1
|
Engelbrecht-Roberts M, Miles X, Vandevoorde C, de Kock M. An Evaluation of the Potential Radiosensitization Effect of Spherical Gold Nanoparticles to Induce Cellular Damage Using Different Radiation Qualities. Molecules 2025; 30:1038. [PMID: 40076263 PMCID: PMC11902069 DOI: 10.3390/molecules30051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025] Open
Abstract
Global disparities in cancer prevention, detection, and treatment demand a unified international effort to reduce the disease's burden and improve outcomes. Despite advances in chemotherapy and radiotherapy, many tumors remain resistant to these treatments. Gold nanoparticles (AuNPs) have shown promise as radiosensitizers, enhancing the effectiveness of low-energy X-rays by emitting Auger electrons that cause localized cellular damage. In this study, spherical AuNPs of 5 nm and 10 nm were characterized and tested on various cell lines, including malignant breast cells (MCF-7), non-malignant cells (CHO-K1 and MCF-10A), and human lymphocytes. Cells were treated with AuNPs and irradiated with attenuated 6 megavoltage (MV) X-rays or p(66)/Be neutron radiation to assess DNA double-strand break (DSB) damage, cell viability, and cell cycle progression. The combination of AuNPs and neutron radiation induced higher levels of γ-H2AX foci and micronucleus formation compared to treatments with AuNPs or X-ray radiation alone. AuNPs alone reduced cellular kinetics and increased the accumulation of cells in the G2/M phase, suggesting a block of cell cycle progression. For cell proliferation, significant effects were only observed at the concentration of 50 μg/mL of AuNPs, while lower concentrations had no inhibitory effect. Further research is needed to quantify internalized AuNPs and correlate their concentration with the observed cellular effects to unravel the biological mechanisms of their radioenhancement.
Collapse
Affiliation(s)
- Monique Engelbrecht-Roberts
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, iThemba LABS (NRF), Cape Town 7100, South Africa
| | - Xanthene Miles
- Radiation Biophysics Division, Separated Sector Cyclotron Laboratory, iThemba LABS (NRF), Cape Town 7100, South Africa
| | - Charlot Vandevoorde
- Space Radiation Biology, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - Maryna de Kock
- Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
2
|
Korolkov IV, Zaboronok A, Izbasar KA, Bekbol ZA, Lissovskaya LI, Zibert AV, Shakirzyanov RI, Korganbayeva LN, Yang H, Ishikawa E, Zdorovets MV. Synthesis of Gd-DTPA Carborane-Containing Compound and Its Immobilization on Iron Oxide Nanoparticles for Potential Application in Neutron Capture Therapy. Pharmaceutics 2024; 16:797. [PMID: 38931918 PMCID: PMC11207315 DOI: 10.3390/pharmaceutics16060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer is one of the leading causes of global mortality, and its incidence is increasing annually. Neutron capture therapy (NCT) is a unique anticancer modality capable of selectively eliminating tumor cells within normal tissues. The development of accelerator-based, clinically mountable neutron sources has stimulated a worldwide search for new, more effective compounds for NCT. We synthesized magnetic iron oxide nanoparticles (NPs) that concurrently incorporate boron and gadolinium, potentially enhancing the effectiveness of NCT. These magnetic nanoparticles underwent sequential modifications through silane polycondensation and allylamine graft polymerization, enabling the creation of functional amino groups on their surface. Characterization was performed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), dynamic light scattering (DLS), thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM). ICP-AES measurements indicated that boron (B) content in the NPs reached 3.56 ppm/mg, while gadolinium (Gd) averaged 0.26 ppm/mg. Gadolinium desorption was observed within 4 h, with a peak rate of 61.74%. The biocompatibility of the NPs was confirmed through their relatively low cytotoxicity and sufficient cellular tolerability. Using NPs at non-toxic concentrations, we obtained B accumulation of up to 5.724 × 1010 atoms per cell, sufficient for successful NCT. Although limited by its content in the NP composition, the Gd amount may also contribute to NCT along with its diagnostic properties. Further development of the NPs is ongoing, focusing on increasing the boron and gadolinium content and creating active tumor targeting.
