combination transferosomal gel demonstrated anti-arthritic activity through localized delivery whichallows for dose reduction, thereby may reduce the systemic drug exposure and mitigate the side effects associated with oral administration of TFD.
Collapse
Affiliation(s)
- Sriravali Karnam
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Pilani Campus, Rajasthan 333031, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Pilani Campus, Rajasthan 333031, India
| | - Atish T Paul
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
9
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Raouf N, Darwish ZE, Ramadan O, Barakat HS, Elbanna SA, Essawy MM. The anticancer potential of tetrahydrocurcumin-phytosomes against oral carcinoma progression. BMC Oral Health 2024; 24:1126. [PMID: 39327561 PMCID: PMC11430579 DOI: 10.1186/s12903-024-04856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Herbal medicine combined with nanotechnology offers an alternative to the increasing burden of surgery and/or chemotherapy, the main therapeutics of oral carcinoma. Phytosomes are nano-vesicular systems formed by the interaction between phospholipids and phyto-active components via hydrogen bonding, exhibiting superior efficacy over pure phytocomponents in drug delivery. METHODS Tetrahydrocurcumin (THC)-phytosomes were prepared by thin film hydration method. After characterization, in vitro cytotoxicity, antiproliferative capacity, antioxidant potential and full apoptotic workup were paneled on oral squamous cell carcinoma (SCC4) in comparison with native THC-solution and cisplatin (3.58 µg/mL intravenous injection), as positive controls. In addition, we tested the three medications on normal oral keratinocytes and gingival fibroblasts to attest to their tissue-selectivity. RESULTS Successful preparation of THC-phytosomes using 1:1 molar ratio of THC to phospholipid exhibited significantly increased aqueous solubility, good colloidal properties, and complete drug release after one hour. On SCC4 cells, THC-phytosomes, at their dose-/time-dependency at ~ 60.06 µg/mL escalated cell percentages in the S-phase with 32.5 ± 6.22% increase, as well as a startling 29.69 ± 2.3% increase in apoptotic population. Depletion of the cell colonies survival to 0.29 ± 0.1% together with restraining the migratory rate by -6.4 ± 6.8% validated THC-phytosomes' antiproliferative capacity. Comparatively, the corresponding results of THC-solution and cisplatin revealed 12.9 ± 0.9% and 25.8 ± 1.1% for apoptosis and 0.9 ± 0.1% and 0.7 ± 0.08% for colony survival fraction, respectively. Furthermore, the nanoformulation exhibited the strongest immuno-positivity to caspase-3, which positively correlated with intense mitochondrial fluorescence by Mitotracker Red, suggesting its implication in the mitochondrial pathway of apoptosis, a finding further explained by the enormously high Bax and caspase-8 expression by RT-qPCR. Finally, the THC groups showed the lowest oxidative stress index, marking their highest free radical-scavenging potential among the test groups. CONCLUSIONS THC-phytosomes are depicted to be an efficient nanoformulation that enhanced the anticancer efficacy over the free drug counterpart and the conventional chemotherapeutic. Additionally, being selective to cancer cells and less cytotoxic to normal cells makes THC-phytosomes a potential candidate for tissue-targeted therapy.
Collapse
Affiliation(s)
- Nehal Raouf
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt.
| | - Zeinab Elsayed Darwish
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt
| | - Omneya Ramadan
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt
| | - Hebatallah S Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Shimaa A Elbanna
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Champollion Street, Elazarita, Alexandria, 21563, Egypt.
- Center of Excellence for Research in Regenerative Medicine and its Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
11
|
Jenča A, Mills DK, Ghasemi H, Saberian E, Jenča A, Karimi Forood AM, Petrášová A, Jenčová J, Jabbari Velisdeh Z, Zare-Zardini H, Ebrahimifar M. Herbal Therapies for Cancer Treatment: A Review of Phytotherapeutic Efficacy. Biologics 2024; 18:229-255. [PMID: 39281032 PMCID: PMC11401522 DOI: 10.2147/btt.s484068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/18/2024]
Abstract
Natural products have proven to be promising anti-cancer agents due to their diverse chemical structures and bioactivity. This review examines their central role in cancer treatment, focusing on their mechanisms of action and therapeutic benefits. Medicinal plants contain bioactive compounds, such as flavonoids, alkaloids, terpenoids and polyphenols, which exhibit various anticancer properties. These compounds induce apoptosis, inhibit cell proliferation and cell cycle progression, interfere with microtubule formation, act on topoisomerase targets, inhibit angiogenesis, modulate key signaling pathways, improve the tumor microenvironment, reverse drug resistance and activate immune cells. Herbal anti-cancer drugs offer therapeutic advantages, particularly selective toxicity against cancer cells, reducing the adverse side effects associated with conventional chemotherapy. Recent studies and clinical trials highlight the benefits of herbal medicines in alleviating side effects, improving tolerance to chemotherapy and the occurrence of synergistic effects with conventional treatments. For example, the herbal medicine SH003 was found to be safe and potentially effective in the treatment of solid cancers, while Fucoidan showed anti-inflammatory properties that are beneficial for patients with advanced cancer. The current research landscape on herbal anticancer agents is extensive. Numerous studies and clinical trials are investigating their efficacy, safety and mechanisms of action in various cancers such as lung, prostate, breast and hepatocellular carcinoma. Promising developments include the polypharmacological approach, combination therapies, immunomodulation and the improvement of quality of life. However, there are still challenges in the development and use of natural products as anti-cancer drugs, such as the need for further research into their mechanisms of action, possible drug interactions and optimal dosage. Standardizing herbal extracts, improving bioavailability and delivery, and overcoming regulatory and acceptance hurdles are critical issues that need to be addressed. Nonetheless, the promising anticancer effects and therapeutic benefits of natural products warrant further investigation and development. Multidisciplinary collaboration is essential to advance herbal cancer therapy and integrate these agents into mainstream cancer treatment.
Collapse
Affiliation(s)
- Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - David K Mills
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadis Ghasemi
- Department of Chemistry, College of Art and Science, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Elham Saberian
- Pavol Jozef Šafárik University, Klinika and Akadémia Košice Bacikova, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | | | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Zeinab Jabbari Velisdeh
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza
| |
Collapse
|
12
|
Yu CY, Cong YJ, Wei JX, Guo BL, Liu CY, Liao YH. Pulmonary delivery of icariin-phospholipid complex prolongs lung retention and improves therapeutic efficacy in mice with acute lung injury/ARDS. Colloids Surf B Biointerfaces 2024; 241:113989. [PMID: 38838444 DOI: 10.1016/j.colsurfb.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Icariin has been shown the promising therapeutic potential to treat inflammatory airway diseases, yet its poor lung distribution and retention restrict the clinical applications. To this end, this work aimed to prepare an icariin-phospholipid complex (IPC) formulation for sustained nebulization delivery that enabled excellent inhalability, improved lung exposure and prolonged duration of action. Icariin was found to react with soybean phospholipid to form supramolecular IPC, which was able to self-assemble into nanoparticle suspension. The suspension was stable during steam sterilization and nebulization processes, and its aerosols generated by a commercial nebulizer exhibited excellent aerodynamic properties and delivery efficiency. In vitro studies showed that the formation of complex sustained drug release, enhanced lung affinity and slowed lung clearance. The drug distribution in lung epithelial lining fluid (ELF) also demonstrated in vivo sustained release after intratracheal administration to mice. In addition, compared to free icariin, IPC improved the drug exposure to lung tissues and immune cells in the ELF by 4.61-fold and 39.5-fold, respectively. This resulted in improved and prolonged local anti-inflammatory effects up to 24 h in mice with lipopolysaccharide (LPS)-induced acute lung injury. Moreover, IPC improved survival rate of mice with acute respiratory distress syndrome (ARDS). Overall, the present phospholipid complex represented a promising formulation of icariin for the treatment of acute lung injury/ARDS by nebulization delivery.
Collapse
Affiliation(s)
- Chen-Yang Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yi-Jun Cong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Jia-Xing Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Bao-Lin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Chun-Yu Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Yong-Hong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
13
|
Shukla B, Kushwaha P, Saxena S, Gupta A, Panjwani D, Kumar S. Development and efficacy assessment of polyherbal phytosomal gel for accelerated wound healing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1684-1705. [PMID: 38700423 DOI: 10.1080/09205063.2024.2346400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Curcuma longa L. and Plumbago zeylanica L. are renowned for their antioxidant, anti-inflammatory, and wound-healing properties, primarily attributed to their polyphenolic compounds. However, the limited water solubility of these compounds poses challenges to their effective utilization. Encapsulation within phytosomes offers a solution by enhancing bioavailability and permeability. This study aimed to formulate a phytosome-based polyherbal gel incorporating methanolic extracts of P. zeylanica and C. longa to explore its potential in wound healing. Methanolic extracts of P. zeylanica roots and C. longa rhizomes were encapsulated in phytosomes using the lipid film hydration technique. Various phytosome formulations were developed and characterized for encapsulation efficiency, particle size, polydispersity index and zeta potential. The optimized phytosomal dispersion (F7) was integrated into a carbopol-based hydrogel matrix. In vitro release studies demonstrated prolonged release compared to conventional forms. Stability testing confirmed the robustness of the phytosomal gel at 4 °C/60 ± 5% RH. Wound healing activity was assessed using an excision wound model. The phytosomal gel exhibited enhanced wound contraction and reduced epithelization time compared to conventional gel and control groups, signifying its potent wound-healing effect. In conclusion, the polyherbal phytosomal gel, incorporating P. zeylanica and C. longa, holds promise in promoting wound healing, presenting a novel and effective approach in the realm of topical formulations for wound care.
