1
|
Meshram PR, Ranpise NS. Exploring the potential of ferulic acid-loaded nanostructured lipid carriers: angiotensin inhibition via docking, formulation and pharmacokinetic and pharmacodynamics studies. J Drug Target 2025; 33:952-974. [PMID: 39804679 DOI: 10.1080/1061186x.2025.2453743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/30/2025]
Abstract
Ferulic acid (FA) is a natural phenolic compound that has been documented for its antioxidant properties and potential in managing hypertension. However, its use is limited due to poor solubility and permeability (BCS Class IV classification). To overcome this, nanostructured lipid carriers (NLCs) of FA were developed using the emulsification probe sonication technique, with formulation optimized through Box-Behnken design. The optimized FA-NLCs (F12) demonstrated a particle size of 103.4 nm, zeta potential of -43.6 mV, polydispersity index of 0.531, and entrapment efficiency of 88.9%. Key Findings of the research manifested, that during in-vitro release studies, FA-NLCs showed sustained release action (40.34% over 24 h) compared to plain FA (103.13% in 4 h). Pharmacokinetics of FA-NLC suggested that increased Cmax by 2.6-fold, AUC by 1.9-fold, and half-life significantly (p < .001), also Pharmacodynamics revealed that FA-NLCs reduced blood pressure more effectively (39.9 mmHg vs. 30.8 mmHg for plain FA; p < .001). Furthermore, FA-NLC was showing successful intestinal uptake through lymphatic absorption via clathrin-mediated endocytosis, bypassing first-pass metabolism, hence showed enhancement in bioavailability, Thus the study concluded that FA-NLCs significantly improve therapeutic efficacy and sustained blood pressure reduction compared to plain FA.
Collapse
|
2
|
Uti DE, Alum EU, Atangwho IJ, Ugwu OPC, Egbung GE, Aja PM. Lipid-based nano-carriers for the delivery of anti-obesity natural compounds: advances in targeted delivery and precision therapeutics. J Nanobiotechnology 2025; 23:336. [PMID: 40336110 PMCID: PMC12057057 DOI: 10.1186/s12951-025-03412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Obesity is a major global health challenge, contributing to metabolic disorders such as type 2 diabetes, cardiovascular diseases, and hypertension. The increasing prevalence of obesity, driven by sedentary lifestyles, poor dietary habits, and genetic predisposition, underscores the urgent need for effective therapeutic strategies. Conventional pharmacological treatments, including appetite suppressants and metabolic modulators, often fail to provide sustainable weight loss due to side effects, poor adherence, and limited long-term efficacy. As a result, natural bioactive compounds have gained attention for their anti-obesity potential. However, their clinical application is hindered by poor bioavailability, rapid metabolism, and inefficient delivery. Lipid-based nano-carriers, including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, offer a promising solution by enhancing the solubility, stability, and targeted delivery of these compounds. These advanced delivery systems improve bioactive retention, enable controlled release, and enhance therapeutic action on adipose tissue and metabolic pathways. Additionally, functionalized and stimulus-responsive nanocarriers present innovative approaches for precision obesity treatment. Despite these advancements, challenges remain in large-scale production, regulatory approval, and long-term safety. Overcoming these barriers is critical to ensuring the successful clinical translation of nano-formulated therapies. This review explores the potential of lipid-based nano-carriers in optimizing the therapeutic efficacy of natural anti-obesity compounds and highlights their role in advancing next-generation obesity management strategies.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue, Nigeria.
| | - Esther Ugo Alum
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Okechukwu Paul-Chima Ugwu
- Department of Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Patrick M Aja
- Department of Medical Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
3
|
Zhao R, Jia N, Wu S, Wen J, Huang Y, Zhao C, Chen W. Therapeutic potential and limitation of condensed and hydrolyzed tannins in Parkinson's disease. Int J Biol Macromol 2025; 307:141814. [PMID: 40057098 DOI: 10.1016/j.ijbiomac.2025.141814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
Parkinson's disease is a complex neurodegenerative disorder characterized by neuroinflammation, mitochondrial dysfunction, and the accumulation of misfolded proteins such as α-synuclein. This review explores the therapeutic potential of tannins, particularly proanthocyanidins and hydrolyzable tannins from grape seeds, in alleviating Parkinson's disease pathology. Condensed tannins exhibit significant antioxidant properties, can cross the blood-brain barrier, reduce oxidative stress, upregulate antioxidant proteins, and prevent neuronal apoptosis. Hydrolyzable tannins, through their unique chemical structure, further help reduce neuroinflammation and improve mitochondrial function. Both types of tannins can modulate inflammatory responses and enhance mitochondrial integrity, addressing key aspects of Parkinson's disease pathogenesis. Tannins possess excellent neuroprotective effects, representing a promising therapeutic approach. However, due to their chemical nature and structural characteristics, the bioavailability of tannins in the human body remains low. Current methods to enhance their bioavailability are limited. Further exploration is needed to improve their bioavailability and strengthen their potential clinical applications. Based on this, new Parkinson's disease treatment strategies can be developed, warranting in-depth research and clinical validation.