Collapse
Affiliation(s)
- Ilya V. Korolkov
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Alexander Zaboronok
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (H.Y.); (E.I.)
| | - Kairat A. Izbasar
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Zhangali A. Bekbol
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Lana I. Lissovskaya
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Alexandr V. Zibert
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
| | - Rafael I. Shakirzyanov
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Luiza N. Korganbayeva
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| | - Haolan Yang
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (H.Y.); (E.I.)
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (H.Y.); (E.I.)
| | - Maxim V. Zdorovets
- The Institute of Nuclear Physics, Ibragimov Str. 1, 050032 Almaty, Kazakhstan; (K.A.I.); (Z.A.B.); (L.I.L.); (M.V.Z.)
- Engineering Profile Laboratory, L.N. Gumilyov Eurasian National University, Satpaev Str. 5, 010008 Astana, Kazakhstan; (R.I.S.); (L.N.K.)
| |
Collapse
|
3
|
Zavestovskaya IN, Kasatova AI, Kasatov DA, Babkova JS, Zelepukin IV, Kuzmina KS, Tikhonowski GV, Pastukhov AI, Aiyyzhy KO, Barmina EV, Popov AA, Razumov IA, Zavjalov EL, Grigoryeva MS, Klimentov SM, Ryabov VA, Deyev SM, Taskaev SY, Kabashin AV. Laser-Synthesized Elemental Boron Nanoparticles for Efficient Boron Neutron Capture Therapy. Int J Mol Sci 2023; 24:17088. [PMID: 38069412 PMCID: PMC10707216 DOI: 10.3390/ijms242317088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is one of the most appealing radiotherapy modalities, whose localization can be further improved by the employment of boron-containing nanoformulations, but the fabrication of biologically friendly, water-dispersible nanoparticles (NPs) with high boron content and favorable physicochemical characteristics still presents a great challenge. Here, we explore the use of elemental boron (B) NPs (BNPs) fabricated using the methods of pulsed laser ablation in liquids as sensitizers of BNCT. Depending on the conditions of laser-ablative synthesis, the used NPs were amorphous (a-BNPs) or partially crystallized (pc-BNPs) with a mean size of 20 nm or 50 nm, respectively. Both types of BNPs were functionalized with polyethylene glycol polymer to improve colloidal stability and biocompatibility. The NPs did not initiate any toxicity effects up to concentrations of 500 µg/mL, based on the results of MTT and clonogenic assay tests. The cells with BNPs incubated at a 10B concentration of 40 µg/mL were then irradiated with a thermal neutron beam for 30 min. We found that the presence of BNPs led to a radical enhancement in cancer cell death, namely a drop in colony forming capacity of SW-620 cells down to 12.6% and 1.6% for a-BNPs and pc-BNPs, respectively, while the relevant colony-forming capacity for U87 cells dropped down to 17%. The effect of cell irradiation by neutron beam uniquely was negligible under these conditions. Finally, to estimate the dose and regimes of irradiation for future BNCT in vivo tests, we studied the biodistribution of boron under intratumoral administration of BNPs in immunodeficient SCID mice and recorded excellent retention of boron in tumors. The obtained data unambiguously evidenced the effect of a neutron therapy enhancement, which can be attributed to efficient BNP-mediated generation of α-particles.
Collapse
Affiliation(s)
- Irina N. Zavestovskaya
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (M.S.G.); (V.A.R.)
