1
|
Chyb M, Ferra BT, Kawka M, Skwarecka M, Dziadek B, Gatkowska J. Immunogenicity and protective efficacy of recombinant chimeric antigens based on surface proteins of Toxoplasma gondii. Front Immunol 2024; 15:1480349. [PMID: 39726608 PMCID: PMC11670819 DOI: 10.3389/fimmu.2024.1480349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Toxoplasmosis is caused by the opportunistic, cosmopolitan protozoan Toxoplasma gondii is one of the most common parasitoses in the world. This parasite can pose a threat to people with immunodeficiency but also to the fetus, since the invasion can lead to miscarriages. Moreover, this parasite can contribute to economic losses in livestock farming. These problems lead to the implementation of new, safe solutions for the development of effective toxoplasmosis immunoprophylaxis. Methods In this work, newly produced recombinant trivalent chimeric proteins of T. gondii, based on SAG1-SAG2 recombinant chimeric antigen that differ in one terminal antigenic component, were tested in terms of their ability to induce an effective post-vaccination response. Antigens were tested in vitro to assess their ability to elicit APC cells response and further mice of the C3H/HeOuJ strain were immunized using those antigens, to evaluate their immunogenicity and immunoprotective effect in vivo. Two weeks after the last dose mice were either sacrificed to assess selected parameters of the immune response or infected with T. gondii DX strain to determine the degree of protection one month later. Results The results of serological tests revealed a high level of serum IgG antibodies specific for the native T. gondii TLA antigens. TLA-stimulated splenocytes produced cytokines that are important in inhibiting protozoal invasion. Additionally, CD3+ CD4+ and CD3+ CD8+ T cell subpopulations of splenocytes were analysed by flow cytometry. One month after experimental infection mice were sacrificed, and their brains were isolated to count T. gondii tissue cyst. Immunization of mice with recombinant trivalent chimeric proteins of T. gondii resulted in reduction of tissue cyst burden rates reaching even 74%. Discussion The obtained results demonstrate strong immunogenicity of the studied proteins and will allow to select candidates for further research aimed at increasing the immunoprotective properties of experimental vaccines against toxoplasmosis based on T. gondii chimeric antigens.
Collapse
Affiliation(s)
- Maciej Chyb
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Bartłomiej Tomasz Ferra
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, Gdynia, Poland
| | - Malwina Kawka
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | | | - Bożena Dziadek
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Justyna Gatkowska
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Mazzone F, Klischan MKT, Greb J, Smits SHJ, Pietruszka J, Pfeffer K. Synthesis and In vitro evaluation of bichalcones as novel anti-toxoplasma agents. Front Chem 2024; 12:1406307. [PMID: 39104777 PMCID: PMC11298430 DOI: 10.3389/fchem.2024.1406307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by Toxoplasma gondii, an apicomplexan parasite that infects approximately a third of the world's human population. This disease can cause serious complications during pregnancy and can be fatal in immunocompromised hosts. The current treatment options for toxoplasmosis face several limitations. Thus, to address the urgent medical need for the discovery of novel anti-toxoplasma potential drug candidates, our research focused on exploring a series of monomeric and dimeric chalcones, polyphenolic molecules belonging to the class of flavonoids. Chalcones 1aa-1bg and axially chiral A-A'-connected bichalcones 2aa-2bg were evaluated in vitro against the proliferation of the parasite in a cell-based assay. A comparison of the efficacy demonstrated that, in several cases, bichalcones exhibited increased bioactivity compared to their corresponding monomeric counterparts. Among these compounds, a bichalcone with a phenyl substituent and a methyl moiety 2ab showed the most potent and selective inhibitory activity in the nanomolar range. Both enantiomers of this bichalcone were synthesized using an axially chiral biphenol building block. The biaryl bond was forged using Suzuki cross-coupling in water under micellar catalysis conditions. Separation of the atropisomers of this biphenol building block was conducted by chiral HPLC on a preparative scale. The biological evaluation of the enantiomers revealed that the (R a)-enantiomer (R a)-2ab is the eutomer. These studies suggest that bichalcones may be important drug candidates for further in vivo evaluations for the discovery of anti-toxoplasma drugs.