Collapse
Affiliation(s)
- Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyang Wu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahui Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajun Huang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Liang C, Liu X, Sun Z, Wen L, Wu J, Shi S, Liu X, Luo N, Li X. Lipid nanosystems for fatty liver therapy and targeted medication delivery: a comprehensive review. Int J Pharm 2025; 669:125048. [PMID: 39653287 DOI: 10.1016/j.ijpharm.2024.125048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Fatty liver is considered to be the most common chronic liver disease with a high global incidence, which can lead to cirrhosis and liver cancer in severe cases, and there is no specific drug for the treatment of fatty liver in the clinic. The use of lipid nanosystems has the potential to be an effective means of fatty liver treatment. The pathogenesis and intervening factors associated with the development of fatty liver are reviewed, and the advantages and the disadvantages of different lipid nanosystems for the treatment of fatty liver are comprehensively discussed, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, microemulsions, and phospholipid complexes. The composition and characterisation of these lipid nanosystems are highlighted and summarised with a view to improving the efficiency of lipid nanosystems for the treatment of fatty liver. In addition, active targeting and passive targeting strategies used for fatty liver therapy are discussed in detail.
Collapse
Affiliation(s)
- Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nini Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, 400021, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Wang J, Wang Y, Jiang X. Targeting anticancer immunity in melanoma tumour microenvironment: unleashing the potential of adjuvants, drugs, and phytochemicals. J Drug Target 2024; 32:1052-1072. [PMID: 39041142 DOI: 10.1080/1061186x.2024.2384071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Melanoma poses a challenge in oncology because of its aggressive nature and limited treatment modalities. The tumour microenvironment (TME) in melanoma contains unique properties such as an immunosuppressive and high-density environment, unusual vasculature, and a high number of stromal and immunosuppressive cells. In recent years, numerous experiments have focused on boosting the immune system to effectively remove malignant cells. Adjuvants, consisting of phytochemicals, toll-like receptor (TLR) agonists, and cytokines, have shown encouraging results in triggering antitumor immunity and augmenting the therapeutic effectiveness of anticancer therapy. These adjuvants can stimulate the maturation of dendritic cells (DCs) and infiltration of cytotoxic CD8+ T lymphocytes (CTLs). Furthermore, nanocarriers can help to deliver immunomodulators and antigens directly to the tumour stroma, thereby improving their efficacy against malignant cells. The remodelling of melanoma TME utilising phytochemicals, agonists, and other adjuvants can be combined with current modalities for improving therapy outcomes. This review article explores the potential of adjuvants, drugs, and their nanoformulations in enhancing the anticancer potency of macrophages, CTLs, and natural killer (NK) cells. Additionally, the capacity of these agents to repress the function of immunosuppressive components of melanoma TME, such as immunosuppressive subsets of macrophages, stromal and myeloid cells will be discussed.
Collapse
Affiliation(s)
- Jingping Wang
- Emergency Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Yaping Wang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| | - Xiaofang Jiang
- Respiratory and Oncology Department, Zhejiang Provincial General Hospital of the Chinese People's Armed Police Force, Zhejiang, China
| |
Collapse
|
6
|
Meshram PR, Ranpise NS. Lymphatic targeting of cilnidipine by designing and developing a nanostructured lipid carrier drug delivery system. Drug Dev Ind Pharm 2024:1-17. [PMID: 39395164 DOI: 10.1080/03639045.2024.2415638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE The objective of current research is to design, develop, and optimize a cilnidipine (CLN) nanostructured lipid carrier (NLC)-based drug delivery system for the effective treatment of hypertension (HT). SIGNIFICANCE Oral administration of CLN-loaded NLC (CLN NLC) containing glyceryl monostearate (GMS) as a solid and isopropyl myristate (IPM) as a liquid lipid may show remarkable lymphatic uptake through payer patches. METHODS The emulsification probe sonication technique was used followed by optimization using 32 factorial designs. RESULTS The optimized batch showed a mean particle size of 115.4 ± 0.22 nm with encapsulation efficiency of 98.32 ± 0.23%, polydispersity index (PDI) of 0.342 ± 0.03, and zeta potential (ZP, ζ) was -60.5 ± 0.24 which indicate excellent physical stability. In vitro studies showed a controlled release of CLN NLCs. Pharmacokinetics studies determined the Cmax of NLCs (373.47 ± 15.1) indicates 2.3-fold enhancement compared with plain drug (160.64 ± 7.63). Pharmacodynamic studies indicated that CLN NLCs were maintaining systolic blood pressure in a controlled manner without any signs of side effects. CONCLUSION CLN NLCs significantly improved lymphatic delivery and proved to be effective in the treatment and management of HT. It has been proved that CLN NLCs are found to be better than any traditional CLN dosage form due to enhancement in solubility, absorption, bioavailability, intestinal permeability, avoidance of first-pass metabolism, P-glycoprotein efflux and reduction in dose-related side effects, achievement of controlled and sustained release action.
