1
|
Huang Y, Song Y, Wang S. Nature-Inspired Engineering Separation Materials and Devices. ACS NANO 2025; 19:11477-11488. [PMID: 40101135 DOI: 10.1021/acsnano.4c17912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Separation is a fundamental process in natural living systems. Their separation capabilities have inspired the design of various separation materials and devices. Despite some progress having been made, a comprehensive overview is still lacking. In this Perspective, we first review the development of separation technologies. We then summarize some typical living systems exhibiting superior separation capabilities from compositions and microstructures to separation mechanisms. Next, we highlight key advancements in nature-inspired separation materials and integrated devices. Finally, we propose future research directions and opportunities, emphasizing the importance of physical and chemical design and internal and external stimulus regulation. These nature-inspired materials and devices show great potential in biomedicine, environmental remediation, energy conversion, food safety, and analysis testing.
Collapse
Affiliation(s)
- Yanling Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Bai S, Yang Y, Sheng R, Qi Y, Jia Y, Wang X, Cui W, Zheng Y, Li H, Li J. Blood cellular membrane-coated Au/polydopamine nanoparticle-targeted NIR-II antibacterial therapy. J Colloid Interface Sci 2024; 665:855-862. [PMID: 38564949 DOI: 10.1016/j.jcis.2024.03.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Bacterial infections are the primary causes of infectious diseases in humans. In recent years, the abuse of antibiotics has led to the widespread enhancement of bacterial resistance. Concerns have been raised about the identification of a common treatment platform for bacterial infections. In this study, a composite nanomaterial was used for near-infrared II (NIR-II) photothermal antibacterial treatment. Red blood cell membrane was peeled and coated onto the surface of the Au/polydopamine nanoparticle-containing aptamer. The composite nanomaterials based on Au/polydopamine exhibit highest photothermal conversion capability. Moreover, these assembled nanoparticles can quickly enter the body's circular system with a specific capability to recognise bacteria. In vivo experiments demonstrated that the composites could kill bacteria from infected blood while significantly reducing the level of bacteria in various organs. Such assemblies offer a paradigm for the treatment of bacterial infections caused by the side effects of antibiotics.
Collapse
Affiliation(s)
- Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Rongtian Sheng
- School of Public Health, Jilin University, Changchun 130021, China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun 130021, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaolong Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Wei Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yichen Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Duan Y, Liu F, Zhang C, Wang Y, Chen G. Screen and Optimization of an Aptamer for Alexandrium tamarense-A Common Toxin-Producing Harmful Alga. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:935-950. [PMID: 37743437 DOI: 10.1007/s10126-023-10251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Among all the paralytic shellfish toxins (PSTs)-producing algae, Alexandrium tamarense is one of the most widespread harmful species posing a serious threat to marine resources and human health. Therefore, it is extremely important to establish a rapid and accurate monitoring method for A. tamarense that can provide early warnings of harmful algal blooms (HABs) caused by this alga and limit the contamination due to PSTs. In this study, an ssDNA library was first obtained by whole cell systematic evolution of ligands by exponential enrichment after 18 consecutive rounds of iterative screening. After sequencing in combination with subsequent multiple alignment of sequences and secondary structure simulation, the library could be classified into 2 families, namely, Family1 and Family2, according to sequence similarity. Flow cytometry was used to test the affinity and cross-reactivity of Ata19, Ata6, Ata25 and Ata29 belonging to Family2. Ata19 was selected to be modified by truncation, through which a new resultant aptamer named as Ata19-1-1 was obtained. Ata19-1-1 with a KD of 75.16 ± 11.10 nM displayed a much higher affinity than Ata19. The specificity test showed that Ata19-1-1 has the same discrimination ability as Ata19 and can at least distinguish the target microalga from other microalgae. The observation under a fluorescence microscopy showed that the A. tamarense cells labeled with Ata19-1-1 are exhibiting bright green fluorescence and could be easily identified, factually confirming the binding of the aptamer with target cells. In summary, the aptamer Ata19-1-1 produced in this study may serve as an ideal molecular recognition element for A. tamarense, which has the potential to be developed into a novel detection method for this harmful alga in the future.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China.
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, 264209, People's Republic of China.
- School of Environment, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
4
|
Borase H, Shukla D. The Interplay of Genital Herpes with Cellular Processes: A Pathogenesis and Therapeutic Perspective. Viruses 2023; 15:2195. [PMID: 38005873 PMCID: PMC10675801 DOI: 10.3390/v15112195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Genital herpes, primarily caused by herpes simplex virus-2 (HSV-2), remains a pressing global health concern. Its remarkable ability to intertwine with cellular processes, from harnessing host machinery for replication to subverting antiviral defenses like autophagy and programmed cell death, exemplifies the intricate interplay at the heart of its pathogenesis. While the biomedical community has extensively researched antiviral interventions, the efficiency of these strategies in managing HSV-2 remains suboptimal. Recognizing this, attention has shifted toward leveraging host cellular components to regulate HSV-2 replication and influence the cell cycle. Furthermore, innovative interventional strategies-including drug repurposing, microbivacs, connecting the host microbiome, and exploiting natural secondary metabolites-are emerging as potential game changers. This review summarizes the key steps in HSV-2 pathogenesis and newly discovered cellular interactions, presenting the latest developments in the field, highlighting existing challenges, and offering a fresh perspective on HSV-2's pathogenesis and the potential avenues for its treatment by targeting cellular proteins and pathways.
Collapse
Affiliation(s)
- Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Roueinfar M, Templeton HN, Sheng JA, Hong KL. An Update of Nucleic Acids Aptamers Theranostic Integration with CRISPR/Cas Technology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031114. [PMID: 35164379 PMCID: PMC8839139 DOI: 10.3390/molecules27031114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system is best known for its role in genomic editing. It has also demonstrated great potential in nucleic acid biosensing. However, the specificity limitation in CRISPR/Cas has created a hurdle for its advancement. More recently, nucleic acid aptamers known for their high affinity and specificity properties for their targets have been integrated into CRISPR/Cas systems. This review article gives a brief overview of the aptamer and CRISPR/Cas technology and provides an updated summary and discussion on how the two distinctive nucleic acid technologies are being integrated into modern diagnostic and therapeutic applications
Collapse
Affiliation(s)
- Mina Roueinfar
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA
| | - Hayley N. Templeton
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
| | - Julietta A. Sheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.R.); (H.N.T.); (J.A.S.)
| | - Ka Lok Hong
- Department of Pharmaceutical Sciences, Nesbitt School of Pharmacy, Wilkes University, 84 W. South Street, Wilkes-Barre, PA 18766, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Notre Dame of Maryland University, 4701 North Charles Street, Baltimore, MD 21210, USA
- Correspondence: ; Tel.: +1-410-532-5044
| |
Collapse
|