1
|
Li W, Sparidans RW, Wang Y, Martins MLF, de Waart DR, van Tellingen O, Song JY, Lebre MC, van Hoppe S, Wagenaar E, Beijnen JH, Schinkel AH. Interplay of OATP1A/1B/2B1 uptake transporters and ABCB1 and ABCG2 efflux transporters in the handling of bilirubin and drugs. Biomed Pharmacother 2024; 175:116644. [PMID: 38692057 DOI: 10.1016/j.biopha.2024.116644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Transmembrane drug transporters can be important determinants of the pharmacokinetics, efficacy, and safety profiles of drugs. To investigate the potential cooperative and/or counteracting interplay of OATP1A/1B/2B1 uptake transporters and ABCB1 and ABCG2 efflux transporters in physiology and pharmacology, we generated a new mouse model (Bab12), deficient for Slco1a/1b, Slco2b1, Abcb1a/1b and Abcg2. Bab12 mice were viable and fertile. We compared wild-type, Slco1a/1b/2b1-/-, Abcb1a/1b;Abcg2-/- and Bab12 strains. Endogenous plasma conjugated bilirubin levels ranked as follows: wild-type = Abcb1a/1b;Abcg2-/- << Slco1a/1b/2b1-/- < Bab12 mice. Plasma levels of rosuvastatin and fexofenadine were elevated in Slco1a/1b/2b1-/- and Abcb1a/1b;Abcg2-/- mice compared to wild-type, and dramatically increased in Bab12 mice. Although systemic exposure of larotrectinib and repotrectinib was substantially increased in the separate multidrug transporter knockout strains, no additive effects were observed in the combination Bab12 mice. Significantly higher plasma exposure of fluvastatin and pravastatin was only found in Slco1a/1b/2b1-deficient mice. However, noticeable transport by Slco1a/1b/2b1 and Abcb1a/1b and Abcg2 across the BBB was observed for fluvastatin and pravastatin, respectively, by comparing Bab12 mice with Abcb1a/1b;Abcg2-/- or Slco1a/1b/2b1-/- mice. Quite varying behavior in plasma exposure of erlotinib and its metabolites was observed among these strains. Bab12 mice revealed that Abcb1a/1b and/or Abcg2 can contribute to conjugated bilirubin elimination when Slco1a/1b/2b1 are absent. Our results suggest that the interplay of Slco1a/1b/2b1, Abcb1a/1b, and Abcg2 could markedly affect the pharmacokinetics of some, but not all drugs and metabolites. The Bab12 mouse model will represent a useful tool for optimizing drug development and clinical application, including efficacy and safety.
Collapse
Affiliation(s)
- Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; The Second Affiliated Hospital of Nantong University, Shengli Rd 666, Nantong 226001, China.
| | - Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Yaogeng Wang
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Margarida L F Martins
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 71, Amsterdam 1105 BK, the Netherlands
| | - Olaf van Tellingen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Ji-Ying Song
- The Netherlands Cancer Institute, Division of Experimental Animal Pathology, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Maria C Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Stéphanie van Hoppe
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Els Wagenaar
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands; The Netherlands Cancer Institute, Department of Pharmacy & Pharmacology, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| |
Collapse
|
2
|
Metro G, Gariazzo E, Costabile S, Baglivo S, Roila F, Colamartini F, Palumbo B, Chiarini P, Gori S, Conti A, Marcomigni L, Bellezza G, Lunardi G. Repotrectinib's Clinical Benefit and Its Brain Penetration in a Patient with Meningeal Carcinomatosis from G2032R-Mutated ROS-1 Positive Non-Small Cell Lung Cancer. Oncol Ther 2024; 12:163-171. [PMID: 37973688 PMCID: PMC10881448 DOI: 10.1007/s40487-023-00251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
In this work, we report on a clinically significant response of meningeal carcinomatosis to repotrectinib in a woman with a heavily pretreated ROS1-rearranged non-small cell lung cancer (NSCLC) that harbored the concomitant solvent front G2032R mutation. Meningeal carcinomatosis has a higher incidence in oncogene addicted NSCLC due to increased life expectancy, yet no report has ever documented the activity of repotrectinib in this context. In line with its activity, we documented the presence of the drug at potentially active concentrations in the cerebrospinal fluid. Nevertheless, the short-lived response reported by our patient highlights the importance for novel ROS1-tyrosine kinase inhibitors (TKIs) to be specifically developed to be able to penetrate the blood-brain barrier.
