1
|
Jiang Q, Wei Z, Liu P, Li Z, Jiang H, Cao Y, Zhang B, Yan Y, He Y. Global trends and research hotspots in perioperative management of lung cancer: a bibliometric analysis from 2004 to 2024. Front Immunol 2024; 15:1500686. [PMID: 39640262 PMCID: PMC11617563 DOI: 10.3389/fimmu.2024.1500686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Objective This article aims to analyze the current status and research hotspots of literature related to perioperative management of patients with Lung Cancer and provide reference for future research directions. Methods This study conducted a bibliometric analysis of research literature related to perioperative management of Lung Cancer published between 2004 and 2024, retrieved from the Web of Science database. R software and VOSviewer were used for analyzing keyword clusters and research themes, revealing trends and frontiers in this field. Results A total of 4,942 studies on perioperative management of lung cancer were included. In recent years, research in this area has shown a global upward trend, with particular focus on surgical risk assessment, complication prevention, and postoperative management. Perioperative biomarkers before and after surgery have emerged as a central focus due to their impact on diagnosis and treatment. The application of novel therapies, such as targeted drugs and immunotherapy, in perioperative management is also becoming a significant research hotspot. Additionally, China has been a leading contributor to research output in this field, demonstrating strong performance in international collaborations. Conclusion Perioperative management is a critical factor influencing the prognosis of Resectable lung cancer patients. Through a systematic analysis of the current status and research hotspots in perioperative management of lung cancer, this study provides valuable references for future clinical practice and research, particularly regarding the integration of novel therapies to optimize patient outcomes.
Collapse
Affiliation(s)
- Qinling Jiang
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| | - Zhuheng Wei
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Pingping Liu
- Department of Pharmacy, Sanya Central Hospital,The Third People’s Hospital of Hainan Province, Sanya, Hainan, China
| | - Zonghuai Li
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Huiqin Jiang
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yilin Cao
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Yuanyuan Yan
- Department of Pharmacy, Sanya Central Hospital,The Third People’s Hospital of Hainan Province, Sanya, Hainan, China
| | - Yulong He
- Department of Oncology, Nanxishan Hospital of the Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
2
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
3
|
Zhang H, Gan W, Fan D, Zheng P, Lv Q, Pan Q, Zhu W. Novel quinazoline-based dual EGFR/c-Met inhibitors overcoming drug resistance for the treatment of NSCLC: Design, synthesis and anti-tumor activity. Bioorg Chem 2024; 142:106938. [PMID: 37913585 DOI: 10.1016/j.bioorg.2023.106938] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have demonstrated the ability to impede tumor cell proliferation by suppressing EGFR expression. Nonetheless, patients undergoing treatment may acquire resistance, which may occur through an EGFR-dependent (such as T790M mutation) or an EGFR-independent (such as c-Met amplification) manner. Therefore, developing dual-target inhibitors might present a potential avenue for addressing treatment-acquired resistance in patients. Herein, we designed, synthesized, and screened several novel 4-phenoxyquinazoline derivatives, aiming to identify a potent dual EGFR/c-Met inhibitor for the treatment of NSCLC, among which H-22 emerged as the most promising candidate exhibiting significant antitumor properties. Moreover, we assessed the in vitro inhibitory effect of H-22 on EGFR kinase and c-Met kinase in five cancer cell lines. In addition, a series of functional experiments (cell cycle, apoptosis assays, in vitro/in vivo animal model, etc.) were conducted to further investigate the anti-tumor mechanisms of H-22. The present study revealed that H-22 exhibited strong antitumor activity both in vitro and in vivo. Interestingly, H-22 exhibited anti-proliferative activity (2.27-3.35 μM) similar to Afatinib against all five cancer cells, with inhibitory functions against EGFRWT, EGFRL858R/T790M, and c-Met kinases at a concentration of 64.8, 305.4 and 137.4 nM, respectively. Cell cycle analysis indicated that the antiproliferative activity of H-22 was associated with its ability to cause G2/M arrest. Furthermore, in vivo data showed that H-22 could inhibit tumor growth in our xenograft models and induce apoptosis. Collectively, our findings uncovered that H-22 is a novel dual EGFR and c-Met inhibitor and a prospective anti-tumor therapeutic drug.
