1
|
Cioanca O, Lungu II, Batir-Marin D, Lungu A, Marin GA, Huzum R, Stefanache A, Sekeroglu N, Hancianu M. Modulating Polyphenol Activity with Metal Ions: Insights into Dermatological Applications. Pharmaceutics 2025; 17:194. [PMID: 40006561 PMCID: PMC11858937 DOI: 10.3390/pharmaceutics17020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The skin represents the first barrier of defense, and its integrity is crucial for overall health. Skin wounds present a considerable risk seeing how their progression is rapid and sometimes they are caused by comorbidities like diabetes and venous diseases. Nutraceutical combinations like the ones between polyphenols and metal ions present considerable applications thanks to their increased bioavailability and their ability to modulate intrinsic molecular pathways. METHODS The research findings presented in this paper are based on a systematic review of the current literature with an emphasis on nanotechnology and regenerative medicine strategies that incorporate polyphenols and metallic nanoparticles (NPs). The key studies which described the action mechanisms, efficacy, and safety of these hybrid formulations were reviewed. RESULTS Nanocomposites of polyphenol and metal promote healing by activating signaling pathways such as PI3K/Akt and ERK1/2, which in turn improve fibroblast migration and proliferation. Nanoparticles of silver and copper have antibacterial, angiogenesis-promoting, inflammation-modulating capabilities. With their ability to induce apoptosis and restrict cell growth, these composites have the potential to cure skin malignancies in addition to facilitating wound healing. CONCLUSIONS Nanocomposites of polyphenols and metals provide hope for the treatment of cancer and chronic wounds. Their antimicrobial capabilities, capacity to modulate inflammatory responses, and enhancement of fibroblast activity all point to their medicinal potential. Furthermore, these composites have the ability to decrease inflammation associated with tumors while simultaneously inducing cell death in cancer cells. Clarifying their mechanisms, guaranteeing stability, and enhancing effective delivery techniques for clinical usage should be the focus of future studies.
Collapse
Affiliation(s)
- Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut-Iulian Lungu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Denisa Batir-Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania
| | - Andreea Lungu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania
| | - George-Alexandru Marin
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Riana Huzum
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania
| | - Alina Stefanache
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Grigore. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nazim Sekeroglu
- Department of Food Engineering, Faculty of Engineering and Architecture, Kilis 7 Aralık University, 79000 Kilis, Turkey
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
Bhal S, Das B, Sinha S, Das C, Acharya SS, Maji J, Kundu CN. Resveratrol nanoparticles induce apoptosis in oral cancer stem cells by disrupting the interaction between β-catenin and GLI-1 through p53-independent activation of p21. Med Oncol 2024; 41:167. [PMID: 38831079 DOI: 10.1007/s12032-024-02405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Cancer stem cells (CSCs) are mainly responsible for tumorigenesis, chemoresistance, and cancer recurrence. CSCs growth and progression are regulated by multiple signaling cascades including Wnt/β-catenin and Hh/GLI-1, which acts independently or via crosstalk. Targeting the crosstalk of signaling pathways would be an effective approach to control the CSC population. Both Wnt/β-catenin and Hh/GLI-1 signaling cascades are known to be regulated by p53/p21-dependent mechanism. However, it is interesting to delineate whether p21 can induce apoptosis in a p53-independent manner. Therefore, utilizing various subtypes of oral CSCs (SCC9-PEMT p53+/+p21+/+, SCC9-PEMT p53-/-p21+/+, SCC9-PEMT p53+/+p21-/- and SCC9-PEMT p53-/-p21-/-), we have examined the distinct roles of p53 and p21 in Resveratrol nanoparticle (Res-Nano)-mediated apoptosis. It is interesting to see that, besides the p53/p21-mediated mechanism, Res-Nano exposure also significantly induced apoptosis in oral CSCs through a p53-independent activation of p21. Additionally, Res-Nano-induced p21-activation deregulated the β-catenin-GLI-1 complex and consequently reduced the TCF/LEF and GLI-1 reporter activities. In agreement with in vitro data, similar experimental results were obtained in in vivo mice xenograft model.