Collapse
|
7
|
Paes Dutra JA, Gonçalves Carvalho S, Soares de Oliveira A, Borges Monteiro JR, Rodrigues Pereira de Oliveira Borlot J, Tavares Luiz M, Bauab TM, Rezende Kitagawa R, Chorilli M. Microparticles and nanoparticles-based approaches to improve oral treatment of Helicobacter pylori infection. Crit Rev Microbiol 2024; 50:728-749. [PMID: 37897442 DOI: 10.1080/1040841x.2023.2274835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Helicobacter pylori is a gram-negative, spiral-shaped, flagellated bacterium that colonizes the stomach of half the world's population. Helicobacter pylori infection causes pathologies of varying severity. Standard oral therapy fails in 15-20% since the barriers of the oral route decrease the bioavailability of antibiotics and the intrinsic factors of bacteria increase the rates of resistance. Nanoparticles and microparticles are promising strategies for drug delivery into the gastric mucosa and targeting H. pylori. The variety of building blocks creates systems with distinct colloidal, surface, and biological properties. These features improve drug-pathogen interactions, eliminate drug depletion and overuse, and enable the association of multiple actives combating H. pylori on several fronts. Nanoparticles and microparticles are successfully used to overcome the barriers of the oral route, physicochemical inconveniences, and lack of selectivity of current therapy. They have proven efficient in employing promising anti-H. pylori compounds whose limitation is oral route instability, such as some antibiotics and natural products. However, the current challenge is the applicability of these strategies in clinical practice. For this reason, strategies employing a rational design are necessary, including in the development of nano- and microsystems for the oral route.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcela Tavares Luiz
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Tais Maria Bauab
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
8
|
Macedo LDO, Masiero JF, Bou-Chacra NA. Drug Nanocrystals in Oral Absorption: Factors That Influence Pharmacokinetics. Pharmaceutics 2024; 16:1141. [PMID: 39339178 PMCID: PMC11434809 DOI: 10.3390/pharmaceutics16091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the safety and convenience of oral administration, poorly water-soluble drugs compromise absorption and bioavailability. These drugs can exhibit low dissolution rates, variability between fed and fasted states, difficulty permeating the mucus layer, and P-glycoprotein efflux. Drug nanocrystals offer a promising strategy to address these challenges. This review focuses on the opportunities to develop orally administered nanocrystals based on pharmacokinetic outcomes. The impacts of the drug particle size, morphology, dissolution rate, crystalline state on oral bioavailability are discussed. The potential of the improved dissolution rate to eliminate food effects during absorption is also addressed. This review also explores whether permeation or dissolution drives nanocrystal absorption. Additionally, it addresses the functional roles of stabilizers. Drug nanocrystals may result in prolonged concentrations in the bloodstream in some cases. Therefore, nanocrystals represent a promising strategy to overcome the challenges of poorly water-soluble drugs, thus encouraging further investigation into unclear mechanisms during oral administration.
Collapse
Affiliation(s)
| | | | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo 05508-000, SP, Brazil
| |
Collapse
|
9
|
Gao Y, Huang Y, Ren C, Chou P, Wu C, Pan X, Quan G, Huang Z. Looking back, moving forward: protein corona of lipid nanoparticles. J Mater Chem B 2024; 12:5573-5588. [PMID: 38757190 DOI: 10.1039/d4tb00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lipid nanoparticles (LNPs) are commonly employed for drug delivery owing to their considerable drug-loading capacity, low toxicity, and excellent biocompatibility. Nevertheless, the formation of protein corona (PC) on their surfaces significantly influences the drug's in vivo fate (such as absorption, distribution, metabolism, and elimination) upon administration. PC denotes the phenomenon wherein one or multiple strata of proteins adhere to the external interface of nanoparticles (NPs) or microparticles within the biological milieu, encompassing ex vivo fluids (e.g., serum-containing culture media) and in vivo fluids (such as blood and tissue fluids). Hence, it is essential to claim the PC formation behaviors and mechanisms on the surface of LNPs. This overview provided a comprehensive examination of crucial aspects related to such issues, encompassing time evolution, controllability, and their subsequent impacts on LNPs. Classical studies of PC generation on the surface of LNPs were additionally integrated, and its decisive role in shaping the in vivo fate of LNPs was explored. The mechanisms underlying PC formation, including the adsorption theory and alteration theory, were introduced to delve into the formation process. Subsequently, the existing experimental outcomes were synthesized to offer insights into the research and application facets of PC, and it was concluded that the manipulation of PC held substantial promise in the realm of targeted delivery.
Collapse
Affiliation(s)
- Yue Gao
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Yeqi Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Chuanyu Ren
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Peiwen Chou
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
| |
Collapse
|
10
|
El-Marasy SA, AbouSamra MM, Moustafa PE, Mabrok HB, Ahmed-Farid OA, Galal AF, Farouk H. Anti-depressant effect of Naringenin-loaded hybridized nanoparticles in diabetic rats via PPARγ/NLRP3 pathway. Sci Rep 2024; 14:13559. [PMID: 38866877 PMCID: PMC11169681 DOI: 10.1038/s41598-024-62676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Naringenin (NAR) has various biological activities but low bioavailability. The current study examines the effect of Naringenin-loaded hybridized nanoparticles (NAR-HNPs) and NAR on depression induced by streptozotocin (STZ) in rats. NAR-HNPs formula with the highest in vitro NAR released profile, lowest polydispersity index value (0.21 ± 0.02), highest entrapment efficiency (98.7 ± 2.01%), as well as an acceptable particle size and zeta potential of 415.2 ± 9.54 nm and 52.8 ± 1.04 mV, respectively, was considered the optimum formulation. It was characterized by differential scanning calorimetry, examined using a transmission electron microscope, and a stability study was conducted at different temperatures to monitor its stability efficiency showing that NAR-HNP formulation maintains stability at 4 °C. The selected formulation was subjected to an acute toxicological test, a pharmacokinetic analysis, and a Diabetes mellitus (DM) experimental model. STZ (50 mg/kg) given as a single i.p. rendered rats diabetic. Diabetic rat groups were allocated into 4 groups: one group received no treatment, while the remaining three received oral doses of unloaded HNPs, NAR (50 mg/kg), NAR-HNPs (50 mg/kg) and NAR (50 mg/kg) + peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist, GW9662 (1mg/kg, i.p.) for three weeks. Additional four non-diabetic rat groups received: distilled water (normal), free NAR, and NAR-HNPs, respectively for three weeks. NAR and NAR-HNPs reduced immobility time in forced swimming test and serum blood glucose while increasing serum insulin level. They also reduced cortical and hippocampal 5-hydroxyindoeacetic acid, 3,4-Dihydroxy-phenylacetic acid, malondialdehyde, NLR family pyrin domain containing-3 (NLRP3) and interleukin-1beta content while raised serotonin, nor-epinephrine, dopamine and glutathione level. PPAR-γ gene expression was elevated too. So, NAR and NAR-HNPs reduced DM-induced depression by influencing brain neurotransmitters and exhibiting anti-oxidant and anti-inflammatory effects through the activation PPAR-γ/ NLRP3 pathway. NAR-HNPs showed the best pharmacokinetic and therapeutic results.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Mona M AbouSamra
- Pharmaceutical Technology Department, Pharmaceutical Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Passant E Moustafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | | | - Asmaa F Galal
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
11
|
Elsayed Mahmoud D, Billa N. Physicochemical modifications in microwave-irradiated chitosan: biopharmaceutical and medical applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:898-915. [PMID: 38284331 DOI: 10.1080/09205063.2024.2306695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Biopharmaceutical and biomedical applications of chitosan has evolved exponentially in the past decade, owing to its unique physicochemical properties. However, further applications can be garnered from modified chitosan, specifically, depolymerized chitosan, with potentially useful applications in drug delivery or biomedicine. The use of microwave irradiation in depolymerization of chitosan appears to be more consequential than other methods, and results in modification of key physicochemical properties of chitosan, including molecular weight, viscosity and degree of deacetylation. In-depth review of such microwave-depolymerized chitosan and subsequent potential biopharmaceutical or biomedical applications has not been presented before. Herein, we present a detailed review of key physicochemical changes in chitosan following various depolymerization approaches, with focus on microwave irradiation and how these changes impact relevant biopharmaceutical or biomedical applications.