Collapse
Affiliation(s)
- Giulio Metro
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Via Dottori, 1, 06156, Perugia, Italy
| | - Eleonora Gariazzo
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Via Dottori, 1, 06156, Perugia, Italy.
| | - Silvia Costabile
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Via Dottori, 1, 06156, Perugia, Italy
| | - Sara Baglivo
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Via Dottori, 1, 06156, Perugia, Italy
| | - Fausto Roila
- Medical Oncology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Francesca Colamartini
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Via Dottori, 1, 06156, Perugia, Italy
| | - Barbara Palumbo
- Department of Medicine and Surgery, Section of Nuclear Medicine and Health Physics, University of Perugia, Perugia, Italy
| | - Pietro Chiarini
- Neuroradiology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Stefania Gori
- Medical Oncology, IRCCS-Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Antonio Conti
- Clinical Analysis Laboratory and Transfusional Medicine, Clinical Pharmacology, IRCCS-Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Luca Marcomigni
- Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Via Dottori, 1, 06156, Perugia, Italy
| | - Guido Bellezza
- Section of Anatomic Pathology and Histology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Gianluigi Lunardi
- Clinical Analysis Laboratory and Transfusional Medicine, Clinical Pharmacology, IRCCS-Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| |
Collapse
|
3
|
Loos NHC, Martins MLF, de Jong D, Lebre MC, Tibben M, Beijnen JH, Schinkel AH. Coadministration of ABCB1/P-glycoprotein inhibitor elacridar improves tissue distribution of ritonavir-boosted oral cabazitaxel in mice. Int J Pharm 2024; 650:123708. [PMID: 38135258 DOI: 10.1016/j.ijpharm.2023.123708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Developing an oral formulation for the chemotherapeutic cabazitaxel might improve its patient-friendliness, costs, and potentially exposure profile. Cabazitaxel oral availability is restricted by CYP3A-mediated first-pass metabolism, but can be substantially boosted with the CYP3A inhibitor ritonavir. We here tested whether adding the ABCB1/P-glycoprotein inhibitor elacridar to ritonavir-boosted oral cabazitaxel could further improve its tissue exposure using wild-type, CYP3A4-humanized and Abcb1a/b-/- mice. The plasma AUC0-2h of cabazitaxel was increased 2.3- and 1.9-fold in the ritonavir- and ritonavir-plus-elacridar groups of wild-type, and 10.5- and 8.8-fold in CYP3A4-humanized mice. Elacridar coadministration did not influence cabazitaxel plasma exposure. The brain-to-plasma ratio of cabazitaxel was not increased in the ritonavir group, 7.3-fold in the elacridar group and 13.4-fold in the combined booster group in wild-type mice. This was 0.4-, 4.6- and 3.6-fold in CYP3A4-humanized mice, illustrating that Abcb1 limited cabazitaxel brain exposure also during ritonavir boosting. Ritonavir itself was also a potent substrate for the Abcb1 efflux transporter, limiting its oral availability (3.3-fold) and brain penetration (10.6-fold). Both processes were fully reversed by elacridar. The tissue disposition of ritonavir-boosted oral cabazitaxel could thus be markedly enhanced by elacridar coadministration without affecting the plasma exposure. This approach should be verified in selected patient populations.
Collapse
Affiliation(s)
- Nancy H C Loos
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, The Netherlands
| | - Margarida L F Martins
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, The Netherlands
| | - Daniëlle de Jong
- The Netherlands Cancer Institute, Division of Pharmacy and Pharmacology, Amsterdam, The Netherlands
| | - Maria C Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, The Netherlands
| | - Matthijs Tibben
- The Netherlands Cancer Institute, Division of Pharmacy and Pharmacology, Amsterdam, The Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, The Netherlands; The Netherlands Cancer Institute, Division of Pharmacy and Pharmacology, Amsterdam, The Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht, The Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Ariaei A, Ramezani F. The promising impact of Bemcentinib and Repotrectinib on sleep impairment in Alzheimer's disease. J Biomol Struct Dyn 2023; 42:13538-13554. [PMID: 37909502 DOI: 10.1080/07391102.2023.2276876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease, demands effective medication to alleviate symptoms. This study focused on sleep impairment as an overt clinical symptom and tauopathy as a prominent molecular symptom of this disease. Multiple compounds from three biomolecule libraries (719 compounds; ChemDiv:366 - ChEMBL:180 - PubChem:173) were evaluated for potential binding affinity and safety using AutoDock Vina and pkCSM, respectively, resulting in the selection of four candidate compounds (Lestaurtinib, Repotrectinib, Bemcentinib, and Zotiraciclib). Due to the similarity of Repotrectinib and Bemcentinib binding sites to ATP, 300 ns Martini 3 coarse-grained molecular dynamics (MD) was performed on these two molecules and ATP by NAMD. The stability of tau protein in the presence of drugs was assessed using a 200 ns Martini 3 MD simulation. Binding site analysis discloses Bemcentinib and Repotrectinib as two inhibitors occupying most amino acids in binding with ATP. The RMSD and RMS average correlation results revealed protein containing Bemcentinib and Repotrectinib to have a more stable state compared to ATP in the first 220 ns simulation. There was only a single detachment of Bemcentinib, while Repotrictinib detached twice at the end of the simulation. Eventually, adding Bemcentinib and Repotrectinib to the enzyme-tau complex significantly increased the number of tau detachments during the 200 ns simulation. We report Bemcentinib and Repotrectinib, formerly prescribed for cancer, as potential inhibitors of the CK1 δ. Besides their high binding affinity compared to ATP, they can inhibit all ATP-binding sites and alter the tau binding stability.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Armin Ariaei