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Anna I. Kasatova
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Dmitry A. Kasatov
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Julia S. Babkova
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ivan V. Zelepukin
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Ksenya S. Kuzmina
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Gleb V. Tikhonowski
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Andrei I. Pastukhov
- LP3, Aix-Marseille University, CNRS, 13288 Marseille, France; (A.I.P.); (A.V.K.)
| | - Kuder O. Aiyyzhy
- A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (K.O.A.); (E.V.B.)
| | - Ekaterina V. Barmina
- A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (K.O.A.); (E.V.B.)
| | - Anton A. Popov
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Ivan A. Razumov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.R.); (E.L.Z.)
| | - Evgenii L. Zavjalov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (I.A.R.); (E.L.Z.)
| | - Maria S. Grigoryeva
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (M.S.G.); (V.A.R.)
| | - Sergey M. Klimentov
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
| | - Vladimir A. Ryabov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia; (M.S.G.); (V.A.R.)
| | - Sergey M. Deyev
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI, Moscow 115409, Russia (I.V.Z.); (G.V.T.); (A.A.P.); (S.M.K.); (S.M.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Laboratory of Molecular Pharmacology, Institute of Molecular Theranostics, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
- “Biomarker” Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Sergey Yu. Taskaev
- Laboratory of BNCT, Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; (A.I.K.); (D.A.K.); (K.S.K.); (S.Y.T.)
| | - Andrei V. Kabashin
- LP3, Aix-Marseille University, CNRS, 13288 Marseille, France; (A.I.P.); (A.V.K.)
| |
Collapse
|
4
|
Miyoshi H, Okuno K. Selective detection of fast and thermal neutrons in mixed-radiation fields using tungsten-silica and gold-iodine-silica nanoparticles and their boron-loaded aqueous dispersions. Appl Radiat Isot 2023; 202:111074. [PMID: 37890242 DOI: 10.1016/j.apradiso.2023.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Tungsten-silica and gold-iodine-silica nanoparticles and their boron-loaded aqueous dispersions were used to selectively detect fast and thermal neutrons in mixed-radiation fields generated by a cyclotron on the order of mSv at a neutron flux of 1.0 ×106(neutron/sec∙cm2). The photo-image intensity, fluorescence spectra, absorption spectra, and XRD of their aqueous dispersions were measured immediately and eighteen days after irradiation. The immediate measurements of photo-image intensity and fluorescence spectral area ratios for gold-iodine-silica nanoparticle aqueous dispersions indicated the dose dependence of photo-image intensity and fluorescence spectral area ratios. Measurements of the relative fluorescence and absorption spectral areas of gold-iodine-silica nanoparticle aqueous dispersions 18 days after irradiation also showed similar dose dependences. The precipitates of gold-iodine-silica nanoparticles showed a linear relationship between the XRD peak ratio and the dose with a correlation coefficient of 0.9. The photo-image intensities, fluorescence spectral area, absorption spectral area, and XRD peak ratios were found to be affected by fast and thermal neutrons. Simple methods of fluorescence, absorption, and XRD measurements are proposed for the selective detection of fast and thermal neutrons in mixed-radiation fields.
Collapse
Affiliation(s)
- Hirokazu Miyoshi
- Advance Radiation Research, Education, And Management Center, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 7708503, Japan.
| | - Koichi Okuno
- Technical Research Institute, Hazama-Ando Co., Ltd., 515-1 Karima, Tsukuba, Ibaraki, 3050822, Japan
| |
Collapse
|
5
|
Potseleev V, Uspenskii S, Trofimchuk E, Bolshakova A, Kasatova A, Kasatov D, Taskaev S. Nanocomposite Materials Based on Polylactide and Gold Complex Compounds for Absorbed Dose Diagnostics in BNCT. Int J Mol Sci 2023; 24:16492. [PMID: 38003683 PMCID: PMC10671075 DOI: 10.3390/ijms242216492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In this study, approaches to the synthesis of complex compound of gold with cysteine [AuCys]n for measuring absorbed dose in boron neutron capture therapy (BNCT) were developed. The dependence of the complex particle size on pH were established. Nanocomposite materials based on polylactide containing [AuCys]n particles with an average size of about 20 nm were obtained using the crazing mechanism. The structure of obtained materials was studied by electron microscopy. The release kinetics of [AuCys]n from polymer matrix were investigated. Release of [AuCys]n from the volume of the polymeric matrix had a delayed start-this process began only after 24 h and was characterized by an effective rate constant of 1 μg/h from a 20 mg composite sample. At the same time, in vitro studies showed that the concentration of 6.25 μg/mL was reliably safe and did not reduce the survival of U251 and SW-620 cells.