Collapse
Affiliation(s)
- Doaa Elsayed Mahmoud
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Nashiru Billa
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
12
|
Amekyeh H, Sabra R, Billa N. A Window for Enhanced Oral Delivery of Therapeutics via Lipid Nanoparticles. Drug Des Devel Ther 2024; 18:613-630. [PMID: 38476206 PMCID: PMC10927375 DOI: 10.2147/dddt.s439975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/25/2023] [Indexed: 03/14/2024] Open
Abstract
Oral administration of dosage forms is convenient and beneficial in several respects. Lipid nanoparticulate dosage forms have emerged as a useful carrier system in deploying low solubility drugs systemically, particularly class II, III, and IV drugs of the Biopharmaceutics Classification System. Like other nanoparticulate delivery systems, their low size-to-volume ratio facilitates uptake by phagocytosis. Lipid nanoparticles also provide scope for high drug loading and extended-release capability, ensuring diminished systemic side effects and improved pharmacokinetics. However, rapid gastrointestinal (GI) clearance of particulate delivery systems impedes efficient uptake across the mucosa. Mucoadhesion of dosage forms to the GI mucosa results in longer transit times due to interactions between the former and mucus. Delayed transit times facilitate transfer of the dosage form across the mucosa. In this regard, a balance between mucoadhesion and mucopenetration guarantees optimal systemic transfer. Furthermore, the interplay between GI anatomy and physiology is key to ensuring efficient systemic uptake. This review captures salient anatomical and physiological features of the GI tract and how these can be exploited for maximal systemic delivery of lipid nanoparticles. Materials used to impart mucoadhesion and examples of successful mucoadhesive lipid nanoformulations are highlighted in this review.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
13
|
Singh R, Kumawat M, Gogoi H, Madhyastha H, Lichtfouse E, Daima HK. Engineered Nanomaterials for Immunomodulation: A Review. ACS APPLIED BIO MATERIALS 2024; 7:727-751. [PMID: 38166376 DOI: 10.1021/acsabm.3c00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The immune system usually provides a defense against invading pathogenic microorganisms and any other particulate contaminants. Nonetheless, it has been recently reported that nanomaterials can evade the immune system and modulate immunological responses due to their unique physicochemical characteristics. Consequently, nanomaterial-based activation of immune components, i.e., neutrophils, macrophages, and other effector cells, may induce inflammation and alter the immune response. Here, it is essential to distinguish the acute and chronic modulations triggered by nanomaterials to determine the possible risks to human health. Nanomaterials size, shape, composition, surface charge, and deformability are factors controlling their uptake by immune cells and the resulting immune responses. The exterior corona of molecules adsorbed over nanomaterials surfaces also influences their immunological effects. Here, we review current nanoengineering trends for targeted immunomodulation with an emphasis on the design, safety, and potential toxicity of nanomaterials. First, we describe the characteristics of engineered nanomaterials that trigger immune responses. Then, the biocompatibility and immunotoxicity of nanoengineered particles are debated, because these factors influence applications. Finally, future nanomaterial developments in terms of surface modifications, synergistic approaches, and biomimetics are discussed.