Collapse
Affiliation(s)
- Babita Shukla
- Faculty of Pharmacy, Integral University, Lucknow, India
- Harsha Institute of Pharmacy, Lucknow, India
| | | | | | - Avani Gupta
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| | | | - Sanjay Kumar
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
14
|
P K, R K. Phytosome Technology: A Novel Breakthrough for the Health Challenges. Cureus 2024; 16:e68180. [PMID: 39347133 PMCID: PMC11439478 DOI: 10.7759/cureus.68180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Phytochemicals are compounds found in plants that have various biological activities and health benefits. Although phytochemicals have diverse therapeutic applications, they confront several challenges, such as poor solubility, instability, and low bioavailability. Phytosomes are used to overcome those challenges. The phytosome is a complex of phytochemicals and phospholipids that transports the drug to the target site, thereby increasing phytochemical absorption and bioavailability. The present study focuses on phytosome preparation methods and evaluation parameters, as well as the role of phytosomes in various ailments such as COVID-19, pulmonary fibrosis, asthma, migraine, arthritis, obesity, neuroprotective, antioxidant, anti-inflammatory, cancer, diabetes, metabolic syndrome, hyperlipidemic, and antimicrobial, which demonstrates phytosome complexes are more potent when compared to free extracts. Due to poor absorption and metabolism, phytoconstituents may not be effective in their free form. Phytosomes make phytoconstituents more bioavailable, stable, and effective. It also discusses recent formulations of phytosomes that can act as an effective or alternative regimen for various health conditions.
Collapse
Affiliation(s)
- Kalaivani P
- Pharmacy, Sri Ramasamy Memorial College of Pharmacy, Chennai, IND
| | - Kamaraj R
- Pharmacy, Sri Ramasamy Memorial Institute Of Science And Technology, Chennai, IND
| |
Collapse
|
15
|
Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:385-398. [PMID: 38693014 DOI: 10.1016/j.joim.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Phytosomes (phytophospholipid complex) are dosage forms that have recently been introduced to increase the stability and therapeutic effect of herbal medicine. Currently, bioactive herbs and the phytochemicals they contain are considered to be the best remedies for chronic diseases. One promising approach to increase the efficacy of plant-based therapies is to improve the stability and bioavailability of their bio-active ingredients. Phytosomes employ phospholipids as their active ingredients, and use their amphiphilic properties to solubilize and protect herbal extracts. The unique properties of phospholipids in drug delivery and their use in herbal medicines to improve bioavailability results in significantly enhanced health benefits. The introduction of phytosome nanotechnology can alter and revolutionize the current state of drug delivery. The goal of this review is to explain the application of phytosomes, their future prospects in drug delivery, and their advantages over conventional formulations. Please cite this article as: Chauhan D, Yadav PK, Sultana N, Agarwal A, Verma S, Chourasia MK, Gayen JR. Advancements in nanotechnology for the delivery of phytochemicals. J Integr Med. 2024; 22(4): 385-398.
Collapse
Affiliation(s)
- Divya Chauhan
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India
| | - Arun Agarwal
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Saurabh Verma
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226031, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
16
|
Jamtsho T, Loukas A, Wangchuk P. Pharmaceutical Potential of Remedial Plants and Helminths for Treating Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:819. [PMID: 39065669 PMCID: PMC11279646 DOI: 10.3390/ph17070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Research is increasingly revealing that inflammation significantly contributes to various diseases, particularly inflammatory bowel disease (IBD). IBD is a major medical challenge due to its chronic nature, affecting at least one in a thousand individuals in many Western countries, with rising incidence in developing nations. Historically, indigenous people have used natural products to treat ailments, including IBD. Ethnobotanically guided studies have shown that plant-derived extracts and compounds effectively modulate immune responses and reduce inflammation. Similarly, helminths and their products offer unique mechanisms to modulate host immunity and alleviate inflammatory responses. This review explored the pharmaceutical potential of Aboriginal remedial plants and helminths for treating IBD, emphasizing recent advances in discovering anti-inflammatory small-molecule drug leads. The literature from Scopus, MEDLINE Ovid, PubMed, Google Scholar, and Web of Science was retrieved using keywords such as natural product, small molecule, cytokines, remedial plants, and helminths. This review identified 55 important Aboriginal medicinal plants and 9 helminth species that have been studied for their anti-inflammatory properties using animal models and in vitro cell assays. For example, curcumin, berberine, and triptolide, which have been isolated from plants; and the excretory-secretory products and their protein, which have been collected from helminths, have demonstrated anti-inflammatory activity with lower toxicity and fewer side effects. High-throughput screening, molecular docking, artificial intelligence, and machine learning have been engaged in compound identification, while clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and RNA sequencing have been employed to understand molecular interactions and regulations. While there is potential for pharmaceutical application of Aboriginal medicinal plants and gastrointestinal parasites in treating IBD, there is an urgent need to qualify these plant and helminth therapies through reproducible clinical and mechanistic studies.
Collapse
Affiliation(s)
- Tenzin Jamtsho
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| | - Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns Campus, James Cook University, Cairns, QLD 4878, Australia;
| |
Collapse
|
17
|
Chen Z, Gao W, Feng X, Zhou G, Zhang M, Zeng L, Hu X, Liu Z, Song H. A comparative study on the preparation and evaluation of solubilizing systems for silymarin. Drug Deliv Transl Res 2024; 14:1616-1634. [PMID: 37964172 DOI: 10.1007/s13346-023-01476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Silymarin (SM) exhibits clinical efficacy in treating liver injuries, cirrhosis, and chronic hepatitis. However, its limited water solubility and low bioavailability hinder its therapeutic potential. The primary objective of this study was to compare the in vitro and in vivo characteristics of the four distinct SM solubilization systems, namely SM solid dispersion (SM-SD), SM phospholipid complex (SM-PC), SM sulfobutyl ether-β-cyclodextrin inclusion complex (SM-SBE-β-CDIC) and SM self-microemulsifying drug delivery system (SM-SMEDDS) to provide further insights into their potential for enhancing the solubility and bioavailability of SM. The formation of SM-SD, SM-PC, and SM-SBE-β-CDIC was thoroughly characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffractometry (PXRD) techniques to analyze the changes in their microscopic structure, molecular structure, and crystalline state. The particle size and polydispersity index (PDI) of SM-SMEDDS were 71.6 ± 1.57 nm, and 0.13 ± 0.03, respectively. The self-emulsifying time of SM-SMEDDS was 3.0 ± 0.3 min. SM-SMEDDS exhibited an improved in vitro dissolution rate and demonstrated the highest relative bioavailability compared to pure SM, SM-SD, SM-PC, SM-SBE-β-CDIC, and Legalon®. Consequently, SMEDDS shows promise as a drug delivery system for orally administered SM, offering enhanced solubility and bioavailability.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Wenhao Gao
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Xianquan Feng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Guizhi Zhou
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
- School of Pharmacy, Fujian University of Chinese Traditional Medicine, Fuzhou, 350108, China
| | - Minxin Zhang
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Lingjun Zeng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Xiaomu Hu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China.
| | - Hongtao Song
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China.
| |
Collapse
|
18
|
Farid A, Ahmed A, Alaa O, Safwat G. Desert date seed extract-loaded chitosan nanoparticles ameliorate hyperglycemia and insulin deficiency through the reduction in oxidative stress and inflammation. Sci Rep 2024; 14:5829. [PMID: 38461158 PMCID: PMC10925048 DOI: 10.1038/s41598-024-56352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
Plants represents a huge source of bioactive materials that have been used since the old times in the treatment of many diseases. Balanites aegyptiaca, known as desert date, has been used in treatment of fever, diabetes and bacterial infection. Desert dates contains a hard seed that resembles 50-60% of the fruit. The seed extract contains many fatty acids, amino acids and other bioactive materials that gives the extract its antioxidant and anti-inflammatory properties. The study aimed to use Balanites seed extract-loaded chitosan nanoparticles (SeEx-C NPs) for the treatment of streptozotocin (STZ)-induced diabetes in male Sprague Dawley rats. Animals were divided into two main divisions (healthy and diabetic rats). Each division contained seven groups (5 rats/group): control untreated group I, SeEx treated group II and group III (10 and 20 mg/kg b.w., respectively), C NPs treated group IV and group V (10 and 20 mg/kg b.w., respectively) and SeEx-C NPs treated group VI and group VII (10 and 20 mg/kg b.w., respectively). The therapeutical effects of SeEx-C NPs were evaluated through biochemical and immunological assessments in rats' pancreases. The results showed that SeEx-C NPs (10 and 20 mg/kg b.w.) reduced the oxidative stress and inflammation in rats' pancreases allowing the islets neogenesis. The loading of SeEx on C NPs allowed the delivery of fatty acids (oleic, lauric and myristic acid), amino acids (lysine, leucine, phenylalanine and valine) and minerals to pancreatic beta-cells in a sustainable manner. SeEx-C NPs administration successfully increased insulin secretion, allowed pancreatic islets neogenesis and reduced oxidative stress and inflammation.