Collapse
Affiliation(s)
- Han Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Wenhui Gan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Dang Fan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China
| | - Qiaoli Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, Jiangxi, 330029, PR China.
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China.
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, PR China.
| |
Collapse
|
4
|
Singh S, Sadhukhan S, Sonawane A. 20 years since the approval of first EGFR-TKI, gefitinib: Insight and foresight. Biochim Biophys Acta Rev Cancer 2023; 1878:188967. [PMID: 37657684 DOI: 10.1016/j.bbcan.2023.188967] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) actively involves in modulation of various cancer progression related mechanisms including angiogenesis, differentiation and migration. Therefore, targeting EGFR has surfaced as a prominent approach for the treatment of several types of cancers, including non-small cell lung cancer (NSCLC), pancreatic cancer, glioblastoma. Various first, second and third generation of EGFR tyrosine kinase inhibitors (EGFR-TKIs) have demonstrated effectiveness as an anti-cancer therapeutics. However, rapid development of drug resistance and mutations still remains a major challenge for the EGFR-TKIs therapy. Overcoming from intrinsic and acquired resistance caused by EGFR mutations warrants the further exploration of alternative strategies and discovery of novel inhibitors. In this review, we delve into the breakthrough discoveries have been made in previous 20 years, and discuss the currently ongoing efforts aimed to circumvent the chemo-resistance. We also highlight the new challenges, limitations and future directions for the development of improved therapeutic approaches such as fourth-generation EGFR-TKIs, peptides, nanobodies, PROTACs etc.
Collapse
Affiliation(s)
- Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala 678 623, India; Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Kerala 678 623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh 453 552, India.
| |
Collapse
|
5
|
He J, Ma P, Zhao D, Shi X, Guo R, Gao W, Shu Y. Safety, efficacy, and pharmacokinetics of SH-1028 in EGFR T790M-positive advanced non-small cell lung cancer patients: A dose-escalation phase 1 study. Cancer 2023; 129:1513-1522. [PMID: 36813747 DOI: 10.1002/cncr.34697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/16/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND SH-1028 is a new third-generation EGFR tyrosine kinase inhibitors (TKI) to benefit patients with EGFR T790M-mutated NSCLC. Here, the authors report its clinical safety, preliminary efficacy, and pharmacokinetic (PK) profile for the first time. METHODS Patients with EGFR T790M mutation, locally advanced non-small cell lung cancer (NSCLC), or metastatic NSCLC who had progressed after previous EGFR TKI therapy were eligible. Patients received SH-1028 at five oral dose levels (60 mg, 100 mg, 200 mg, 300 mg, and 400 mg) once daily until disease progression, unacceptable toxicity, or patient withdrawal. The primary end points were the safety, dose-limiting toxicity (DLT), maximum-tolerated dose (MTD), and PK profile. Secondary end points included objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS), etc. RESULTS: Data cut off on December 31, 2020, a total of 20 patients were enrolled during the trial, two of three patients in 300 mg cohort experienced a DLT, and no DLT was observed in 240 mg cohort, 240 mg was determined to be the MTD of SH-1028. A total of 95.0% (19 of 20) of patients reported treatment-related adverse events (TRAEs), and the incidence of serious adverse events was 20.0% (4 of 20). The ORR and DCR of the 200 mg cohort were 75% (95% confidence interval [CI], 19.41-99.37) and 75.0% (95% CI, 19.41-99.37), respectively. The overall ORR was 40% (95% CI, 19.12-63.95), and DCR was 70.0% (95% CI, 45.72-88.11). According to the PK profile, the dosage regimen for future studies was determined as 200 mg once daily. CONCLUSIONS SH-1028 showed a manageable safety and promising antitumor activity in patients with EGFR T790M mutation at the dose of 200 mg once daily. PLAIN LANGUAGE SUMMARY Lung cancer has a high morbidity and mortality, with an estimated 1.8 million deaths in 2020. Non-small cell lung cancer accounts for approximately 85% of lung cancer. First- or second-generation EGFR TKIs' weak selectivity often led to the occurrence of treatment-related adverse events, such as interstitial lung disease, rash, diarrhea, etc., along with acquired drug resistance within approximately 1 year. A dose of 200 mg of SH-1028 once daily showed a preliminary antitumor activity with manageable safety in patients with EGFR T790M mutation.