Collapse
Affiliation(s)
| | - Mamta Kumawat
- Department of Biotechnology, School of Sciences, JECRC University, Sitapura Extension, Jaipur 303905, Rajasthan, India
| | - Himanshu Gogoi
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, University of Miyazaki, Miyazaki 8891692, Japan
| | - Eric Lichtfouse
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University Xi'an, Shaanxi 710049, China
| | - Hemant Kumar Daima
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindari 305817, Ajmer, India
| |
Collapse
|
14
|
Marwah H, Dewangan HK. Advancements in Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Breast Cancer Therapy. Curr Pharm Des 2024; 30:2922-2936. [PMID: 39150028 DOI: 10.2174/0113816128319233240725103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 08/17/2024]
Abstract
Solid Lipid Nanocarriers (SLNs) offer a promising avenue for breast cancer treatment, a disease that accounts for 12.5% of global cancer cases. Despite strides in combined therapies (surgery, chemotherapy, radiation, and endocrine therapy), challenges like systemic toxicity, drug resistance, and adverse effects persist. The manuscript offers several novel contributions to the field of breast cancer treatment through the use of SLNs, and these are innovative drug delivery systems, multifunctionality, and biocompatibility, the potential to overcome drug resistance, integration with emerging therapies, focus on personalized medicine, ongoing and future research directions and potential for reduced side effects. SLNs present a novel strategy due to their unique physicochemical properties. They can encapsulate both hydrophilic and hydrophobic drugs, ensuring controlled release and targeted delivery, thus enhancing solubility and bioavailability and reducing side effects. The multifunctional nature of SLNs improves drug delivery while their biocompatibility supports their potential in cancer therapy. Challenges for pharmacists include maintaining stability, effective drug loading, and timed delivery. Combining SLNs with emerging therapies like gene and immunotherapy holds promise for more effective breast cancer treatments. SLNs represent a significant advancement, providing precise drug delivery and fewer side effects, with the potential for overcoming drug resistance. Ongoing research will refine SLNs for breast cancer therapy, targeting cells with minimal side effects and integrating with other treatments for comprehensive approaches. Advances in nanotechnology and personalized medicine will tailor SLNs to specific breast cancer subtypes, enhancing effectiveness. Clinical trials and new treatment developments are crucial for realizing SLNs' full potential in breast cancer care. In conclusion, SLNs offer a transformative approach to breast cancer treatment, addressing issues of drug delivery and side effects. Ongoing research aims to optimize SLNs for targeted therapy, potentially revolutionizing breast cancer care and providing hope for patients.
Collapse
Affiliation(s)
- Harneet Marwah
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| |
Collapse
|
15
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Sato H, Yamada K, Miyake M, Onoue S. Recent Advancements in the Development of Nanocarriers for Mucosal Drug Delivery Systems to Control Oral Absorption. Pharmaceutics 2023; 15:2708. [PMID: 38140049 PMCID: PMC10747340 DOI: 10.3390/pharmaceutics15122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Oral administration of active pharmaceutical ingredients is desirable because it is easy, safe, painless, and can be performed by patients, resulting in good medication adherence. The mucus layer in the gastrointestinal (GI) tract generally acts as a barrier to protect the epithelial membrane from foreign substances; however, in the absorption process after oral administration, it can also disturb effective drug absorption by trapping it in the biological sieve structured by mucin, a major component of mucus, and eliminating it by mucus turnover. Recently, functional nanocarriers (NCs) have attracted much attention due to their immense potential and effectiveness in the field of oral drug delivery. Among them, NCs with mucopenetrating and mucoadhesive properties are promising dosage options for controlling drug absorption from the GI tracts. Mucopenetrating and mucoadhesive NCs can rapidly deliver encapsulated drugs to the absorption site and/or prolong the residence time of NCs close to the absorption membrane, providing better medications than conventional approaches. The surface characteristics of NCs are important factors that determine their functionality, owing to the formation of various kinds of interactions between the particle surface and mucosal components. Thus, a deeper understanding of surface modifications on the biopharmaceutical characteristics of NCs is necessary to develop the appropriate mucosal drug delivery systems (mDDS) for the treatment of target diseases. This review summarizes the basic information and functions of the mucosal layer, highlights the recent progress in designing functional NCs for mDDS, and discusses their performance in the GI tract.
Collapse
Affiliation(s)
- Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| | - Kohei Yamada
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| | - Masateru Miyake
- Business Integrity and External Affairs, Otsuka Pharmaceutical Co., Ltd., 2-16-4 Konan, Minato-ku, Tokyo 108-8242, Japan;
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (H.S.); (K.Y.)
| |
Collapse
|
17
|
Hu C, Yan Q, Zhang Y, Yan H. Influence Mechanism of Drug-Polymer Compatibility on Humidity Stability of Crystalline Solid Dispersion. Pharmaceuticals (Basel) 2023; 16:1640. [PMID: 38139767 PMCID: PMC10747292 DOI: 10.3390/ph16121640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
This study investigates the influence of humidity on the dissolution behavior and microstructure of drugs in crystalline solid dispersions (CSDs). Using Bifonazole (BFZ) as a model drug, CSDs were prepared through spray drying with carriers such as Poloxamer 188 (P188), Poloxamer 407 (P407), and polyethylene glycol 8000 (PEG8000). The solubilization effect and mechanism were initially evaluated, followed by an examination of the impact of humidity (RH10%) on the dissolution behavior of CSDs. Furthermore, the influence of humidity on the microstructure of CSDs was investigated, and factors affecting the humidity stability of CSDs were summarized. Significant enhancements in the intrinsic dissolution rate (IDR) of BFZ in CSDs were observed due to changes in crystalline size and crystallinity, with the CSD-P188 system exhibiting the best performance. Following humidity treatment, the CSD-P407 system demonstrated the least change in the IDR of BFZ, indicating superior stability. The CSD-P407 system was followed by the CSD-P188 system, with the CSD-PEG8000 system exhibiting the least stability. Further analysis of the microstructure revealed that while humidity had negligible effects on the crystalline size and crystallinity of BFZ in CSDs, it had a significant impact on the distribution of BFZ on the CSD surface. This can be attributed to the water's potent plasticizing effect, which significantly alters the molecular mobility of BFZ. Additionally, the compatibility of the three polymers with BFZ differs, with CSD-P407 > CSD-P188 > CSD-PEG8000. Under the continuous influence of water, stronger compatibility leads to lower molecular mobility and more uniform drug distribution on the CSD surface. Enhancing the compatibility of drugs with polymers can effectively reduce the mobility of BFZ in CSDs, thereby mitigating changes caused by water and ultimately stabilizing the surface composition and dissolution behavior of drugs in CSDs.