Collapse
Affiliation(s)
- Alyaa Farid
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Alaa Ahmed
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Olaya Alaa
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Gehan Safwat
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
19
|
Sun Y, Wang C, Li X, Lu J, Wang M. Recent advances in drug delivery of celastrol for enhancing efficiency and reducing the toxicity. Front Pharmacol 2024; 15:1137289. [PMID: 38434700 PMCID: PMC10904542 DOI: 10.3389/fphar.2024.1137289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Celastrol is a quinone methyl triterpenoid monomeric ingredient extracted from the root of Tripterygium wilfordii. Celastrol shows potential pharmacological activities in various diseases, which include inflammatory, obesity, cancer, and bacterial diseases. However, the application prospect of celastrol is largely limited by its low bioavailability, poor water solubility, and undesired off-target cytotoxicity. To address these problems, a number of drug delivery methods and technologies have been reported to enhance the efficiency and reduce the toxicity of celastrol. We classified the current drug delivery technologies into two parts. The direct chemical modification includes nucleic acid aptamer-celastrol conjugate, nucleic acid aptamer-dendrimer-celastrol conjugate, and glucolipid-celastrol conjugate. The indirect modification includes dendrimers, polymers, albumins, and vesicular carriers. The current technologies can covalently bond or encapsulate celastrol, which improves its selectivity. Here, we present a review that focalizes the recent advances of drug delivery strategies in enhancing the efficiency and reducing the toxicity of celastrol.
Collapse
Affiliation(s)
- Yuan Sun
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chengen Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Xiaoguang Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| | - Jun Lu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, China
| |
Collapse
|
20
|
Kothapalli P, Vasanthan M. Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: a comprehensive review. Ther Deliv 2024; 15:135-155. [PMID: 38214118 DOI: 10.4155/tde-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Bioactive compounds derived from plants have been investigated for treating various pathological conditions. However, the utilization of these compounds has challenges such as instability, low solubility and bioavailability. To overcome these challenges, the encapsulation of bioactive molecules with in a novel nano carrier system enabling effective delivery and clinical translation has become essential. Lipid-based nanocarriers provide versatile platforms for encapsulating and delivering bioactive compounds and overcome the challenges. These novel carriers can improve solubility, stability, improved drug retention and therapeutic efficacy of plant derived bioactive compounds. The current review evaluates the challenges in delivery of plant bioactives and highlights the potential of various lipid-based nano carriers designed to improve its therapeutic efficacy.
Collapse
Affiliation(s)
- Pavithra Kothapalli
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Tamilnadu, 603203, India
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, Tamilnadu, 603203, India
| |
Collapse
|
21
|
Pandey V, Rathee S, Sen D, Jain SK, Patil UK. Phytovesicular Nanoconstructs for Advanced Delivery of Medicinal Metabolites: An In-Depth Review. Curr Drug Targets 2024; 25:847-865. [PMID: 39171597 DOI: 10.2174/0113894501310832240815071618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Phytochemicals, the bioactive compounds in plants, possess therapeutic benefits, such as antimicrobial, antioxidant, and pharmacological activities. However, their clinical use is often hindered by poor bioavailability and stability. Phytosome technology enhances the absorption and efficacy of these compounds by integrating vesicular systems like liposomes, niosomes, transfersomes, and ethosomes. Phytosomes offer diverse biological benefits, including cardiovascular protection through improved endothelial function and oxidative stress reduction. They enhance cognitive function and protect against neurodegenerative diseases in the nervous system, aid digestion and reduce inflammation in the gastrointestinal system, and provide hepatoprotective effects by enhancing liver detoxification and protection against toxins. In the genitourinary system, phytosomes improve renal function and exhibit anti-inflammatory properties. They also modulate the immune system by enhancing immune responses and reducing inflammation and oxidative stress. Additionally, phytosomes promote skin health by protecting against UV radiation and improving hydration and elasticity. Recent patented phytosome technologies have led to innovative formulations that improve the stability, bioavailability, and therapeutic efficacy of phytochemicals, although commercialization challenges like manufacturing scalability and regulatory hurdles remain. Secondary metabolites from natural products are classified into primary and secondary metabolites, with a significant focus on terpenoids, phenolic compounds, and nitrogen-containing compounds. These metabolites have notable biological activities: antimicrobial, antioxidant, antibiotic, antiviral, anti-inflammatory, and anticancer effects. In summary, this review amalgamates the latest advancements in phytosome technology and secondary metabolite research, presenting a holistic view of their potential to advance therapeutic interventions and contribute to the ever-evolving landscape of natural product-based medicine.
Collapse
Affiliation(s)
- Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
22
|
Eranti B, Yiragamreddy PR, Kunnatur Balasundara K. Development and Characterization of Novel Chitosan-Coated Curcumin Nanophytosomes for Treating Drug-Resistant Malaria. Assay Drug Dev Technol 2024; 22:18-27. [PMID: 38150563 DOI: 10.1089/adt.2023.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
This study aimed at enhancing the efficacy of curcumin (CR) by formulating and coating it with chitosan. In silico molecular docking studies revealed that CR exhibited almost similar and low binding energies when compared to artemisinin, indicating high stability at the target site. It can be confirmed that CR is effective in treating and reducing Plasmodium falciparum parasites. Fourier transform infrared studies confirmed that there was a shift and disappearance of some drug peaks in the formulation which revealed complexation with phospholipids. The F2EXT3-developed formulation exhibited greater solubility (24.31 ± 3.47 μg/mL) when compared to pure CR (7.99 ± 1.95 μg/mL). Proton nuclear magnetic resonance studies confirmed the formation of Curcumin-phospholipid hydrogen bonding in F2EXT3. The in vitro drug release studies revealed that the developed formulation F2EXT3 exhibited better drug release at 71.98% at 48 h; this might be due to the effective entrapment efficiency of the drug inside the phospholipid, presence of polyethylene glycol 4000 and chitosan further assisted in sustained release of the drug. Scanning electron microscopy studies revealed that optimized F2EXT3 CR nanophytosomes were nearly spherical with narrow size distribution and smooth surface. The zeta potential of the F2EXT3 showed -3.5 mV. Stability studies revealed that the formulation remained stable even after 6 months. It was observed from the hemin assay that CR and F2EXT3 exhibited (50 μg/mL curcumin) exhibited IC50 values of 47 ± 2.45 and 22 ± 1.58 μM, respectively. Further in vivo antimalarial activity on resistant and sensitive strains needs to be performed to evaluate the efficacy of the developed formulation.
Collapse
Affiliation(s)
- Bhargav Eranti
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
- RERDS-CPR, Raghavendra Institute of Pharmaceutical Education and Research Campus, Anantapuramu, India
| | | | - Koteshwara Kunnatur Balasundara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
23
|
Yuan D, Guo Y, Pu F, Yang C, Xiao X, Du H, He J, Lu S. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem 2024; 430:137115. [PMID: 37566979 DOI: 10.1016/j.foodchem.2023.137115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Flavonoids have multiple favorable bioactivities including antioxidant, anti-inflammatory, and antitumor. Currently, flavonoid-containing dietary supplements are widely tested in clinical trials for the prevention and/or treatment of multiple diseases. However, the clinical application of flavonoids is largely compromised by their low bioavailability and bioactivity, probably due to their poor aqueous solubility, intensive metabolism, and low systemic absorption. Therefore, formulating flavonoids into novel delivery systems is a promising approach for overcoming these drawbacks. In this review, we highlight the opportunities and challenges in the clinical use of dietary flavonoids from the perspective of novel delivery systems. First, the classification, sources, and bioactivity of dietary flavonoids are described. Second, the progress of clinical research on flavonoid-based dietary supplements is systematically summarized. Finally, novel delivery systems developed to improve the bioavailability and bioactivity of flavonoids are discussed in detail to broaden the clinical application of dietary flavonoids.
Collapse
Affiliation(s)
- Dan Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yujie Guo
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Feiyan Pu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Can Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Xuecheng Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Shan Lu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China; Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
24
|
Yu H, Saif MS, Hasan M, Zafar A, Zhao X, Waqas M, Tariq T, Xue H, Hussain R. Designing a Silymarin Nanopercolating System Using CME@ZIF-8: An Approach to Hepatic Injuries. ACS OMEGA 2023; 8:48535-48548. [PMID: 38144097 PMCID: PMC10734040 DOI: 10.1021/acsomega.3c08494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
It is commonly known that silymarin, a phytoconstituent obtained from the Silybum marianum plant, has hepatoprotective and antioxidative properties. However, its low oral bioavailability and poor water solubility negatively impact its therapeutic efficacy. The goal of the present study was to determine the efficiency of the Cordia myxa extract-based synthesized zeolitic imidazole metal-organic framework (CME@ZIF-8 MOF) for increasing silymarin's bioavailability. A coprecipitation technique was used to synthesize the CME@ZIF-8 and polyethylene glycol-coated silymarin-loaded MOFs (PEG-Sily@CME@ZIF-8) and a complete factorial design was used to optimize them. The crystalline size of CME@ZIF-8 was 14.7 nm and the size of PEG-Sily@CME@ZIF-8 was 17.39 nm. The loading percentage of the silymarin drug in CME@ZIF-8 was 33.5%. The optimized formulations were then characterized by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction, Fourier transform IR spectroscopy, surface morphology, gas chromatography-mass spectrometry, and drug release in an in vitro medium. Additionally, a rat model was used to investigate the optimized formulation's in vivo hepatoprotective effectiveness. The synthesized silymarin-loaded CME@ZIF-8 MOFs were distinct particles with a porous, spongelike shape and a diameter of (size) nm. Furthermore, the designed silymarin-loaded PEG-Sily@CME@ZIF-8 MOF formulation exhibited considerable silymarin release from the synthesized formula in dissolution investigations. The in vivo evaluation studies demonstrated that the prepared PEG-Sily@CME@ZIF-8 MOFs effectively exhibited a hepatoprotective effect in comparison with free silymarin in a CCl4-based induced-hepatotoxicity rat model via ameliorating the normal antioxidant enzyme levels and restoring the cellular abnormalities produced by CCl4 toxication. In combination, biologically produced CME@ZIF-8 may promise to be a viable biologically based nanocarrier that can enhance the loading and release of silymarin medication, which has low solubility in water.