Collapse
Affiliation(s)
- Flaminia Mazzone
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Moritz K. T. Klischan
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Julian Greb
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies, Heinrich Heine University, Düsseldorf, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich, Jülich, Germany
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Ju K, Zhang Y, Xu Z, Li L, Zhao X, Zhou H. Protective Efficacy of a Novel DNA Vaccine with a CL264 Molecular Adjuvant against Toxoplasma gondii in a Murine Model. Vaccines (Basel) 2024; 12:577. [PMID: 38932306 PMCID: PMC11209281 DOI: 10.3390/vaccines12060577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Toxoplasmosis is a significant global zoonosis with devastating impacts, and an effective vaccine against toxoplasmosis for humans has not yet been developed. In this study, we designed and formulated a novel DNA vaccine encoding the inhibitor of STAT1 transcriptional activity (IST) of T. gondii utilizing the eukaryotic expression vector pEGFP-N1 for the first time, with CL264 being a molecular adjuvant. Following intramuscular injection of the vaccine into mice, the levels of antibodies and cytokines were assessed to evaluate the immune response. Additionally, mice were challenged with highly virulent RH-strain tachyzoites of T. gondii, and their survival time was observed. The results show that the levels of IgG in serum, the ratio of IgG2a/IgG1 and the levels of IFN-γ in splenocytes of mice were significantly higher in the pEGFP-TgIST group and the pEGFP-TgIST + CL264 group than in the control group. In addition, the proportion of CD4+/CD8+ T cells was higher in mice immunized with either the pEGFP-TgIST group (p < 0.001) or the pEGFP-TgIST + CL264 group (p < 0.05) compared to the three control groups. Notably, TgIST-immunized mice exhibited prolonged survival times after T. gondii RH strain infection (p < 0.05). Our findings collectively demonstrate that the TgIST DNA vaccine elicits a significant humoral and cellular immune response and offers partial protection against acute T. gondii infection in the immunized mice, which suggests that TgIST holds potential as a candidate for further development as a DNA vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (K.J.); (Y.Z.); (Z.X.); (L.L.); (X.Z.)
| |
Collapse
|
4
|
Ko T, Fumoto S, Kurosaki T, Nakashima M, Miyamoto H, Sasaki H, Nishida K. Interaction of γ-Polyglutamic Acid/Polyethyleneimine/Plasmid DNA Ternary Complexes with Serum Components Plays a Crucial Role in Transfection in Mice. Pharmaceutics 2024; 16:522. [PMID: 38675183 PMCID: PMC11053868 DOI: 10.3390/pharmaceutics16040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Typical examples of non-viral vectors are binary complexes of plasmid DNA with cationic polymers such as polyethyleneimine (PEI). However, problems such as cytotoxicity and hemagglutination, owing to their positively charged surfaces, hinder their in vivo use. Coating binary complexes with anionic polymers, such as γ-polyglutamic acid (γ-PGA), can prevent cytotoxicity and hemagglutination. However, the role of interactions between these complexes and serum components in in vivo gene transfer remains unclear. In this study, we analyzed the contribution of serum components to in vivo gene transfer using PEI/plasmid DNA binary complexes and γ-PGA/PEI/plasmid DNA ternary complexes. In binary complexes, heat-labile components in the serum greatly contribute to the hepatic and splenic gene expression of the luciferase gene. In contrast, serum albumin and salts affected the hepatic and splenic gene expression in the ternary complexes. Changes in physicochemical characteristics, such as increased particle size and decreased absolute values of ζ-potential, might be involved in the enhanced gene expression. These findings would contribute to a better understanding of in vivo non-viral gene transfer using polymers, such as PEI and γ-PGA.