Collapse
Affiliation(s)
- Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongmei Zhao
- Nanjing Sanhome Pharmaceutical Company, Ltd, Nanjing, China
| | - Xinsheng Shi
- Nanjing Sanhome Pharmaceutical Company, Ltd, Nanjing, China
| | - Renhua Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Song Z, Zou K, Zou L. Immune checkpoint blockade for locally advanced or recurrent/metastatic cervical cancer: An update on clinical data. Front Oncol 2022; 12:1045481. [PMID: 36644634 PMCID: PMC9832370 DOI: 10.3389/fonc.2022.1045481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has shown great promise in the field of oncology, and recent clinical trials have illustrated that immune checkpoint blockade (ICB) is safe and effective at treating a range of tumor types. Cervical cancer (CC) is the fourth most common malignancy in women. However, first-line treatments for locally advanced cervical cancer (LACC) and recurrent/metastatic (R/M) CC have limited efficacy. Thus, it is necessary to explore new treatment approaches. The National Comprehensive Cancer Network (NCCN) currently recommends pembrolizumab, a programmed cell death protein 1 (PD-1) monoclonal antibody, as a first line therapy for individuals with R/M CC. This study reviews the progress of ICB therapy for LACC and R/M CC and describes the current status of the combination of ICB therapy and other therapeutic modalities, including radiotherapy, chemotherapy, targeted therapy, and other immunotherapies. The focus is placed on studies published since 2018 with the aim of highlighting novel CC-specific immunotherapeutic approaches and treatment targets.
Collapse
Affiliation(s)
- Zhuo Song
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Kun Zou
- Department of Radiation Oncology, The First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Lijuan Zou
- Department of Radiation Oncology, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Zhang L, Guan S, Meng F, Teng L, Zhong D. Next-generation sequencing of homologous recombination genes could predict efficacy of platinum-based chemotherapy in non-small cell lung cancer. Front Oncol 2022; 12:1035808. [PMID: 36591485 PMCID: PMC9794762 DOI: 10.3389/fonc.2022.1035808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
Background With the widespread use of next-generation sequencing (NGS) in clinical practice, an increasing number of biomarkers that predict a response to anti-tumor therapy in non-small cell lung cancer (NSCLC) has been identified. However, validated biomarkers that can be used to detect a response to platinum-based chemotherapy remain unavailable. Several studies have suggested that homologous recombination deficiency (HRD) may occur in response to platinum-based chemotherapy in ovarian cancer and breast cancer. However, currently there is a lack of proven and reliable HRD markers that can be used to screen for patients who may benefit from platinum-based chemotherapy, especially in NSCLC. Methods NGS was used to screen for gene mutations, including homologous recombination (HR) genes and common driver gene mutations in NSCLC. Cox regression analysis was performed to identify potential clinicopathological or gene mutation factors associated with survival in patients receiving platinum-based chemotherapy, while Kaplan-Meier analysis with the log-rank test was performed to assess the effect of HR gene mutations on progression-free survival (PFS). Results In a retrospective cohort of 129 patients with advanced NSCLC, 54 who received platinum-based chemotherapy with or without anti-angiogenic therapy were included in the analysis. Univariate and multivariate Cox proportional hazard regression analyses showed that HR gene mutations were associated with platinum-based chemotherapy sensitivity. Efficacy results indicated that the objective response rates (ORR) for patients with BRCA1/2 mutations and BRCA1/2 wild type were 75% and 30.4% (p=0.041), while the median PFS was 7.5 and 5.5 months (hazard ratio [HR], 0.52; 95% CI, 0.27-1.00; p=0.084), respectively. The ORRs of patients with HR gene mutations and HR gene wild type were 60% and 23.6% (p=0.01), and the median PFS was 7.5 and 5.2 months (HR, 0.56; 95% CI, 0.32-0.97; p=0.033), respectively. Conclusions HR gene mutations show potential as promising biomarkers that may predict sensitivity to platinum-based chemotherapy in advanced and metastatic NSCLC.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shasha Guan
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanlu Meng
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin Teng
- Hangzhou Jichenjunchuang Medical Laboratory Co. Ltd., Hangzhou, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, China,*Correspondence: Diansheng Zhong,