Collapse
Affiliation(s)
- Hui Yu
- College
of Science, Beihua University, Jilin 132013, P. R. China
| | - Muhammad Saqib Saif
- Faculty
of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Faculty
of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Ayesha Zafar
- School
of Engineering, Royal Melbourne Institute
of Technology (RMIT) University, Melbourne 3001, Australia
| | - Xi Zhao
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Muhammad Waqas
- Faculty
of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Faculty
of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Huang Xue
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, P. R. China
| | - Riaz Hussain
- Faculty
of Veterinary and Animal Sciences, Department of Pathology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
25
|
Lukhele BS, Bassey K, Witika BA. The Utilization of Plant-Material-Loaded Vesicular Drug Delivery Systems in the Management of Pulmonary Diseases. Curr Issues Mol Biol 2023; 45:9985-10017. [PMID: 38132470 PMCID: PMC10742082 DOI: 10.3390/cimb45120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Medicinal plants have been utilized to treat a variety of conditions on account of the bioactive properties that they contain. Most bioactive constituents from plants are of limited effectiveness, due to poor solubility, limited permeability, first-pass metabolism, efflux transporters, chemical instability, and food-drug interactions However, when combined with vesicular drug delivery systems (VDDS), herbal medicines can be delivered at a predetermined rate and can exhibit site-specific action. Vesicular drug delivery systems are novel pharmaceutical formulations that make use of vesicles as a means of encapsulating and transporting drugs to various locations within the body; they are a cutting-edge method of medication delivery that combats the drawbacks of conventional drug delivery methods. Drug delivery systems offer promising strategies to overcome the bioavailability limitations of bioactive phytochemicals. By improving their solubility, protecting them from degradation, enabling targeted delivery, and facilitating controlled release, drug delivery systems can enhance the therapeutic efficacy of phytochemicals and unlock their full potential in various health conditions. This review explores and collates the application of plant-based VDDS with the potential to exhibit protective effects against lung function loss in the interest of innovative and effective treatment and management of respiratory illnesses.
Collapse
Affiliation(s)
| | - Kokoette Bassey
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa;
| |
Collapse
|
26
|
Neamatallah T, Malebari AM, Alamoudi AJ, Nazreen S, Alam MM, Bin-Melaih HH, Abuzinadah OA, Badr-Eldin SM, Alhassani G, Makki L, Nasrullah MZ. Andrographolide nanophytosomes exhibit enhanced cellular delivery and pro-apoptotic activities in HepG2 liver cancer cells. Drug Deliv 2023; 30:2174209. [PMID: 36762548 PMCID: PMC9930834 DOI: 10.1080/10717544.2023.2174209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Andrographolide (AG), a major active constituent of Andrographis paniculata, is known to hinder proliferation of several types of cancer cells. However, its poor solubility and cellular permeability restrict its use in clinical applications. In this study, AG-loaded phytosomes (AG-PTMs) were formulated and optimized with respect to particle size using l-α-phosphatidylcholine (PC):AG ratio and sonication time (ST) as independent variables. The optimized formula was prepared at 1:2.7 for AG:PC molar ratio and 4.9 min for ST and exhibited a particle size of 243.7 ± 7.3 nm, polydispersity index (PDI) of 0.310 and entrapment efficiency of 72.20 ± 4.53. Also, the prepared formula showed a slow release of AG over 24-h period. The antiproliferative activity of AG-PTMs was investigated against the liver cancer cell line HepG2. AG-PTMs significantly repressed the growth of HepG2 cells with an IC50 value of 4.02 ± 0.14 µM. AG uptake by HepG2 cells was significantly enhanced in incubations containing the optimized formula. AG-PTMs also caused G2-M cell cycle phase arrest and increased the fraction of apoptotic cells in pre-G1 phase. These effects were associated with induction of oxidative stress and mitochondrial dysfunction. In addition, AG-PTMs significantly upregulated mRNA expression of BAX and downregulated that of BCL2. Furthermore, AG-PTMs significantly enhanced the concentration of caspase-3 in comparison to raw AG. These data indicate that the phytosomal delivery of AG significantly inhibited HepG2 cell proliferation through enhanced cellular uptake, arresting cell cycle at the G2-M phase and inducing mitochondrial-dependent apoptosis.
Collapse
Affiliation(s)
- Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Hawazen H. Bin-Melaih
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A. Abuzinadah
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Gharam Alhassani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lamar Makki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Hani U, Gowda BHJ, Haider N, Ramesh K, Paul K, Ashique S, Ahmed MG, Narayana S, Mohanto S, Kesharwani P. Nanoparticle-Based Approaches for Treatment of Hematological Malignancies: a Comprehensive Review. AAPS PharmSciTech 2023; 24:233. [PMID: 37973643 DOI: 10.1208/s12249-023-02670-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
Blood cancer, also known as hematological malignancy, is one of the devastating types of cancer that has significantly paved its mortality mark globally. It persists as an extremely deadly cancer type and needs utmost attention owing to its negligible overall survival rate. Major challenges in the treatment of blood cancer include difficulties in early diagnosis, as well as severe side effects resulting from chemotherapy. In addition, immunotherapies and targeted therapies can be prohibitively expensive. Over the past two decades, scientists have devised a few nanoparticle-based drug delivery systems aimed at overcoming this challenge. These therapeutic strategies are engineered to augment the cellular uptake, pharmacokinetics, and effectiveness of anticancer drugs. However, there are still numerous types of nanoparticles that could potentially improve the efficacy of blood cancer treatment, while also reducing treatment costs and mitigating drug-related side effects. To the best of our knowledge, there has been limited reviews published on the use of nano-based drug delivery systems for the treatment of hematological malignancies. Therefore, we have made a concerted effort to provide a comprehensive review that draws upon recent literature and patents, with a focus on the most promising results regarding the use of nanoparticle-based approaches for the treatment of hematological malignancies. All these crucial points covered under a common title would significantly help researchers and scientists working in the area.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, 61421, Abha, Saudi Arabia.
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, BT9 7BL, UK.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, 61421, Abha, Saudi Arabia
| | - Kvrns Ramesh
- Department of Pharmaceutics, RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, 11172, Ras Al Khaimah, United Arab Emirates
| | - Karthika Paul
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| | - Sumel Ashique
- Department of Pharmaceutics, Pandaveswar School of Pharmacy, Pandaveswar, West Bengal, 713378, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Soumya Narayana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Tamil Nadu, India.
| |
Collapse
|
28
|
WAHI ABHISHEK, BISHNOI MAMTA, RAINA NEHA, SINGH MEGHNAAMRITA, VERMA PIYUSH, GUPTA PIYUSHKUMAR, KAUR GINPREET, TULI HARDEEPSINGH, GUPTA MADHU. Recent updates on nano-phyto-formulations based therapeutic intervention for cancer treatment. Oncol Res 2023; 32:19-47. [PMID: 38188681 PMCID: PMC10767243 DOI: 10.32604/or.2023.042228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/27/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer is a leading cause of death globally, with limited treatment options and several limitations. Chemotherapeutic agents often result in toxicity which long-term conventional treatment. Phytochemicals are natural constituents that are more effective in treating various diseases with less toxicity than the chemotherapeutic agents providing alternative therapeutic approaches to minimize the resistance. These phytoconstituents act in several ways and deliver optimum effectiveness against cancer. Nevertheless, the effectiveness of phyto-formulations in the management of cancers may be constrained due to challenges related to inadequate solubility, bioavailability, and stability. Nanotechnology presents a promising avenue for transforming current cancer treatment methods through the incorporation of phytochemicals into nanosystems, which possess a range of advantageous characteristics such as biocompatibility, targeted and sustained release capabilities, and enhanced protective effects. This holds significant potential for future advancements in cancer management. Herein, this review aims to provide intensive literature on diverse nanocarriers, highlighting their applications as cargos for phytocompounds in cancer. Moreover, it offers an overview of the current advancements in the respective field, emphasizing the characteristics that contribute to favourable outcomes in both in vitro and in vivo settings. Lastly, clinical development and regulatory concerns are also discussed to check on the transformation of the concept as a promising strategy for combination therapy of phytochemicals and chemotherapeutics that could lead to cancer management in the future.
Collapse
Affiliation(s)
- ABHISHEK WAHI
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - MAMTA BISHNOI
- Department of Pharmaceutical Sciences, Gurugram University, Haryana, 122003, India
| | - NEHA RAINA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - MEGHNA AMRITA SINGH
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - PIYUSH VERMA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| | - PIYUSH KUMAR GUPTA
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - GINPREET KAUR
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Vile Parle (West), Mumbai, 400056, India
| | - HARDEEP SINGH TULI
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - MADHU GUPTA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi, 110017, India
| |
Collapse
|
29
|
Valsamidou E, Amerikanou C, Tzavara C, Skarpas G, Mariolis-Sapsakos TD, Zoumpoulakis P, Kaliora AC. A standardized nutraceutical supplement contributes to pain relief, improves quality of life and regulates inflammation in knee osteoarthritis patients; A randomized clinical trial. Heliyon 2023; 9:e20143. [PMID: 37809749 PMCID: PMC10559924 DOI: 10.1016/j.heliyon.2023.e20143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints that affects greatly the elderly population and the health care systems and is on the increase due to aging and obesity. Interventions aim at palliative care and pharmaceutical therapies entail serious adverse events. Whereas polyphenols constitute a promising holistic approach in the arsenal of physicians, trials investigating biomarkers and questionnaires are scarce. As such, a randomized controlled trial (RCT) was conducted to evaluate the potency of a standardized polyphenolic supplement in the management of systemic inflammation, oxidative stress, pain and general quality of life (QoL) in patients with osteoarthritis. Sixty subjects were randomized to receive either a polyphenol supplement (curcuma phospholipid, rosemary extract, resveratrol, ascorbic acid), or an active comparator (ascorbic acid) twice, daily for 12 weeks. The group that received the polyphenols exhibited significantly lower symptoms of pain and improved physical function and QoL as it was depicted by validated questionnaires, compared to the control group. Furthermore, post intervention, inflammation was restrained in the polyphenol group. Since systemic inflammation promotes local inflammation, the decrease of pain herein might be attributed to the attenuation of systemic inflammation by the polyphenols.