Collapse
Affiliation(s)
- Subhasmita Bhal
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chinmay Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Sushree Subhadra Acharya
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Joydeb Maji
- Department of Botany, Siliguri College, Siliguri, Darjeeling, 734001, West Bengal, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
3
|
Mal S, Chakraborty S, Mahapatra M, Pakeeraiah K, Das S, Paidesetty SK, Roy P. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. NANOSCALE ADVANCES 2024; 6:2766-2812. [PMID: 38817429 PMCID: PMC11134266 DOI: 10.1039/d3na00988b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/10/2024] [Indexed: 06/01/2024]
Abstract
The World Health Organization identifies breast cancer as the most prevalent cancer despite predominantly affecting women. Surgery, hormonal therapy, chemotherapy, and radiation therapy are the current treatment modalities. Site-directed nanotherapeutics, engineered with multidimensional functionality are now the frontrunners in breast cancer diagnosis and treatment. Gold nanoparticles with their unique colloidal, optical, quantum, magnetic, mechanical, and electrical properties have become the most valuable weapon in this arsenal. Their advantages include facile modulation of shape and size, a high degree of reproducibility and stability, biocompatibility, and ease of particle engineering to induce multifunctionality. Additionally, the surface plasmon oscillation and high atomic number of gold provide distinct advantages for tailor-made diagnosis, therapy or theranostic applications in breast cancer such as photothermal therapy, radiotherapy, molecular labeling, imaging, and sensing. Although pre-clinical and clinical data are promising for nano-dimensional gold, their clinical translation is hampered by toxicity signs in major organs like the liver, kidneys and spleen. This has instigated global scientific brainstorming to explore feasible particle synthesis and engineering techniques to simultaneously improve the efficacy and versatility and widen the safety window of gold nanoparticles. The present work marks the first study on gold nanoparticle design and maneuvering techniques, elucidating their impact on the pharmacodynamics character and providing a clear-cut scientific roadmap for their fast-track entry into clinical practice.
Collapse
Affiliation(s)
- Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | | | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Suvadra Das
- Basic Science and Humanities Department, University of Engineering and Management Action Area III, B/5, Newtown Kolkata West Bengal 700160 India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Campus-2, Ghatikia, Kalinga Nagar Bhubaneswar Odisha 751003 India
| | - Partha Roy
- GITAM School of Pharmacy, GITAM (Deemed to be University) Vishakhapatnam 530045 India
| |
Collapse
|
4
|
Tomar R, Das SS, Balaga VK, Tambe S, Sahoo J, Rath SK, Ruokolainen J, Kesari KK. Therapeutic Implications of Dietary Polyphenols-Loaded Nanoemulsions in Cancer Therapy. ACS APPLIED BIO MATERIALS 2024; 7:2036-2053. [PMID: 38525971 PMCID: PMC11530091 DOI: 10.1021/acsabm.3c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
Cancer is one of the major causes of death worldwide, even the second foremost cause related to non-communicable diseases. Cancer cells typically possess several cellular and biological processes including, persistence, propagation, differentiation, cellular death, and expression of cellular-type specific functions. The molecular picture of carcinogenesis and progression is unwinding, and it appears to be a tangled combination of processes occurring within and between cancer cells and their surrounding tissue matrix. Polyphenols are plant secondary metabolites abundant in fruits, vegetables, cereals, and other natural plant sources. Natural polyphenols have implicated potential anticancer activity by various mechanisms involved in their antitumor action, including modulation of signaling pathways majorly related to cellular proliferation, differentiation, relocation, angiogenesis, metastatic processes, and cell death. The applications of polyphenols have been limited due to the hydrophobic nature and lower oral bioavailability that could be possibly overcome through encapsulating them into nanocarrier-mediated delivery systems, leading to improved anticancer activity. Nanoemulsions (NEs) possess diverse feasible properties, including greater surface area, modifiable surficial charge, higher half-life, site-specific targeting, and formulation imaging capability necessary to create a practical therapeutic impact, and have drawn increased attention in cancer therapy research. This review has summarized and discussed the basic concepts, classification, delivery approaches, and anticancer mechanism of various polyphenols and polyphenols-encapsulated nanoemulsions with improved cancer therapy.