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Cao Z, Zhang J, Guo M, Shao B, Wei X, Li S, Wang P, Zhai X. Discovery of novel phenyl triazole analogs as TRK/ALK dual inhibitors with prospective antitumor effects. Bioorg Chem 2023; 136:106563. [PMID: 37121107 DOI: 10.1016/j.bioorg.2023.106563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The exploration of novel anaplastic lymphoma kinase (ALK) and tropomyosin receptor kinase (TRK) dual inhibitors tended to serve as targeted treatment of cancer. Herein, a series of phenyl triazole derivatives were designed and synthesized as ALK/TRK dual regulators based on structure-based drug design (SBDD) strategy and were evaluated for antiproliferative activity by MTT assay. Accordingly, all compounds showed surprising cytotoxicity with IC50 values below 10 μM on KM12, H2228 and KARPAS299 cell lines. Among them, compound 13a bearing (2-(4-methylpiperazin-1-yl)phenyl)morpholinomethanone moiety was identified as the optimal hit in enzymatic screening with IC50 values of 1.9 nM (TRKA), 7.2 nM (ALK) and 65.2 nM (ALKL1196M), respectively. Furthermore, 13a could inhibit KM12 cell migration and colony formation in a dose dependent manner. Meanwhile, AO/EB staining indicated that the pro-apoptotic effect of 13a was comparable to that of Entrectinib at the dose of 200 nM. Ultimately, the binding model of 13a with TRKA and ALK well established its mode of action which accounted for the superior activities as a promising antitumor candidate.
Collapse
Affiliation(s)
- Zhi Cao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiahao Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengrao Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Shao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiujian Wei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peng Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
6
|
Hannon SL, Ding X. Assessing cytochrome P450 function using genetically engineered mouse models. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:253-284. [PMID: 35953157 PMCID: PMC10544722 DOI: 10.1016/bs.apha.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability to knock out and/or humanize different genes in experimental animals, globally or in cell- and tissue-specific patterns, has revolutionized scientific research in many areas. Genetically engineered mouse models, including knockout models, transgenic models, and humanized models, have played important roles in revealing the in vivo functions of various cytochrome P450 (CYP) enzymes. These functions are very diverse, ranging from the biotransformation of drugs and other xenobiotics, events that often dictate their pharmacokinetic or toxicokinetic properties and the associated therapeutic or adverse actions, to the metabolism of endogenous compounds, such as steroid hormones and other bioactive substances, that may determine susceptibility to many diseases, such as cancer and metabolic diseases. In this review, we provide a comprehensive list of Cyp-knockout, human CYP-transgenic, and CYP-humanized mouse models that target genes in the CYP1-4 gene families, and highlight their utility in assessing the in vivo metabolism, bioactivation, and toxicity of various xenobiotic compounds, including therapeutic agents and chemical carcinogens. We aim to showcase the advantages of utilizing these mouse models for in vivo drug metabolism and toxicology studies, and to encourage and facilitate greater utility of engineered mouse models to further improve our knowledge of the in vivo functions of various P450 enzymes, which is integral to our ability to develop safer and more effective therapeutics and to identify individuals predisposed to adverse drug reactions or environmental diseases.
Collapse
Affiliation(s)
- Sarrah L Hannon
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
7
|
Liu F, Wei Y, Zhang H, Jiang J, Zhang P, Chu Q. NTRK Fusion in Non-Small Cell Lung Cancer: Diagnosis, Therapy, and TRK Inhibitor Resistance. Front Oncol 2022; 12:864666. [PMID: 35372074 PMCID: PMC8968138 DOI: 10.3389/fonc.2022.864666] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Neurotrophic tropomyosin receptor kinase (NTRK) gene fusion has been identified as an oncogenic driver of various solid tumors, and it is rare in non-smalll cell lung cancer (NSCLC) with a frequency of approximately less than 1%. Next-generation sequencing (NGS) is of priority for detecting NTRK fusions, especially RNA-based NGS. Currently, the tropomyosin receptor kinase (TRK) inhibitors have shown promising efficacy and well tolerance in patients with NTRK fusion-positive solid tumors, regardless of tumor histology. The first-generation TRK inhibitors (larotrectinib and entrectinib) are recommended as the first-line treatment for locally advanced or metastatic NSCLC patients with positive NTRK fusion. However, TRK inhibitor resistance can eventually occur due to on-target or off-target mechanisms. Further studies are under investigation to overcome resistance and improve survival. Interestingly, NTRK fusion might be the mechanism of resistance to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKI) in NSCLC patients with EGFR mutation. Regarding immunotherapy, the efficacy of immune checkpoint inhibitors in NSCLC patients harboring NTRK fusion has yet to be well described. In this review, we elucidate the function of NTRK genes, summarize the diagnostic techniques for NTRK fusions, and present clinical data for TRK inhibitors; we also discuss potential mechanisms of resistance to TRK inhibitors.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Wei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Zhang
- The Second Clinical College of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizong Jiang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jizong Jiang,
| | - Peng Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|