Collapse
Affiliation(s)
- Chunhui Hu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810001, China
| | - Qiuli Yan
- Medical College, Qinghai University, Xining 810001, China; (Q.Y.); (Y.Z.); (H.Y.)
| | - Yong Zhang
- Medical College, Qinghai University, Xining 810001, China; (Q.Y.); (Y.Z.); (H.Y.)
| | - Haiying Yan
- Medical College, Qinghai University, Xining 810001, China; (Q.Y.); (Y.Z.); (H.Y.)
| |
Collapse
|
18
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
19
|
Kusumawati AH, Garmana AN, Elfahmi E, Mauludin R. Pharmacological studies of the genus rice (Oryza L.): a literature review. BRAZ J BIOL 2023; 83:e272205. [PMID: 37585929 DOI: 10.1590/1519-6984.272205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/04/2023] [Indexed: 08/18/2023] Open
Abstract
Rice (Oryza L.) is an essential food for more than 50 percent of the world's population and is the world's second-largest grain crop. Pigmented rice comes in various colors, such as black, red, brown, and green. Anthocyanins, like cyanidin-3-O-glucoside and peonidin-3-O-glucoside, are the primary color pigments in colored rice, whereas proanthocyanidins and flavan-3-ol oligosaccharides, with catechins as the central synthesis unit, are found in brown rice. This review article's aim is to give information and a summary of rice activities, research methods, also mechanisms of action (Oryza L.). Intake of pigmented rice was already associated with a number of health benefits, including antioxidant activity, anticancer, antitumor, antidiabetic activity, and a reduced risk of cardiovascular disease. Rice contains several bioactive compounds, such as γ-oryzanol, phenolic acid, anthocyanins, proanthocyanidins, flavonoids, carotenoids, and phytosterols, which have been widely studied and shown to have several pharmacological activities. The use of current herbal compounds is rapidly increasing, including the practice of pharmacological disease prevention and treatment. Herbal remedies have entered the international market as a result of research into plant biopharmaceuticals and nutraceuticals. Through a variety of pharmacological activities, it is clear that Oryza L. is a popular herb. As a result, additional research on Oryza L. can be conducted to investigate more recent and comprehensive pharmacological effectiveness, to provide information and an overview of Rice (Oryza L.) activities, research methods, and mechanisms of action. Several natural substances are characterized by low water solubility, low stability, and sensitivity to light and oxygen, and the potential for poor absorption of the active substances requires modification of the formulation. To improve the effectiveness of pharmacologically active substances originating from natural ingredients, drug delivery systems that use lipid-based formulations can be considered innovations.
Collapse
Affiliation(s)
- A H Kusumawati
- Bandung Institute of Technology, School of Pharmacy, Bandung, West Java, Indonesia
- Buana Perjuangan Karawang University, Faculty of Pharmacy, Karawang, West Java, Indonesia
| | - A N Garmana
- Bandung Institute of Technology, School of Pharmacy, Bandung, West Java, Indonesia
| | - E Elfahmi
- Bandung Institute of Technology, School of Pharmacy, Bandung, West Java, Indonesia
| | - R Mauludin
- Bandung Institute of Technology, School of Pharmacy, Bandung, West Java, Indonesia
| |
Collapse
|
20
|
Khan S, Sharma A, Jain V. An Overview of Nanostructured Lipid Carriers and its Application in Drug Delivery through Different Routes. Adv Pharm Bull 2023; 13:446-460. [PMID: 37646052 PMCID: PMC10460807 DOI: 10.34172/apb.2023.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/24/2022] [Accepted: 09/09/2022] [Indexed: 09/01/2023] Open
Abstract
Nanostructured Lipid Carriers (NLC) are nano-sized colloidal drug delivery system that contains a lipid mixture consisting of both solid and liquid lipids in their core. This Lipid-Based Nanosystem is introduced as a biocompatible, non-toxic, and safe nano-drug delivery system as compared to polymeric or metallic nanoparticles. Due to its safety, stability, and high drug loading capacity compared to other lipid-based nanocarriers, NLC gained the attention of researchers to formulate safe and effective drug carriers. The ability to increase drug solubility and permeability while encapsulating the drug in a lipidic shell makes them an ideal carrier for drug delivery through difficult-to-achieve routes. Surface modification of NLC and the use of various additives result in drug targeting and increased residence time. With such qualities, NLCs can be used to treat a variety of diseases such as cancer, infections, neurodegenerative diseases, hypertension, diabetes, and pain management. This review focuses on the recent developments being made to deliver the drugs and genes through different routes via these nanocarriers. Here, we also discuss about historical background, structure, types of NLC and commonly employed techniques for manufacturing lipid-based nanocarriers.