Collapse
Affiliation(s)
- Tomotaka Ko
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tomoaki Kurosaki
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Moe Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hitoshi Sasaki
- Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
5
|
Sun HC, Deng PM, Fu Y, Deng JH, Xie RH, Huang J, Qi M, Shi TY. Protective efficacy of Toxoplasma gondii GRA12 or GRA7 recombinant proteins encapsulated in PLGA nanoparticles against acute Toxoplasma gondii infection in mice. Front Cell Infect Microbiol 2023; 13:1209755. [PMID: 37502604 PMCID: PMC10368986 DOI: 10.3389/fcimb.2023.1209755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Toxoplasma gondii is an apicomplexan parasite that affects the health of humans and livestock, and an effective vaccine is urgently required. Nanoparticles can modulate and improve cellular and humoral immune responses. Methods In the current study, poly (D, L-lactic-co-glycolic acid) (PLGA) nanoparticles were used as a delivery system for the T. gondii dense granule antigens GRA12 and GRA7. BALB/c mice were injected with the vaccines and protective efficacy was evaluated. Results Mice immunized with PLGA+GRA12 exhibited significantly higher IgG, and a noticeable predominance of IgG2a over IgG1 was also observed. There was a 1.5-fold higher level of lymphocyte proliferation in PLGA+GRA12-injected mice compared to Alum+GRA12-immunized mice. Higher levels of IFN-g and IL-10 and a lower level of IL-4 were detected, indicating that Th1 and Th2 immune responses were induced but the predominant response was Th1. There were no significant differences between Alum+GRA7-immunized and PLGA+GRA7-immunized groups. Immunization with these four vaccines resulted in significantly reduced parasite loads, but they were lowest in PLGA+GRA12-immunized mice. The survival times of mice immunized with PLGA+GRA12 were also significantly longer than those of mice in the other vaccinated groups. Conclusion The current study indicated that T. gondii GRA12 recombinant protein encapsulated in PLGA nanoparticles is a promising vaccine against acute toxoplasmosis, but PLGA is almost useless for enhancing the immune response induced by T. gondii GRA7 recombinant protein.
Collapse
Affiliation(s)
- Hong-chao Sun
- Institute of Animal Husbandry and Veterinary Medicine, Department of Animal Parasitology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pu-ming Deng
- Institute of Animal Science and Technology, Department of Animal Diseases Diagnosis and Control of Xinjiang Production & Construction Corps, Tarim University, Alar, China
| | - Yuan Fu
- Institute of Animal Husbandry and Veterinary Medicine, Department of Animal Parasitology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jin-hua Deng
- Institute of Animal Science and Technology, Department of Animal Diseases Diagnosis and Control of Xinjiang Production & Construction Corps, Tarim University, Alar, China
| | - Rong-hui Xie
- Department of Animal Epidemic Surveillance, Zhejiang Provincial Animal Disease Prevention and Control Center, Hangzhou, China
| | - Jing Huang
- Department of Animal Epidemic Surveillance, Zhejiang Provincial Animal Disease Prevention and Control Center, Hangzhou, China
| | - Meng Qi
- Institute of Animal Science and Technology, Department of Animal Diseases Diagnosis and Control of Xinjiang Production & Construction Corps, Tarim University, Alar, China
| | - Tuan-yuan Shi
- Institute of Animal Husbandry and Veterinary Medicine, Department of Animal Parasitology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
6
|
Allahyari M. PLGA Nanoparticles as an Efficient Platform in Protein Vaccines Against Toxoplasma gondii. Acta Parasitol 2022; 67:582-591. [PMID: 35013939 DOI: 10.1007/s11686-021-00499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) as an obligatory intracellular is widespread all over the world and causes considerable concerns in immunocompromised patients by developing toxoplasmic encephalitis and in pregnancy because of serious consequences in the fetus. Although vaccination is the only approach to overcome toxoplasmosis, there is no commercially available human vaccine against T. gondii. PURPOSE The remarkable features of poly (lactic-co-glycolic acid) (PLGA) particles have brought up the application of PLGA as a promising vaccine delivery vehicle against T. gondii and other intracellular parasites. This review focuses on the application of the PLGA delivery system in the development of preventive vaccines against T. gondii. METHODS In this study, all required data were collected from articles indexed in English databases, including Scopus, PubMed, Web of Science, Science Direct, and Google Scholar. RESULT Immunity against T. gondii, characteristics of PLGA particles as a delivery vehicle, and all researches on particulate PLGA vaccines with different T. gondii antigens and DNA against were discussed and their efficacies in conferring protection against a lethal challenge based on increased survival or reduced brain cyst loads have been shown. CONCLUSION Although various levels of protection against lethal challenge have been achieved through PLGA-based vaccinations, there is still no complete protection against T. gondii infection. Surprisingly, the application of surface modifications of PLGA particles by mucoadhesive polymers, cationic agents, DCs (dendritic cells) targeting receptors, specialized membranous epithelial cells (M-cells), and co-delivery of the desired antigen along with toll-like receptor ligands would be a revolutionized vaccine strategy against T. gondii.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Recombinant Protein Production Department, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran.
| |
Collapse
|