Collapse
Affiliation(s)
- Evdokia Valsamidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El Venizelou Ave. 17677, Athens, Greece
- Qualia Pharma, 2 Kalavriton, 14564, Kifissia, Athens, Greece
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El Venizelou Ave. 17677, Athens, Greece
| | - Chara Tzavara
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El Venizelou Ave. 17677, Athens, Greece
| | - George Skarpas
- Evgenidio Clinic Agia Trias, 20 Papadiamantopoulou Str, Ilissia, 11852, Greece
| | | | - Panagiotis Zoumpoulakis
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, Egaleo, Athens, 12243, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635, Athens, Greece
| | - Andriana C. Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El Venizelou Ave. 17677, Athens, Greece
| |
Collapse
|
30
|
Ortega-Pérez LG, Ayala-Ruiz LA, Magaña-Rodríguez OR, Piñón-Simental JS, Aguilera-Méndez A, Godínez-Hernández D, Rios-Chavez P. Development and Evaluation of Phytosomes Containing Callistemon citrinus Leaf Extract: A Preclinical Approach for the Treatment of Obesity in a Rodent Model. Pharmaceutics 2023; 15:2178. [PMID: 37765149 PMCID: PMC10535757 DOI: 10.3390/pharmaceutics15092178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Callistemon citrinus has several biological effects; it is anti-inflammatory, anti-obesogenic, antioxidant, hepatoprotection, and chemoprotective. Its bioactive compounds include terpenoids, phenolic acids, and flavonoids which have low oral bioavailability and absorption. This study aimed at developing phytosomes of C. citrinus to improve oral bioavailability and absorption. Phytosomes were formulated with soybean phosphatidylcholine and C. citrinus leaf extract using the thin layer sonication method. Phytosomes were evaluated by scanning electron microscopy (SEM), entrapment efficiency, solubility, and particle size determination. Antioxidant capacity and total phenolic, flavonoid, and terpenoid contents were also measured. The in vivo anti-obesogenic activity was evaluated. Phytosomes loaded with C. citrinus (P C.c) extract had small spherical shapes. The average particle size was 129.98 ± 18.30 nm, encapsulation efficiency 80.49 ± 0.07%, and solubility 90.00%; the stability study presented no significant changes in the average particle size at 20 °C. P C.c presented high antioxidant capacity. For the first time, ellagic acid is reported in this plant. The in vivo obesity study showed a strong anti-obesogenic activity of phytosomes with C. citrinus to reduce 40% body weight as well as morphometric and biochemical parameters.
Collapse
Affiliation(s)
- Luis Gerardo Ortega-Pérez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Luis Alberto Ayala-Ruiz
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Oliver Rafid Magaña-Rodríguez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Jonathan Saúl Piñón-Simental
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| | - Asdrubal Aguilera-Méndez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (A.A.-M.); (D.G.-H.)
| | - Daniel Godínez-Hernández
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (A.A.-M.); (D.G.-H.)
| | - Patricia Rios-Chavez
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Michoacán, Mexico; (L.G.O.-P.); (L.A.A.-R.); (O.R.M.-R.); (J.S.P.-S.)
| |
Collapse
|
31
|
Gaikwad SS, Morade YY, Kothule AM, Kshirsagar SJ, Laddha UD, Salunkhe KS. Overview of phytosomes in treating cancer: Advancement, challenges, and future outlook. Heliyon 2023; 9:e16561. [PMID: 37260890 PMCID: PMC10227328 DOI: 10.1016/j.heliyon.2023.e16561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
One of the major causes of death on the globe is cancer. It has remained a significant obstacle for current therapies and has not yet been effectively treated. Conventional treatment strategies available for cancer such as surgery, chemotherapy, radiation therapy etc. have severe adverse effects. The use of herbal active constituents in cancer treatment has tremendous potential to increase the effectiveness of conventional cancer therapy. Natural plant active components have been reported to have strong in vitro pharmacological activity but narrow in vivo absorption. In order to increase their bioavailability and absorption and get around the drawbacks and negative effects of traditional herbal extracts, Phytosomes are one of the growing nanotechnologies that can be used to improve the miscibility of bioactive phytoconstituents in lipid-rich barriers and overcome their poor bioavailability. Many novel drug delivery carriers are employed for targeted delivery of phytoconstituent at the site of action. Phytosomes are well-known biocompatible nanocarriers that can be employed to increase the solubility and permeability of phytopharmaceuticals among various novel drug delivery systems (NDDS). This review mainly focused on various conventional as well as novel approaches and various Nano carrier used in cancer therapies. Also comprising summary of the most recent research on the development and use of phytosomes as a better carrier for herbal constituents in the treatment of cancer. Additionally provides information about the formulation, characterization technique and mechanism of drug release from phytosome. Some of the major herbal active constituents made of phytosome which have shown proven anticancer activity are also studied. Finally, challenges and future perspective related to phytosome in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Sachin S. Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
- Department of Pharmaceutics, MET’s Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Yogita Y. Morade
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Akshada M. Kothule
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Sanjay J. Kshirsagar
- Department of Pharmaceutics, MET’s Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Umesh D. Laddha
- Department of Pharmaceutics, MET’s Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Kishor S. Salunkhe
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| |
Collapse
|
32
|
Bonaccorso A, Privitera A, Grasso M, Salamone S, Carbone C, Pignatello R, Musumeci T, Caraci F, Caruso G. The Therapeutic Potential of Novel Carnosine Formulations: Perspectives for Drug Development. Pharmaceuticals (Basel) 2023; 16:778. [PMID: 37375726 PMCID: PMC10300694 DOI: 10.3390/ph16060778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Carnosine (beta-alanyl-L-histidine) is an endogenous dipeptide synthesized via the activity of the ATP-dependent enzyme carnosine synthetase 1 and can be found at a very high concentration in tissues with a high metabolic rate, including muscles (up to 20 mM) and brain (up to 5 mM). Because of its well-demonstrated multimodal pharmacodynamic profile, which includes anti-aggregant, antioxidant, and anti-inflammatory activities, as well as its ability to modulate the energy metabolism status in immune cells, this dipeptide has been investigated in numerous experimental models of diseases, including Alzheimer's disease, and at a clinical level. The main limit for the therapeutic use of carnosine is related to its rapid hydrolysis exerted by carnosinases, especially at the plasma level, reason why the development of new strategies, including the chemical modification of carnosine or its vehiculation into innovative drug delivery systems (DDS), aiming at increasing its bioavailability and/or at facilitating the site-specific transport to different tissues, is of utmost importance. In the present review, after a description of carnosine structure, biological activities, administration routes, and metabolism, we focused on different DDS, including vesicular systems and metallic nanoparticles, as well as on possible chemical derivatization strategies related to carnosine. In particular, a basic description of the DDS employed or the derivatization/conjugation applied to obtain carnosine formulations, followed by the possible mechanism of action, is given. To the best of our knowledge, this is the first review that includes all the new formulations of carnosine (DDS and derivatives), allowing a decrease or complete prevention of the hydrolysis of this dipeptide exerted by carnosinases, the simultaneous blood-brain barrier crossing, the maintenance or enhancement of carnosine biological activity, and the site-specific transport to different tissues, which then offers perspectives for the development of new drugs.
Collapse
Affiliation(s)
- Angela Bonaccorso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Margherita Grasso
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Sonya Salamone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Claudia Carbone
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- NANOMED–Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
33
|
Damani M, Singh P, Sawarkar S. Delivery of Immunomodulators: Challenges and Novel Approaches. NATURAL IMMUNOMODULATORS: PROMISING THERAPY FOR DISEASE MANAGEMENT 2023:275-322. [DOI: 10.2174/9789815123258123010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Immunomodulators can be either synthetic in origin or naturally obtained.