| |
Collapse
|
8
|
Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, Wang Y, Li W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol 2022; 15:94. [PMID: 35840984 PMCID: PMC9287895 DOI: 10.1186/s13045-022-01311-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), the receptor for members of the epidermal growth factor family, regulates cell proliferation and signal transduction; moreover, EGFR is related to the inhibition of tumor cell proliferation, angiogenesis, invasion, metastasis, and apoptosis. Therefore, EGFR has become an important target for the treatment of cancer, including non-small cell lung cancer, head and neck cancer, breast cancer, glioma, cervical cancer, and bladder cancer. First- to third-generation EGFR inhibitors have shown considerable efficacy and have significantly improved disease prognosis. However, most patients develop drug resistance after treatment. The challenge of overcoming intrinsic and acquired resistance in primary and recurrent cancer mediated by EGFR mutations is thus driving the search for alternative strategies in the design of new therapeutic agents. In view of resistance to third-generation inhibitors, understanding the intricate mechanisms of resistance will offer insight for the development of more advanced targeted therapies. In this review, we discuss the molecular mechanisms of resistance to third-generation EGFR inhibitors and review recent strategies for overcoming resistance, new challenges, and future development directions.
Collapse
Affiliation(s)
- Kunyu Shi
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| |
Collapse
|
9
|
Zhang Y, Wang X, Li A, Guan Y, Shen P, Ni Y, Han X. PP2A regulates metastasis and vasculogenic mimicry formation via PI3K/AKT/ZEB1 axis in non-small cell lung cancers. J Pharmacol Sci 2022; 150:56-66. [DOI: 10.1016/j.jphs.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
|
10
|
Liang M, Wang L, Sun Z, Chen X, Wang H, Qin L, Zhao W, Geng B. E3 ligase TRIM15 facilitates non-small cell lung cancer progression through mediating Keap1-Nrf2 signaling pathway. Cell Commun Signal 2022; 20:62. [PMID: 35534896 PMCID: PMC9082862 DOI: 10.1186/s12964-022-00875-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent studies have indicated that some members of the tripartite motif (TRIM) proteins function as important regulators for non-small cell lung cancer (NSCLC), However, the regulatory mechanism underpinning aberrant expression of TRIM in NSCLC remains unclear. Here we report that TRIM15 plays important roles in NSCLC progression through modulating Keap1-Nrf2 signaling pathway. METHODS TRIM15 expression was evaluated by western blot analysis, tissue microarray-based immunohistochemistry analysis. The interactions between TRIM15 and Keap1 were analyzed by co-immunoprecipitation (Co-IP) and immunofluorescence co-localization assay. The correlation between TRIM15 and Keap1 was measured by Co-IP and ubiquitination analysis in vitro. Gain- and lost-of-function experiments were used to detect TRIM15 promotes proliferation and invasion of NSCLC cells both in vitro and vivo. RESULTS Here, we revealed that TRIM15 was frequently upregulated in NSCLC samples and associated with poor prognosis. Functionally, TRIM15 knockdown resulted in decreased cancer cell proliferation and metastasis, whereas ectopic TRIM15 expression facilitated tumor cancer cell proliferation and metastasis in vitro and in vivo. Moreover, TRIM15 promoted cell proliferation and metastasis depends on its E3 ubiquitin ligase. Mechanistically, TRIM15 directly targeted Keap1 by ubiquitination and degradation, the principal regulator of Nrf2 degradation, leading to Nrf2 escaping from Keap1-mediated degradation, subsequently promoting antioxidant response and tumor progression. CONCLUSIONS Therefore, our study characterizes the pivotal roles of TRIM15 promotes NSCLC progression via Nrf2 stability mediated by promoting Keap1 ubiquitination and degradation and could be a valuable prognostic biomarker and a potential therapeutic target in NSCLC. Video Abstract.
Collapse
Affiliation(s)
- Manman Liang
- Department of Internal Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Lijing Wang
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Zhengui Sun
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Xingwu Chen
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Hanli Wang
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Lilong Qin
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Wenying Zhao
- Department of Medical Oncology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Biao Geng
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China.
| |
Collapse
|