Collapse
Affiliation(s)
- Shadab Khan
- Mahakal Institute of Pharmaceutical Studies, Ujjain, India
| | | | - Vikas Jain
- Mahakal Institute of Pharmaceutical Studies, Ujjain, India
| |
Collapse
|
21
|
Viegas C, Patrício AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics 2023; 15:1593. [PMID: 37376042 PMCID: PMC10305282 DOI: 10.3390/pharmaceutics15061593] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Solid-lipid nanoparticles and nanostructured lipid carriers are delivery systems for the delivery of drugs and other bioactives used in diagnosis, therapy, and treatment procedures. These nanocarriers may enhance the solubility and permeability of drugs, increase their bioavailability, and extend the residence time in the body, combining low toxicity with a targeted delivery. Nanostructured lipid carriers are the second generation of lipid nanoparticles differing from solid lipid nanoparticles in their composition matrix. The use of a liquid lipid together with a solid lipid in nanostructured lipid carrier allows it to load a higher amount of drug, enhance drug release properties, and increase its stability. Therefore, a direct comparison between solid lipid nanoparticles and nanostructured lipid carriers is needed. This review aims to describe solid lipid nanoparticles and nanostructured lipid carriers as drug delivery systems, comparing both, while systematically elucidating their production methodologies, physicochemical characterization, and in vitro and in vivo performance. In addition, the toxicity concerns of these systems are focused on.
Collapse
Affiliation(s)
- Cláudia Viegas
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana B. Patrício
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João M. Prata
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Hayatabad, Peshawar 25000, Pakistan
| | - Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM-Hyderabad Campus, Hyderabad 502329, Telangana, India
| | - Pedro Fonte
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
22
|
Hao H, Zhang Y, Hu X, Guo W, Yang C, Wang J. Cocrystallization of 5-fluorouracil with gallic acid: A novel 5-fluorouracil cocrystal displaying synergistic anti-tumor activity both in oral and intraperitoneal injection administration. Eur J Pharm Biopharm 2023; 187:12-23. [PMID: 37031731 DOI: 10.1016/j.ejpb.2023.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Gallic acid (GA) is a naturally occurring polyphenolic compound exhibiting anti-tumor activity. To clarify the capability of GA in optimizing the in vitro/in vivo properties of the first line anti-tumor drug 5-fluorouracil (5-FU) and achieve synergistically enhanced anti-tumor activity, a novel cocrystal hydrate of 5-FU-GA-H2O was successfully screened and characterized based on various spectroscopic and experimental analysis including Fourier transform infrared spectroscopy (FT-IR), Raman spectra (Raman), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric (TG) and scanning electric microscope (SEM) techniques. The results suggested the existence of hydrogen bonding interactions between C=O group of 5-FU and O-H group of GA. Although the dissolution rate and solubility of 5-FU-GA-H2O cocrystal were slowed and lowered compared with that of 5-FU, respectively, the membrane permeability was enhanced for cocrystal compared with that of intact 5-FU and physical mixture (PM) of 5-FU and GA. For the cocrystal, the cumulative amount per unit area of permeated 5-FU in the first 10 h was 2.56 and 9.97 times of that of pure 5-FU and PM, respectively, in the case that transmembrane behavior of 5-FU depended on the type of solution from which the powder was dissolved. Meanwhile, improvement on oral bioavailability by co-crystallization was observed; AUC0-t of cocrystal was 2.78-fold higher than that of 5-FU. Furthermore, the cocrystal displayed a superior cytotoxic activity on 4T1 mouse breast cancer cells compared with pure 5-FU and even the PM. It was confirmed that the cocrystal solution induced higher autophagic flux than those of 5-FU and PM in 4T1 cell, suggesting that autophagy rather than apoptosis mainly mediated cell death. The obvious difference of tumor inhibition activity between PM and cocrystal in intraperitoneal injection administration indicated that some of the interactions formed in the solid cocrystal could retain in solution in some way. Benefiting from synergistic cytotoxicity, drug efficacy in vivo was enhanced through injection administration of solution from which cocrystal was dissolved.
Collapse
Affiliation(s)
- Han Hao
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Yao Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Wei Guo
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Caiqin Yang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, People's Republic of China.
| |
Collapse
|
23
|
Vasquez-Martínez N, Guillen D, Moreno-Mendieta SA, Sanchez S, Rodríguez-Sanoja R. The Role of Mucoadhesion and Mucopenetration in the Immune Response Induced by Polymer-Based Mucosal Adjuvants. Polymers (Basel) 2023; 15:1615. [PMID: 37050229 PMCID: PMC10097111 DOI: 10.3390/polym15071615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Mucus is a viscoelastic gel that acts as a protective barrier for epithelial surfaces. The mucosal vehicles and adjuvants need to pass through the mucus layer to make drugs and vaccine delivery by mucosal routes possible. The mucoadhesion of polymer particle adjuvants significantly increases the contact time between vaccine formulations and the mucosa; then, the particles can penetrate the mucus layer and epithelium to reach mucosa-associated lymphoid tissues. This review presents the key findings that have aided in understanding mucoadhesion and mucopenetration while exploring the influence of physicochemical characteristics on mucus-polymer interactions. We describe polymer-based particles designed with mucoadhesive or mucopenetrating properties and discuss the impact of mucoadhesive polymers on local and systemic immune responses after mucosal immunization. In future research, more attention paid to the design and development of mucosal adjuvants could lead to more effective vaccines.