Natural plant-based compounds can influence the immune system by either affecting
antibody secretion to control the infection or affecting the functions of immune cells,
thus contributing to maintaining immune homeostasis. Phytochemicals in plants, such
as polysaccharides, lactones, flavonoids, alkaloids, diterpenoids and glycosides, have
been reported to possess immunomodulating properties. However, there are many
challenges limiting the clinical use of natural immunomodulators. In this chapter, we
have discussed in detail standardization, formulation development, route of
administration and regulatory concerns of natural immunomodulators. In order to
overcome these challenges and ensure that natural immunomodulators reach the target
site at therapeutic concentrations, different polymer and lipid-based nanocarrier
delivery systems have been developed. These nanocarriers by virtue of their size, can
easily penetrate and reach the target site and deliver the drugs. Many nanocarriers like
liposomes, niosomes, nanoparticles, microemulsions, phytosomes and other vesicular
systems designed for natural immunomodulators are discussed in this chapter.<br>
Collapse
Affiliation(s)
- Mansi Damani
- University of Mumbai,Department of Pharmaceutics,Mumbai,India,
| | - Prabha Singh
- University of Mumbai,Department of Pharmaceutics,Mumbai,India,
| | - Sujata Sawarkar
- University of Mumbai,Department of Pharmaceutics,Mumbai,India,
| |
Collapse
|
34
|
Bahloul B, Castillo-Henríquez L, Jenhani L, Aroua N, Ftouh M, Kalboussi N, Vega-Baudrit J, Mignet N. Nanomedicine-based potential phyto-drug delivery systems for diabetes. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
35
|
Deleanu M, Toma L, Sanda GM, Barbălată T, Niculescu LŞ, Sima AV, Deleanu C, Săcărescu L, Suciu A, Alexandru G, Crişan I, Popescu M, Stancu CS. Formulation of Phytosomes with Extracts of Ginger Rhizomes and Rosehips with Improved Bioavailability, Antioxidant and Anti-Inflammatory Effects In Vivo. Pharmaceutics 2023; 15:pharmaceutics15041066. [PMID: 37111552 PMCID: PMC10146199 DOI: 10.3390/pharmaceutics15041066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The poor water solubility of natural antioxidants restricts their bioavailability and therapeutic use. We aimed to develop a new phytosome formulation with active compounds from extracts of ginger (GINex) and rosehips (ROSAex) designed to increase their bioavailability, antioxidant and anti-inflammatory properties. The phytosomes (PHYTOGINROSA-PGR) were prepared from freeze-dried GINex, ROSAex and phosphatidylcholine (PC) in different mass ratios using the thin-layer hydration method. PGR was characterized for structure, size, zeta potential, and encapsulation efficiency. Results showed that PGR comprises several different populations of particles, their size increasing with ROSAex concentration, having a zeta potential of ~-21mV. The encapsulation efficiency of 6-gingerol and β-carotene was >80%. 31P NMR spectra showed that the shielding effect of the phosphorus atom in PC is proportional to the amount of ROSAex in PGR. PGR with a mass ratio GINex:ROSAex:PC-0.5:0.5:1 had the most effective antioxidant and anti-inflammatory effects in cultured human enterocytes. PGR-0.5:0.5:1 bioavailability and biodistribution were assessed in C57Bl/6J mice, and their antioxidant and anti-inflammatory effects were evaluated after administration by gavage to C57Bl/6J mice prior to LPS-induced systemic inflammation. Compared to extracts, PGR induced a 2.6-fold increase in 6-gingerol levels in plasma and over 40% in the liver and kidneys, in parallel with a 65% decrease in the stomach. PGR treatment of mice with systemic inflammation increased the sera antioxidant enzymes paraoxonase-1 and superoxide dismutase-2 and decreased the proinflammatory TNFα and IL-1β levels in the liver and small intestine. No toxicity was induced by PGR either in vitro or in vivo. In conclusion, the phytosome formulation of GINex and ROSAex we developed resulted in stable complexes for oral administration with increased bioavailability, antioxidant and anti-inflammatory potential of their active compounds.
Collapse
Affiliation(s)
- Mariana Deleanu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania
| | - Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania
| | - Gabriela Maria Sanda
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania
| | - Teodora Barbălată
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania
| | - Loredan Ştefan Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania
| | - Anca Volumnia Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania
| | - Calin Deleanu
- “Costin D. Nenitescu” Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Splaiul Independenței Street, 060023 Bucharest, Romania
- “Petru Poni” Institute of Macromolecular Chemistry of the Romanian Academy, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania
| | - Liviu Săcărescu
- “Petru Poni” Institute of Macromolecular Chemistry of the Romanian Academy, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania
| | - Alexandru Suciu
- Hofigal Export Import S.A., 2 Intrarea Serelor, 042124 Bucharest, Romania
| | - Georgeta Alexandru
- Hofigal Export Import S.A., 2 Intrarea Serelor, 042124 Bucharest, Romania
| | - Iuliana Crişan
- Hofigal Export Import S.A., 2 Intrarea Serelor, 042124 Bucharest, Romania
| | - Mariana Popescu
- Hofigal Export Import S.A., 2 Intrarea Serelor, 042124 Bucharest, Romania
| | - Camelia Sorina Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Haşdeu Street, 050568 Bucharest, Romania
- Correspondence: ; Tel.: (+4021)319-45-18
| |
Collapse
|
36
|
De Luca M, Tuberoso CIG, Pons R, García MT, Morán MDC, Ferino G, Vassallo A, Martelli G, Caddeo C. Phenolic Fingerprint, Bioactivity and Nanoformulation of Prunus spinosa L. Fruit Extract for Skin Delivery. Pharmaceutics 2023; 15:pharmaceutics15041063. [PMID: 37111548 PMCID: PMC10144133 DOI: 10.3390/pharmaceutics15041063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The nanoformulation of plant extracts in phospholipid vesicles is a promising strategy to exploit the biological properties of natural bioactive substances and overcome drawbacks such as poor aqueous solubility, chemical instability, low skin permeation and retention time, which strongly limit their topical application. In this study, Prunus spinosa berries were used for the preparation of a hydro-ethanolic extract, which showed antioxidant and antibacterial properties owing to the presence of phenolic compounds. Two types of phospholipid vesicles were developed to improve the applicability as topical formulations. Liposomes and Penetration Enhancer-containing Vesicles were characterized for mean diameter, polydispersity, surface charge, shape, lamellarity, and entrapment efficiency. Additionally, their safety was assayed with different cell models, including erythrocytes and representative skin cell lines.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
- KAMABIO Srl, Via Al Boschetto 4/B, 39100 Bolzano, Italy
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, SS 554–bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Ramon Pons
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), c/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - María Teresa García
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), c/Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - María del Carmen Morán
- Department of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Science, University of Barcelona, Avda. Joan XXIII 27–31, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology-IN2UB, University of Barcelona, Avda. Diagonal, 645, 08028 Barcelona, Spain
| | - Giulio Ferino
- CeSAR, University of Cagliari, SS 554–Bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff TNcKILLERS s.r.l., Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Carla Caddeo
- Department of Life and Environmental Sciences, University of Cagliari, SS 554–bivio per Sestu, Monserrato, 09042 Cagliari, Italy
- Correspondence:
| |
Collapse
|
37
|
Nesci S, Spagnoletta A, Oppedisano F. Inflammation, Mitochondria and Natural Compounds Together in the Circle of Trust. Int J Mol Sci 2023; 24:6106. [PMID: 37047080 PMCID: PMC10094238 DOI: 10.3390/ijms24076106] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Human diseases are characterized by the perpetuation of an inflammatory condition in which the levels of Reactive Oxygen Species (ROS) are quite high. Excessive ROS production leads to DNA damage, protein carbonylation and lipid peroxidation, conditions that lead to a worsening of inflammatory disorders. In particular, compromised mitochondria sustain a stressful condition in the cell, such that mitochondrial dysfunctions become pathogenic, causing human disorders related to inflammatory reactions. Indeed, the triggered inflammation loses its beneficial properties and turns harmful if dysregulation and dysfunctions are not addressed. Thus, reducing oxidative stress with ROS scavenger compounds has proven to be a successful approach to reducing inflammation. Among these, natural compounds, in particular, polyphenols, alkaloids and coenzyme Q10, thanks to their antioxidant properties, are capable of inhibiting the activation of NF-κB and the expression of target genes, including those involved in inflammation. Even more, clinical trials, and in vivo and in vitro studies have demonstrated the antioxidant and anti-inflammatory effects of phytosomes, which are capable of increasing the bioavailability and effectiveness of natural compounds, and have long been considered an effective non-pharmacological therapy. Therefore, in this review, we wanted to highlight the relationship between inflammation, altered mitochondrial oxidative activity in pathological conditions, and the beneficial effects of phytosomes. To this end, a PubMed literature search was conducted with a focus on various in vitro and in vivo studies and clinical trials from 2014 to 2022.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-Università di Bologna, 40064 Ozzano Emilia, Italy;
| | - Anna Spagnoletta
- ENEA Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Trisaia Research Center, 75026 Rotondella, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| |
Collapse
|
38
|
Biopolymer- and Lipid-Based Carriers for the Delivery of Plant-Based Ingredients. Pharmaceutics 2023; 15:pharmaceutics15030927. [PMID: 36986788 PMCID: PMC10051097 DOI: 10.3390/pharmaceutics15030927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Natural ingredients are gaining increasing attention from manufacturers following consumers’ concerns about the excessive use of synthetic ingredients. However, the use of natural extracts or molecules to achieve desirable qualities throughout the shelf life of foodstuff and, upon consumption, in the relevant biological environment is severely limited by their poor performance, especially with respect to solubility, stability against environmental conditions during product manufacturing, storage, and bioavailability upon consumption. Nanoencapsulation can be seen as an attractive approach with which to overcome these challenges. Among the different nanoencapsulation systems, lipids and biopolymer-based nanocarriers have emerged as the most effective ones because of their intrinsic low toxicity following their formulation with biocompatible and biodegradable materials. The present review aims to provide a survey of the recent advances in nanoscale carriers, formulated with biopolymers or lipids, for the encapsulation of natural compounds and plant extracts.
Collapse
|
39
|
Thorat SS, Gujar KN, Karale CK. Bioenhancers from mother nature: an overview. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Abstract
Background
The concept of bioenhancer comes from Ayurveda. Many ways have been documented in the literature to boost the bioavailability of poorly bioavailable medications, and one of the most recent techniques is the use of bioavailability enhancers.
Main body of the abstract
Herbal bioenhancers are a choice of bioenhancer in modern medicine because of their easy absorption, safety, and lack of side effects. They also reduce drug toxicity, decrease treatment times, and lower treatment costs. Increasing drug bioavailability after oral administration is medically relevant since bioavailability has a direct impact on plasma drug concentrations and therapeutic bioefficacy. When medicine is coupled with a suitable bioenhancer, the bioavailability of the drug is increased. The drug and bioenhancers have no synergistic effect. They reduce the dosage, cost, toxicity, and other side effects, as well as the amount of time it takes to act.