Collapse
Affiliation(s)
- Ritu Tomar
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand 248009, India
| | - Sabya Sachi Das
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand 248009, India
| | - Venkata Krishna
Rao Balaga
- School
of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Srusti Tambe
- Department
of Pharmaceutical Science & Technology, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Jagannath Sahoo
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’S
NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Santosh Kumar Rath
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun, Uttarakhand 248009, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 00076, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, Espoo 00076, Finland
| |
Collapse
|
5
|
Inbaraj BS, Lai YW, Chen BH. A comparative study on inhibition of lung cancer cells by nanoemulsion, nanoliposome, nanogold and their folic acid conjugates prepared with collagen peptides from Taiwan tilapia skin. Int J Biol Macromol 2024; 261:129722. [PMID: 38280696 DOI: 10.1016/j.ijbiomac.2024.129722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Valorization of fish processing waste to obtain value-added products such as collagen and bioactive peptides is a vital strategy to increase the economic value, reduce disposal problems, and prevent harmful impacts on both environment and health. This study aims to isolate two collagen peptides from Taiwan Tilapia skin and prepare 12 nanopeptides including nanoemulsion (NE), nanoliposome (NL), and nanogold (NG) without and with folic acid/chitosan (FA/CH) or FA ligand conjugation for comparison of their inhibition efficiency towards lung cancer cells A549 and normal lung cells MRC5. Acid-soluble collagen (yield, 21.58 %) was extracted using 0.5 M acetic acid and hydrolyzed to obtain two tilapia skin collagen peptides TSCP1 (482 Da) and TSCP2 (172 Da) respectively using 2.5 % and 12.5 % alcalase, with sample-to-water ratio at 1:30 (w/v), pH 8, temperature 50 °C, and hydrolysis time 6 h. Characterization of collagen peptides revealed the presence of type 1 collagen with a high amount of amino acids including glycine (32.6-33.1 %), alanine (13.6-14.0 %), proline (10.0-10.5 %), and hydroxyproline (7.3-7.6 %). TSCP1, TSCP2, and 12 nanopeptides showed a higher cytotoxicity towards A549 cells than MRC5 cells, with TSCP2 and its 6 nanopeptides exhibiting a lower IC50 compared to TSCP1 and its 6 nanopeptides. The mean particle size was 15.7, 33.6, and 16.0 nm respectively for TSCP2-NE, TSCP2-NL, and TSCP2-NG, but changed to 14.4, 36.3, and 17.9 nm following ligand conjugation with a shift in zeta potential from negative to positive for TSCP2-NE-FA/CH and TSCP2-NL-FA/CH. All nanopeptides were more effective than peptides in inhibiting the growth of A549 cells, with the lowest IC50 value being shown for TSCP2-NL-FA/CH (5.32 μg/mL), followed by TSCP2-NE-FA/CH (8.3 μg/mL), TSCP2-NE (22.4 μg/mL), TSCP2-NL (82.7 μg/mL), TSCP2-NG-FA (159.8 μg/mL), TSCP2-NG (234.0 μg/mL) and TSCP2 (359.7 μg/mL). Cell proportions of sub-G1, S, and G2/M phases increased dose-dependently, with a possible cell cycle arrest at G2/M phase. The proportion of necrotic cells was the highest for TSCP2, TSCP2-NE, TSCP2-NE-FA/CH, and TSCP2-NL, while that of late apoptotic cells dominated for TSCP2-NL-FA/CH, TSCP2-NG, and TSCP2-NG-FA. Similarly, TSCP2 and its 6 nanopeptides showed a dose-dependent rise in caspase-3, caspase-8, and caspase-9 activities for execution of apoptosis, with the ligand-conjugated nanopeptides being the most efficient, followed by nanopeptides and peptides. The outcome of this study demonstrated an effective strategy for valorization of Taiwan tilapia skin to obtain collagen peptides and their nanopeptides possessing anticancer activity and form a basis for in vivo study in the future.
Collapse
Affiliation(s)
| | - Yu-Wen Lai
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan; Department of Nutrition, China Medical University, Taichung 404328, Taiwan.
| |
Collapse
|
6
|
Wang B, Jiang HM, Qi LM, Li X, Huang Q, Xie X, Xia Q. Deciphering resveratrol's role in modulating pathological pain: From molecular mechanisms to clinical relevance. Phytother Res 2024; 38:59-73. [PMID: 37795923 DOI: 10.1002/ptr.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Pathological pain, a multifaceted and debilitating ailment originating from injury or post-injury inflammation of the somatosensory system, poses a global health challenge. Despite its ubiquity, reliable therapeutic strategies remain elusive. To solve this problem, resveratrol, a naturally occurring nonflavonoid polyphenol, has emerged as a potential beacon of hope owing to its anti-inflammatory, antioxidant, and immunomodulatory capabilities. These properties potentially position resveratrol as an efficacious candidate for the management of pathological pain. This concise review summaries current experimental and clinical findings to underscore the therapeutic potential of resveratrol in pathological pain, casting light on the complex underlying pathophysiology. Our exploration suggests that resveratrol may exert its analgesic effect by the modulating pivotal signaling pathways, including PI3K/Akt/mTOR, TNFR1/NF-κB, MAPKs, and Nrf2. Moreover, resveratrol appears to attenuate spinal microglia activation, regulate primary receptors in dorsal root sensory neurons, inhibit pertinent voltage-gated ion channels, and curb the expression of inflammatory mediators and oxidative stress responses. The objective of this review is to encapsulate the pharmacological activity of resveratrol, including its probable signaling pathways, pharmacokinetics, and toxicology pertinent to the treatment of pathological pain. Hopefully, we aim to map out promising trajectories for the development of resveratrol as a potential analgesic.