Collapse
Affiliation(s)
- Nathaly Vasquez-Martínez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
| | - Daniel Guillen
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Silvia Andrea Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
- Consejo Nacional de Ciencia y Tecnología, Benito Juárez, Mexico City 03940, Mexico
| | - Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| |
Collapse
|
24
|
Müller L, Rosenbaum C, Krause J, Weitschies W. Characterization of an In Vitro/Ex Vivo Mucoadhesiveness Measurement Method of PVA Films. Polymers (Basel) 2022; 14:polym14235146. [PMID: 36501540 PMCID: PMC9741245 DOI: 10.3390/polym14235146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Transmucosal drug delivery systems can be an attractive alternative to conventional oral dosage forms such as tablets. There are numerous in vitro methods to estimate the behavior of mucoadhesive dosage forms in vivo. In this work, a tensile test system was used to measure the mucoadhesion of polyvinyl alcohol films. An in vitro screening of potential influencing variables was performed on biomimetic agar/mucin gels. Among the test device-specific factors, contact time and withdrawal speed were identified as influencing parameters. In addition, influencing factors such as the sample area, which showed a linear relationship in relation to the resulting work, and the liquid addition, which led to an abrupt decrease in adhesion, could be identified. The influence of tissue preparation was investigated in ex vivo experiments on porcine small intestinal tissue. It was found that lower values of Fmax and Wad were obtained on processed and fresh tissue than on processed and thawed tissue. Film adhesion on fresh, unprocessed tissue was lowest in most of the animals tested. Comparison of ex vivo measurements on porcine small intestinal tissue with in vitro measurements on agar/mucin gels illustrates the inter- and intra-individual variability of biological tissue.
Collapse
|
25
|
Stalder T, Zaiter T, El-Basset W, Cornu R, Martin H, Diab-Assaf M, Béduneau A. Interaction and toxicity of ingested nanoparticles on the intestinal barrier. Toxicology 2022; 481:153353. [DOI: 10.1016/j.tox.2022.153353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/28/2022]
|
26
|
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Cytotoxicity Enhancement in MCF-7 Breast Cancer Cells with Depolymerized Chitosan Delivery of α-Mangostin. Polymers (Basel) 2022; 14:polym14153139. [PMID: 35956654 PMCID: PMC9371181 DOI: 10.3390/polym14153139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The application of α-mangostin (AMG) in breast cancer research has wide intentions. Chitosan-based nanoparticles (CSNPs) have attractive prospects for developing anticancer drugs, especially in their high flexibility for modification to enhance their anticancer action. This research aimed to study the impact of depolymerized chitosan (CS) on the cytotoxicity enhancement of AMG in MCF-7 breast cancer cells. CSNPs effectivity depends on size, shape, crystallinity degree, and charge surface. Modifying CS molecular weight (MW) is expected to influence CSNPs’ characteristics, impacting size, shape, crystallinity degree, and charge surface. CSNPs are developed using the method of ionic gelation with sodium tripolyphosphate (TPP) as a crosslinker and spray pyrolysis procedure. Nanoparticles’ (NPs) sizes vary from 205.3 ± 81 nm to 450.9 ± 235 nm, ZP charges range from +10.56 mV to +51.56 mV, and entrapment efficiency from 85.35% to 90.45%. The morphology of NPs are all the same spherical forms. In vitro release studies confirmed that AMG–Chitosan–High Molecular Weight (AMG–CS–HMW) and AMG–Chitosan–Low Molecular Weight (AMG–CS–LMW) had a sustained-release system profile. MW has a great influence on surface, drug release, and cytotoxicity enhancement of AMG in CSNPs to MCF-7 cancer cells. The preparations AMG–CS–HMW and AMG–CS–LMW NPs considerably enhanced the cytotoxicity of MCF-7 cells with IC50 values of 5.90 ± 0.08 µg/mL and 4.90 ± 0.16 µg/mL, respectively, as compared with the non-nano particle formulation with an IC50 of 8.47 ± 0.29 µg/mL. These findings suggest that CSNPs can enhance the physicochemical characteristics and cytotoxicity of AMG in breast cancer treatment.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence: (Y.H.); (M.M.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia
- USM-RIKEN Interdisciplinary Collaboration on Advanced Sciences (URICAS), Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Correspondence: (Y.H.); (M.M.)
| |
Collapse
|
27
|
Akbari J, Saeedi M, Ahmadi F, Hashemi SMH, Babaei A, Yaddollahi S, Rostamkalaei SS, Asare-Addo K, Nokhodchi A. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm Dev Technol 2022; 27:525-544. [DOI: 10.1080/10837450.2022.2084554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mohammad Hassan Hashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sadra Yaddollahi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
- Medicinal Plant Research Center, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Iran, Amol.
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutical Research laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
28
|
Nguyen TTL, Maeng HJ. Pharmacokinetics and Pharmacodynamics of Intranasal Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Nose-to-Brain Delivery. Pharmaceutics 2022; 14:572. [PMID: 35335948 PMCID: PMC8948700 DOI: 10.3390/pharmaceutics14030572] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Nose-to-brain drug delivery has been of great interest for the treatment of many central nervous system (CNS) diseases and psychiatric disorders over past decades. Several nasally administered formulations have been developed to circumvent the blood-brain barrier and directly deliver drugs to the CNS through the olfactory and trigeminal pathways. However, the nasal mucosa's drug absorption is insufficient and the volume of the nasal cavity is small, which, in combination, make nose-to-brain drug delivery challenging. These problems could be minimized using formulations based on solid lipid nanoparticles (SLNs) or nanostructured lipid carriers (NLCs), which are effective nose-to-brain drug delivery systems that improve drug bioavailability by increasing drug solubility and permeation, extending drug action, and reducing enzymatic degradation. Various research groups have reported in vivo pharmacokinetics and pharmacodynamics of SLNs and NLCs nose-to-brain delivery systems. This review was undertaken to provide an overview of these studies and highlight research performed on SLN and NLC-based formulations aimed at improving the treatment of CNS diseases such neurodegenerative diseases, epilepsy, and schizophrenia. We discuss the efficacies and brain targeting efficiencies of these formulations based on considerations of their pharmacokinetic parameters and toxicities, point out some gaps in current knowledge, and propose future developmental targets.
Collapse
Affiliation(s)
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea;
| |
Collapse
|