Collapse
Affiliation(s)
- Vladislav Potseleev
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70, Profsoyuznaya Str., 117393 Moscow, Russia;
- Faculty of Chemistry, Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia; (E.T.); (A.B.)
| | - Sergey Uspenskii
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70, Profsoyuznaya Str., 117393 Moscow, Russia;
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.)
| | - Elena Trofimchuk
- Faculty of Chemistry, Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia; (E.T.); (A.B.)
| | - Anastasia Bolshakova
- Faculty of Chemistry, Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia; (E.T.); (A.B.)
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.)
| | - Dmitrii Kasatov
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.)
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.)
| |
Collapse
|
6
|
Bikchurina M, Bykov T, Byambatseren E, Ibrahem I, Kasatov D, Kolesnikov I, Konovalova V, Koshkarev A, Makarov A, Ostreinov G, Savinov S, Sokolova E, Sorokin I, Shchudlo I, Sycheva T, Verkhovod G, Taskaev S. VITA high flux neutron source for various applications. JOURNAL OF NEUTRON RESEARCH 2022. [DOI: 10.3233/jnr-220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A high flux neutron source based on a vacuum-insulated tandem accelerator (VITA) and a lithium target has been proposed and developed at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. We describe VITA which provides a dc proton/deuteron beam with an energy within a range of 0.6–2.3 MeV with a current from 1 nA to 10 mA. VITA is also capable of producing α-particles through the 7Li(p,α)α and 11B(p,α) α α reactions, 478 keV photons through the 7Li(p,p ′ γ)7Li reaction and positrons through the 19F(p,e+e−)16O reaction. We present several applications of this source: boron neutron capture therapy, nuclear cross sections determination, lithium target study, radiation blistering of metals during proton implantation and the radiation testing of promising materials.
Collapse
Affiliation(s)
- Marina Bikchurina
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Tymofey Bykov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | - Dmitrii Kasatov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Iaroslav Kolesnikov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Alexey Koshkarev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Aleksandr Makarov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Georgii Ostreinov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Sergey Savinov
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Evgeniia Sokolova
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Igor Sorokin
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Ivan Shchudlo
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Tatiana Sycheva
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Gleb Verkhovod
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
7
|
Zaboronok A, Khaptakhanova P, Uspenskii S, Bekarevich R, Mechetina L, Volkova O, Mathis BJ, Kanygin V, Ishikawa E, Kasatova A, Kasatov D, Shchudlo I, Sycheva T, Taskaev S, Matsumura A. Polymer-Stabilized Elemental Boron Nanoparticles for Boron Neutron Capture Therapy: Initial Irradiation Experiments. Pharmaceutics 2022; 14:pharmaceutics14040761. [PMID: 35456595 PMCID: PMC9032815 DOI: 10.3390/pharmaceutics14040761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/24/2023] Open
Abstract
Sufficient boron-10 isotope (10B) accumulation by tumor cells is one of the main requirements for successful boron neutron capture therapy (BNCT). The inability of the clinically registered 10B-containing borophenylalanine (BPA) to maintain a high boron tumor concentration during neutron irradiation after a single injection has been partially solved by its continuous infusion; however, its lack of persistence has driven the development of new compounds that overcome the imperfections of BPA. We propose using elemental boron nanoparticles (eBNPs) synthesized by cascade ultrasonic dispersion and destruction of elemental boron microparticles and stabilized with hydroxyethylcellulose (HEC) as a core component of a novel boron drug for BNCT. These HEC particles are stable in aqueous media and show no apparent influence on U251, U87, and T98G human glioma cell proliferation without neutron beam irradiation. In BNCT experiments, cells incubated with eBNPs or BPA at an equivalent concentration of 40 µg 10B/mL for 24 h or control cells without boron were irradiated at an accelerator-based neutron source with a total fluence of thermal and epithermal neutrons of 2.685, 5.370, or 8.055 × 1012/cm2. The eBNPs significantly reduced colony-forming capacity in all studied cells during BNCT compared to BPA, verified by cell-survival curves fit to the linear-quadratic model and calculated radiobiological parameters, though the effect of both compounds differed depending on the cell line. The results of our study warrant further tumor targeting-oriented modifications of synthesized nanoparticles and subsequent in vivo BNCT experiments.