Collapse
Affiliation(s)
- Biao Wang
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Hai-Mei Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu-Ming Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Huang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, State Administration of Traditional Chinese Medicine Key Laboratory of Traditional Chinese Medicine Regimen and Health, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Xia
- School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
7
|
Ashrafizadeh M, Luo K, Zhang W, Reza Aref A, Zhang X. Acquired and intrinsic gemcitabine resistance in pancreatic cancer therapy: Environmental factors, molecular profile and drug/nanotherapeutic approaches. ENVIRONMENTAL RESEARCH 2024; 240:117443. [PMID: 37863168 DOI: 10.1016/j.envres.2023.117443] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
A high number of cancer patients around the world rely on gemcitabine (GEM) for chemotherapy. During local metastasis of cancers, surgery is beneficial for therapy, but dissemination in distant organs leads to using chemotherapy alone or in combination with surgery to prevent cancer recurrence. Therapy failure can be observed as a result of GEM resistance, threatening life of pancreatic cancer (PC) patients. The mortality and morbidity of PC in contrast to other tumors are increasing. GEM chemotherapy is widely utilized for PC suppression, but resistance has encountered its therapeutic impacts. The purpose of current review is to bring a broad concept about role of biological mechanisms and pathways in the development of GEM resistance in PC and then, therapeutic strategies based on using drugs or nanostructures for overcoming chemoresistance. Dysregulation of the epigenetic factors especially non-coding RNA transcripts can cause development of GEM resistance in PC and miRNA transfection or using genetic tools such as siRNA for modulating expression level of these factors for changing GEM resistance are suggested. The overexpression of anti-apoptotic proteins and survival genes can contribute to GEM resistance in PC. Moreover, supportive autophagy inhibits apoptosis and stimulates GEM resistance in PC cells. Increase in metabolism, glycolysis induction and epithelial-mesenchymal transition (EMT) stimulation are considered as other factors participating in GEM resistance in PC. Drugs can suppress tumorigenesis in PC and inhibit survival factors and pathways in increasing GEM sensitivity in PC. More importantly, nanoparticles can increase pharmacokinetic profile of GEM and promote its blood circulation and accumulation in cancer site. Nanoparticles mediate delivery of GEM with genes and drugs to suppress tumorigenesis in PC and increase drug sensitivity. The basic research displays significant connection among dysregulated pathways and GEM resistance, but the lack of clinical application is a drawback that can be responded in future.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Kuo Luo
- Department of Oncology, Chongqing Hyheia Hospital, Chongqing, 4001331, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
8
|
Liu X, Guo Z, Li J, Wu D, Liu Z, Guan C, Guan Y, Lu X. Effect of gold-conjugated resveratrol nanoparticles on glioma cells and its underlying mechanism. Biomed Mater Eng 2024; 35:279-292. [PMID: 38461500 DOI: 10.3233/bme-230171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BACKGROUND Glioblastoma is the most aggressive brain tumor with poor prognosis. Although Resveratrol (Rsv) is known to have therapeutic effects on glioma, the effects of gold-conjugated resveratrol nanoparticles (Rsv-AuNPs) on glioma cells are rarely reported. OBJECTIVE We aimed to investigate the effects of Rsv-AuNPs on glioma cells and its underlying mechanism. METHOD Human glioma cell line U87 was treated with different concentrations of Rsv-AuNPs. CCK-8, transwell, and wound healing assay were performed to measure the effects of Rsv-AuNPs on cell proliferation, invasion, and migration ability, respectively. Flow cytometry assay was used to detect the effects of Rsv-AuNPs on apoptosis. Changes of protein expressions related to proliferation, invasion, migration, and apoptosis were measured by Western blot assay. In addition, the inhibitory role of Rsv-AuNPs in the PI3K/AKT/mTOR signaling pathway was verified by using PI3K inhibitor LY294002. RESULTS Rsv-AuNPs treatment significantly suppressed proliferation, migration, and invasion of U87 cells (all P < 0.05) and increased the apoptosis rate (P < 0.05). The changes of proteins related to proliferation, migration, invasion and apoptosis were consistent (all P < 0.05). Moreover, Rsv-AuNPs treatment significantly inhibited the phosphorylation of PI3K, AKT and mTOR proteins in U87 cells (P < 0.05). CONCLUSION The present study found that Rsv-AuNPs inhibited the proliferation, migration, and invasion of U87 cells and induced apoptosis by inhibiting the activation of PI3K/AKT/mTOR signaling pathway. In the future, Rsv-AuNPs might be applied to the clinical treatment of glioma through more in-depth animal and clinical research.