Short conclusion
The objective of these survey is that to investigate the thought of the bioavailability to get a superior therapeutic response within the right portion with natural pharmaceuticals containing product, as well as the classification of bioenhancers, mechanism of action, commercial formulation, and future prospects.
Collapse
|
40
|
Haider HI, Zafar I, Ain QU, Noreen A, Nazir A, Javed R, Sehgal SA, Khan AA, Rahman MM, Rashid S, Garai S, Sharma R. Synthesis and characterization of copper oxide nanoparticles: its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of Bacillus subtilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37370-37385. [PMID: 36571685 DOI: 10.1007/s11356-022-24877-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanotechnology is now playing an emerging role in green synthesis in agriculture as nanoparticles (NPs) are used for various applications in plant growth and development. Copper is a plant micronutrient; the amount of copper oxide nanoparticles (CuONPs) in the soil determines whether it has positive or adverse effects. CuONPs can be used to grow corn and wheat plants by combining Bacillus subtilis. In this research, CuONPs were synthesized by precipitation method using different precursors such as sodium hydroxide (0.1 M) and copper nitrate (Cu(NO3)2) having 0.1 M concentration with a post-annealing method. The NPs were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM), and ultraviolet (UV) visible spectroscopy. Bacillus subtilis is used as a potential growth promoter for microbial inoculation due to its prototrophic nature. The JAR experiment was conducted, and the growth parameter of corn (Z. mays) and wheat (Triticum aestivum) was recorded after 5 days. The lab assay evaluated the germination in JARs with and without microbial inoculation under CuONP stress at different concentrations (25 and 50 mg). The present study aimed to synthesize CuONPs and systematically investigate the particle size effects of copper (II) oxide (CuONPs) (< 50 nm) on Triticum aestivum and Z. mays. In our results, the XRD pattern of CuONPs at 500 °C calcination temperature with monoclinic phase is observed, with XRD peak intensity slightly increasing. The XRD patterns showed that the prepared CuONPs were extremely natural, crystal-like, and nano-shaped. We used Scherrer's formula to calculate the average size of the particle, indicated as 23 nm. The X-ray diffraction spectrum of synthesized materials and SEM analysis show that the particles of CuONPs were spherical in nature. The results revealed that the synthesized CuONPs combined with Bacillus subtilis used in a field study provided an excellent result, where growth parameters of Z. Mays and Triticum aestivum such as root length, shoot length, and plant biomass was improved as compared to the control group.
Collapse
Affiliation(s)
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Qurat Ul Ain
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Asifa Noreen
- Department of Chemistry, Riphah International University, Faisalabad Campus, , Faisalabad, Pakistan
| | - Aamna Nazir
- Department of Chemistry, University of Lahore, Sargodha Campus, Sargodha, Pakistan
| | - Rida Javed
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sheikh Arslan Sehgal
- Department of Bioinformatics, University of Okara, Okara, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Somenath Garai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
41
|
Abstract
Flavonoids are polyphenolic phytochemicals, which occur naturally in plants and possess both anti-oxidant and pro-oxidant properties. Flavonoids are gaining increasing popularity in the pharmaceutical industry as healthy and cost-effective compounds. Flavonoids show beneficial pharmacological activities in the treatment and prevention of various types of diseases. They are natural and less toxic agents for cancer chemotherapy and radiotherapy via regulation of multiple cell signaling pathways and pro-oxidant effects. In this review, we have summarized the mechanisms of action of selected flavonoids, and their pharmacological implications and potential therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Prabha Tiwari
- Riken Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Kaushala Prasad Mishra
- Ex Bhabha Atomic Research Center, Foundation for Education and Research, Mumbai, Maharashtra, India
| |
Collapse
|
42
|
Andishmand H, Azadmard-Damirchi S, Hamishekar H, Torbati M, Kharazmi MS, Savage GP, Tan C, Jafari SM. Nano-delivery systems for encapsulation of phenolic compounds from pomegranate peel. Adv Colloid Interface Sci 2023; 311:102833. [PMID: 36610103 DOI: 10.1016/j.cis.2022.102833] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
Pomegranate fruit is getting more attention due to its positive health effects, and pomegranate peel (PP) is its main byproduct. PP has the potential to be converted from environmentally polluting waste to wealth due to its rich phenolic compounds such as ellagitannins, proanthocyanidins, and flavonoids with antioxidant, antimicrobial, and health effects. These phenolics are susceptible to environmental conditions such as heat, light, and pH as well as in vivo conditions of gastrointestinal secretions. Some phenolics of PP, e.g., ellagitannins could interfere with food ingredients and thus reduce their beneficial effects. Also, ellagitannins could form complexes with salivary glycoproteins, then a feeling of astringency taste. In this article, nano-delivery systems such as nanoparticles, nanoemulsions, and vesicular nanocarriers, designed and fabricated for PP bioactive compounds in recent years have been reviewed. Among them, lipid-based nano carriers i.e., solid lipid nanoparticles, nanostructured lipid carriers, and vesicular nanocarriers have low toxicity, large-scale production feasibility, easy synthesis, and high biocompatibility. So, it seems that the extraction and purification of bioactives from pomegranate wastes and nanoencapsulating them with cost effective and generally recognized as safe (GRAS) materials can be a bright prospect in enhancing the quality, safety, shelf life and health benefits of pomegranate products.
Collapse
Affiliation(s)
- Hashem Andishmand
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sodeif Azadmard-Damirchi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hamed Hamishekar
- Drug applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MoammadAli Torbati
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Geoffrey P Savage
- Food Group, Department of Wine, Food and Molecular Biosciences, Lincoln University, Canterbury, New Zealand
| | - Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
43
|
Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. THE NUCLEUS 2022; 65:399-411. [PMID: 36276225 PMCID: PMC9579558 DOI: 10.1007/s13237-022-00405-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Nature has abundant source of drugs that need to be identified/purified for use as essential biologics, either individually or in combination in the modern medical field. These drugs are divided into small bio-molecules, plant-made biologics, and a recently introduced third category known as phytopharmaceutical drugs. The development of phytopharmaceutical medicines is based on the ethnopharmacological approach, which relies on the traditional medicine system. The concept of ‘one-disease one-target drug’ is becoming less popular, and the use of plant extracts, fractions, and molecules is the new paradigm that holds promising scope to formulate appropriate drugs. This led to discovering a new concept known as polypharmacology, where natural products from varying sources can engage with multiple human physiology targets. This article summarizes different approaches for phytopharmaceutical drug development and discusses the progress in systems biology and computational tools for identifying drug targets. We review the existing drug delivery methods to facilitate the efficient delivery of drugs to the targets. In addition, we describe different analytical techniques for the authentication and fingerprinting of plant materials. Finally, we highlight the role of biopharming in developing plant-based biologics.
Collapse
Affiliation(s)
- Noohi Nasim
- grid.412612.20000 0004 1760 9349Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Inavolu Sriram Sandeep
- grid.412612.20000 0004 1760 9349Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Sujata Mohanty
- grid.506052.40000 0004 4911 8595Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| |
Collapse
|
44
|
Hassan DH, Shohdy JN, El-Setouhy DA, El-Nabarawi M, Naguib MJ. Compritol-Based Nanostrucutured Lipid Carriers (NLCs) for Augmentation of Zolmitriptan Bioavailability via the Transdermal Route: In Vitro Optimization, Ex Vivo Permeation, In Vivo Pharmacokinetic Study. Pharmaceutics 2022; 14:pharmaceutics14071484. [PMID: 35890379 PMCID: PMC9315618 DOI: 10.3390/pharmaceutics14071484] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/14/2023] Open
Abstract
Migraine is a severe neurovascular disease manifested mainly as unilateral throbbing headaches. Triptans are agonists for serotonin receptors. Zolmitriptan (ZMP) is a biopharmaceutics classification system (BCS) class III medication with an absolute oral bioavailability of less than 40%. As a result, our research intended to increase ZMP bioavailability by developing transdermal nanostructured lipid carriers (NLCs). NLCs were prepared utilizing a combination of hot melt emulsification and high-speed stirring in a 32 full factorial design. The studied variables were liquid lipid type (X1) and surfactant type (X2). The developed NLCs were evaluated in terms of particle size (Y1, nm), polydispersity index (Y2, PDI), zeta potential (Y3, mV), entrapment efficacy (Y4, %) and amount released after 6 h (Q6h, Y5, %). At 1% Mygliol as liquid lipid component and 1% Span 20 as surfactant, the optimized formula (NLC9) showed a minimum particle size (138 ± 7.07 nm), minimum polydispersity index (0.39 ± 0.001), acceptable zeta potential (−22.1 ± 0.80), maximum entrapment efficiency (73 ± 0.10%) and maximum amount released after 6 h (83.22 ± 0.10%). The optimized formula was then incorporated into gel preparation (HPMC) to improve the system stability and ease of application. Then, the pharmacokinetic study was conducted on rabbits in a cross-over design. The calculated parameters showed a higher area under the curve (AUC0–24, AUC0–∞ (ng·h/mL)) of the developed ZMP-NLCs loaded gel, with a 1.76-fold increase in bioavailability in comparison to the orally administered marketed product (Zomig®). A histopathological examination revealed the safety of the developed nanoparticles. The declared results highlight the potential of utilizing the proposed NLCs for the transdermal delivery of ZMP to improve the drug bioavailability.
Collapse
Affiliation(s)
- Doaa H. Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Oct. 6, Giza 12566, Egypt;
| | - Joseph N. Shohdy
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Oct. 6, Giza 12566, Egypt;
| | - Doaa Ahmed El-Setouhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
| | - Marianne J. Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (D.A.E.-S.); (M.E.-N.)