Collapse
Affiliation(s)
- Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +81-29-853-3220; Fax: +81-29-853-3214
| | - Polina Khaptakhanova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70, Profsoyuznaya Street, 117393 Moscow, Russia; (P.K.); (S.U.)
| | - Sergey Uspenskii
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70, Profsoyuznaya Street, 117393 Moscow, Russia; (P.K.); (S.U.)
| | - Raman Bekarevich
- The Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Advanced Microscopy Laboratory, Trinity College Dublin, The University of Dublin, D02 W272 Dublin, Ireland;
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Ludmila Mechetina
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, 8/2 Lavrentieva, 630090 Novosibirsk, Russia; (L.M.); (O.V.)
| | - Olga Volkova
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Novosibirsk, 8/2 Lavrentieva, 630090 Novosibirsk, Russia; (L.M.); (O.V.)
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba 305-8576, Japan;
| | - Vladimir Kanygin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia;
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Dmitrii Kasatov
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Ivan Shchudlo
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Tatiana Sycheva
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Lavrentieva, 630090 Novosibirsk, Russia; (A.K.); (D.K.); (I.S.); (T.S.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Street, 630090 Novosibirsk, Russia
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; (E.I.); (A.M.)
| |
Collapse
|
8
|
Kanygin V, Kichigin A, Zaboronok A, Kasatova A, Petrova E, Tsygankova A, Zavjalov E, Mathis BJ, Taskaev S. In Vivo Accelerator-Based Boron Neutron Capture Therapy for Spontaneous Tumors in Large Animals: Case Series. BIOLOGY 2022; 11:138. [PMID: 35053138 PMCID: PMC8773183 DOI: 10.3390/biology11010138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Abstract
(1) Background: accelerator-based neutron sources are a new frontier for BNCT but many technical issues remain. We aimed to study such issues and results in larger-animal BNCT (cats and dogs) with naturally occurring, malignant tumors in different locations as an intermediate step in translating current research into clinical practice. (2) Methods: 10 pet cats and dogs with incurable, malignant tumors that had no treatment alternatives were included in this study. A tandem accelerator with vacuum insulation was used as a neutron source. As a boron-containing agent, 10B-enriched sodium borocaptate (BSH) was used at a dose of 100 mg/kg. Animal condition as well as tumor progression/regression were monitored. (3) Results: regression of tumors in response to treatment, improvements in the overall clinical picture, and an increase in the estimated duration and quality of life were observed. Treatment-related toxicity was mild and reversible. (4) Conclusions: our study contributes to preparations for human BNCT clinical trials and suggests utility for veterinary oncology.
Collapse
Affiliation(s)
- Vladimir Kanygin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
| | - Aleksandr Kichigin
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
| | - Alexander Zaboronok
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan
| | - Anna Kasatova
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.K.); (S.T.)
| | - Elena Petrova
- Veterinary Clinic “Best”, 57 Frunze Str., 630005 Novosibirsk, Russia;
| | - Alphiya Tsygankova
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Evgenii Zavjalov
- Laboratory of Medical and Biological Problems of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia; (V.K.); (A.K.); (A.T.); (E.Z.)
- Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics SB RAS, 10, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba 305-8576, Ibaraki, Japan;
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11, Acad. Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.K.); (S.T.)
- Laboratory of BNCT, Department of Physics, Novosibirsk State University, 1 Pirogov Str., 630090 Novosibirsk, Russia
| |
Collapse
|
9
|
Packaging and Delivery of Asthma Therapeutics. Pharmaceutics 2021; 14:pharmaceutics14010092. [PMID: 35056988 PMCID: PMC8777963 DOI: 10.3390/pharmaceutics14010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma is a life-altering, chronic disease of heterogenous origin that features a complex interplay of immune and environmental signaling. Although very little progress has been made in prevention, diverse types of medications and delivery systems, including nanoscale systems, have been or are currently being developed to control airway inflammation and prevent exacerbations and fibrosis. These medications are delivered through mechanical methods, with various inhalers (with benefits and drawbacks) existing, and new types offering some variety in delivery. Of particular interest is the progress being made in nanosized materials for efficient penetration into the epithelial mucus layer and delivery into the deepest parts of the lungs. Liposomes, nanoparticles, and extracellular vesicles, both natural and synthetic, have been explored in animal models of asthma and have produced promising results. This review will summarize and synthesize the latest developments in both macro-(inhaler) and micro-sized delivery systems for the purpose of treating asthma patients.
Collapse
|
10
|
Dose-Dependent Suppression of Human Glioblastoma Xenograft Growth by Accelerator-Based Boron Neutron Capture Therapy with Simultaneous Use of Two Boron-Containing Compounds. BIOLOGY 2021; 10:biology10111124. [PMID: 34827117 PMCID: PMC8615214 DOI: 10.3390/biology10111124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Accelerator-based boron neutron capture therapy (BNCT) has opened up new perspectives in increasing cancer treatment efficacy, including malignant brain tumors and particularly glioblastoma. We studied dosimetry control optimization, neutron beam parameter adjustment, and two boron compound combinations (along with single and double irradiation regimens) to assess safety and increase therapy efficacy, using a U87MG xenotransplant immunodeficient mouse model. In two sets of experiments, we achieved increases in tumor-growth inhibition (to 80–83%), a neutron capture therapy ratio of 2:1 (two times higher neutron capture therapy efficacy than neutron irradiation without boron), and increases in animal life expectancy, from 9 to 107 days, by treatment parameter adjustment. These results will contribute to the development of clinical-trial protocols for accelerator-based BNCT and further innovations in this cancer treatment method. Abstract (1) Background: Developments in accelerator-based neutron sources moved boron neutron capture therapy (BNCT) to the next phase, where new neutron radiation parameters had to be studied for the treatment of cancers, including brain tumors. We aimed to further improve accelerator-BNCT efficacy by optimizing dosimetry control, beam parameters, and combinations of boronophenylalanine (BPA) and sodium borocaptate (BSH) administration in U87MG xenograft-bearing immunodeficient mice with two different tumor locations. (2) Methods: The study included two sets of experiments. In Experiment #1, BPA only and single or double irradiation in higher doses were used, while, in Experiment #2, BPA and BSH combinations and single or double irradiation with dosage adjustment were analyzed. Mice without treatment or irradiation after BPA or BPA+BSH injection were used as controls. (3) Results: Irradiation parameter adjustment and BPA and BSH combination led to 80–83% tumor-growth inhibition index scores, irradiation:BNCT ratios of 1:2, and increases in animal life expectancy from 9 to 107 days. (4) Conclusions: Adjustments in dosimetry control, calculation of irradiation doses, and combined use of two 10B compounds allowed for BNCT optimization that will be useful in the development of clinical-trial protocols for accelerator-based BNCT.
Collapse
|