- Correspondence:
| |
Collapse
|
45
|
Flavonoids: Food associations, therapeutic mechanisms, metabolism and nanoformulations. Food Res Int 2022; 157:111442. [PMID: 35761682 DOI: 10.1016/j.foodres.2022.111442] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/09/2023]
Abstract
Flavonoids possess an impressive therapeutic potential, thereby imparting them a nutraceutical character. As it becomes increasingly common to consume foods associated with healing properties, it is imperative to understand the associations of different foods with different classes of nutraceutic compounds, and their mechanisms of therapeutic action. At the same time, it is important to address the limitations thereof so that plausible future directions may be drawn. This review summarizes the food associations of flavonoids, and discusses the mechanisms responsible for imparting them their nutraceutic properties, detailing the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway, inhibition of inflammatory signaling pathways such as toll-like receptor (TLR), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), cyclooxygenase 2 (COX-2) and lipoxygenase-2 (LOX-2) mediators. Further on, the review explains the mechanism of flavonoids metabolism, reasons for low bioavailability and thereafter recapitulates the role of technological interventions to overcome the limitations, with a particular focus on nanoformulations that utilize the synergy between flavonoids and biocompatible materials used as nanocarriers, as reported in works spanning over a decade. It is the Generally Recognized as Safe (GRAS) classified carriers that will become the basis for developing functional formulations. It is promisingly noteworthy that some flavonoid formulations have been commercialized and mentioned therein. Such commercially viable and safe for consumption technological applications pave way for bringing science to the table, and add value to the innate properties of flavonoids.
Collapse
|
46
|
A Narrative Review of the Potential Roles of Lipid-Based Vesicles (Vesiculosomes) in Burn Management. Sci Pharm 2022. [DOI: 10.3390/scipharm90030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burn injuries can have a lasting effect on people’s quality of life, as they negatively impact their physical and mental health. Then, they are likely to suffer psychological problems as a result. A serious problem is that deep burns are more challenging to treat due to their slow healing rate and susceptibility to microbial infection. Conventional topical medications used for burn treatment are sometimes ineffective because they cannot optimize their ability of transcutaneous absorption at the targeted site and accelerate healing. However, nanotechnology offers excellent prospects for developing current medical wound therapies and is capable of addressing issues such as low drug stability, water solubility, permeability, and bioavailability. The current review focuses on lipid-based vesicles (vesiculosomes) as an example of advanced delivery systems, showing their potential clinical applications in burn wound management. Vesiculosomes may help overcome impediments including the low bioavailability of active agents, offering the controlled release of drugs, increased drug stability, fewer side effects, and reduced dosing frequency, which will ultimately improve therapeutic efficacy and patient compliance. We discuss the application of various types of vesiculosomes such as liposomes, niosomes, ethosomes, cubosomes, transfersomes, and phytosomes in burn healing therapy, as these demonstrate superior skin penetration compared to conventional burn topical treatment. We also highlight their noteworthy uses in the formulation of natural products and discuss the current status as well as future perspectives of these carriers in burn management. Furthermore, the burn treatment options currently available in the market are also summarized.
Collapse
|
47
|
Shriram RG, Moin A, Alotaibi HF, Khafagy ES, Al Saqr A, Abu Lila AS, Charyulu RN. Phytosomes as a Plausible Nano-Delivery System for Enhanced Oral Bioavailability and Improved Hepatoprotective Activity of Silymarin. Pharmaceuticals (Basel) 2022; 15:ph15070790. [PMID: 35890088 PMCID: PMC9318442 DOI: 10.3390/ph15070790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Silymarin, a phyto-constituent derived from the plant Silybum marianum, has been widely acknowledged for its hepatoprotective activities. Nevertheless, its clinical utility is adversely hampered by its poor water-solubility and its limited oral bioavailability. The aim of this study was to investigate the efficacy of phospholipid-based phytosomes for enhancing the oral bioavailability of silymarin. The phytosomes were prepared using the solvent evaporation technique and were optimized using a full factorial design. The optimized silymarin phytosomal formulation was then characterized for particle size, surface morphology, aqueous solubility, and in vitro drug release. Furthermore, in vivo antioxidant activity, hepatoprotective activity and oral bioavailability of the optimized formula were investigated in a rat model. The prepared silymarin phytosomes were discrete particles with a porous, nearly smooth surface and were 218.4 ± 2.54 nm in diameter. In addition, the optimized silymarin phytosomal formulation showed a significant improvement in aqueous solubility (~360 µg/mL) compared to pure silymarin and manifested a higher rate and extent of silymarin release from the optimized formula in dissolution studies. The in vivo assessment studies revealed that the optimized silymarin phytosomal formulation efficiently exerted a hepatoprotective effect in a CCl4-induced hepatotoxicity rat model via restoring the normal levels of antioxidant enzymes and ameliorating cellular abnormalities caused by CCl4-intoxication. Most notably, as compared to pure silymarin, the optimized silymarin phytosomal formulation significantly improved silymarin oral bioavailability, as indicated by a 6-fold increase in the systemic bioavailability. Collectively, phytosomes might represent a plausible phospholipid-based nanocarrier for improving the oral bioavailability of phyto-constituents with poor aqueous solubility.
Collapse
Affiliation(s)
- Ravi Gundadka Shriram
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore 575018, Karnataka, India;
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia;
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdul Rahman University, Riyadh 11671, Saudi Arabia;
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (E.-S.K.); (A.A.S.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (E.-S.K.); (A.A.S.)
| | - Amr Selim Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (R.N.C.)
| | - Rompicherla Narayana Charyulu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Mangalore 575018, Karnataka, India;
- Correspondence: (A.S.A.L.); (R.N.C.)
| |
Collapse
|
48
|
Dubey SK, Dey A, Singhvi G, Pandey MM, Singh V, Kesharwani P. Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf B Biointerfaces 2022; 214:112440. [PMID: 35344873 DOI: 10.1016/j.colsurfb.2022.112440] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
Abstract
The cosmetic industry is dynamic and ever-evolving. Especially with the introduction and incorporation of nanotechnology-based approaches into cosmetics for evincing novel formulations that confers aesthetic as well as therapeutic benefits. Nanocosmetics acts via numerous delivery mechanisms which involves lipid nanocarrier systems, polymeric or metallic nanoparticles, nanocapsules, dendrimers, nanosponges,etc. Each of these, have particular characteristic properties, which facilitates increased drug loading, enhanced absorption, better cosmetic efficacy, and many more. This article discusses the different classes of nanotechnology-based cosmetics and the nanomaterials used for their formulation, followed by outlining the categories of nanocosmetics and the scope of their utility pertaining to skin, hair, nail, lip, and/or dental care and protection thereof. This review also highlights and discusses about the key drivers of the cosmetic industry and the impending need of corroborating a healthy regulatory framework, refocusing attention towards consumer needs and trends, inculcating sustainable techniques and tenets of green ecological principles, and lastly making strides in nano-technological advancements which will further propel the growth of the cosmetic industry.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Anuradha Dey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Murali Manohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
49
|
Technologies for Solubility, Dissolution and Permeation Enhancement of Natural Compounds. Pharmaceuticals (Basel) 2022; 15:ph15060653. [PMID: 35745572 PMCID: PMC9227247 DOI: 10.3390/ph15060653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 12/10/2022] Open
Abstract
The current review is based on the advancements in the field of natural therapeutic agents which could be utilized for a variety of biomedical applications and against various diseases and ailments. In addition, several obstacles have to be circumvented to achieve the desired therapeutic effectiveness, among which limited dissolution and/or solubility and permeability are included. To counteract these issues, several advancements in the field of natural therapeutic substances needed to be addressed. Therefore, in this review, the possible techniques for the dissolution/solubility and permeability improvements have been addressed which could enhance the dissolution and permeability up to several times. In addition, the conventional and modern isolation and purification techniques have been emphasized to achieve the isolation and purification of single or multiple therapeutic constituents with convenience and smarter approaches. Moreover, a brief overview of advanced natural compounds with multiple therapeutic effectiveness have also been anticipated. In brief, enough advancements have been carried out to achieve safe, effective and economic use of natural medicinal agents with improved stability, handling and storage.
Collapse
|
50
|
Chen RP, Chavda VP, Patel AB, Chen ZS. Phytochemical Delivery Through Transferosome (Phytosome): An Advanced Transdermal Drug Delivery for Complementary Medicines. Front Pharmacol 2022; 13:850862. [PMID: 35281927 PMCID: PMC8904565 DOI: 10.3389/fphar.2022.850862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Transdermal drug delivery aims to create a safe and effective method of administering drugs through the skin that attracts a lot of attention and investment due to the constant progress in the field. Transferosomes are flexible or malleable vesicles (having almost the same structure as liposomes but with better skin penetration properties) discovered initially in the early 90s. The name transferosomes, which means "carrying bodies," is coined from the Latin phrase "Transferee," which means "to carry through," and the Greek term "soma," meaning "body." In comparison to typical herbal extracts, phytosomes (Transferosomes) are created by attaching specific herbal extracts to phosphatidylcholine, resulting in a formulation with increased solubility and, hence, better absorption, resulting in improved pharmacokinetic and pharmacodynamic features of the entrapped drugs. We are using the word phytosomes and transferosomes interchangeably as we have consolidated vesicular delivery of herbal drugs through skin. In this mini-review, we have demonstrated the enormous potential of developing nanotechnology to deliver bioactive phytochemicals, with a special emphasis on phytosomes (Transferosomes) as a unique lipid-based nanocarrier for transdermal drug delivery.
Collapse
Affiliation(s)
- Rong-Ping Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, India
| | - Aayushi B Patel
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, United States
| |
Collapse
|