Collapse
Affiliation(s)
- Xiaojiang Liu
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Zongfeng Guo
- Department of Anesthesiology, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Jun Li
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Demo Wu
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Zhongping Liu
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Cheng Guan
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Yixiang Guan
- Department of Neurosurgery, Affiliated Haian Hospital of Nantong University, Nantong, China
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong University, Nantong, China
| |
Collapse
|
9
|
Qu Y, Zhang N, Zhao Y. Resveratrol Inhibits Abdominal Aortic Aneurysm Progression by Reducing Extracellular Matrix Degradation, Apoptosis, Autophagy, and Inflammation of Vascular Smooth Muscle Cells via Upregulation of HMOX1. J Endovasc Ther 2023:15266028231202727. [PMID: 37789605 DOI: 10.1177/15266028231202727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
OBJECTIVE This study aimed to explore the therapeutic effect of resveratrol (RES) against abdominal aortic aneurysm (AAA) and the role of HMOX1 underlying this effect. METHODS Vascular smooth muscle cells (VSMCs) were induced by angiotensin II (Ang II) to construct the microenvironment of AAA. HMOX1 expression was downregulated by the short hairpin ribonucleic acid (RNA) specific to HMOX1 in RES-pretreated VSMCs. The levels of matrix metalloproteinase (MMP)-2, MMP-9, and elastin were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. Apoptosis rate was detected. The levels of apoptosis-related proteins (caspase-3 and Bax/Bcl-2), inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and IL-1β), and autophagy-related proteins (Beclin 1, light chain 3 [LC3] II/I, and p62) were detected by western blot. The secretion of inflammatory factors in cell supernatant was detected by enzyme-linked immunosorbent assay (ELISA). The number of autophagic vesicles in VSMCs was observed and analyzed by transmission electron microscopy. A rat model of pancreatic elastase-induced AAA was established to verify the effect and action mechanism of RES. RESULTS Stimulation of Ang II increased the messenger RNA (mRNA) and protein levels of MMP-2 and MMP-9, decreased elastin expression, and enhanced apoptosis, secretion of inflammatory factors, and autophagy in VSMCs, whereas RES pretreatment ameliorated Ang II-induced VSMC dysfunction. In addition, HMOX1 mRNA and heme oxygenase-1 (HO-1) protein levels were significantly increased in VSMCs pretreated with RES compared with Ang II treatment alone. Silencing of HMOX1 abolished the effects of RES on VSMC dysfunction. Consistently, RES suppressed the development of AAA in rats by increasing the expression of HMOX1. CONCLUSION Resveratrol protects against AAA by inhibiting extracellular matrix degradation, apoptosis, autophagy, and inflammation of VSMCs via HMOX1 upregulation. CLINICAL IMPACT Our study found that angiotensin II (Ang II) stimulated increased the levels of MMP-2 and MMP-9 in vascular smooth muscle cells (VSMCs), decreased elastin expression, and promoted apoptosis, autophagy occurrence, and secretion of inflammatory factors, while resveratrol (RES) pretreatment improved this effect. In addition, downregulation of HMOX1 expression eliminated the effect of RES on the function of VSMCs. Our study elucidates that RES improves AAA progression through HMOX1 at both cellular and animal levels. This work can help doctors better understand the pathological mechanism of the occurrence and development of AAA, and provide a theoretical basis for clinicians to find better treatment options.
Collapse
Affiliation(s)
- Yunfei Qu
- Department of Vascular Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Ning Zhang
- General Practice, Chongqing University Three Gorges Hospital, Chongqing, P.R. China
| | - Yu Zhao
- Department of Vascular Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
10
|
Koklesova L, Jakubikova J, Cholujova D, Samec M, Mazurakova A, Šudomová M, Pec M, Hassan STS, Biringer K, Büsselberg D, Hurtova T, Golubnitschaja O, Kubatka P. Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management-Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine. Front Pharmacol 2023; 14:1121950. [PMID: 37033601 PMCID: PMC10076662 DOI: 10.3389/fphar.2023.1121950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes many deaths worldwide each year, especially due to tumor heterogeneity leading to disease progression and treatment failure. Targeted treatment of heterogeneous population of cells - cancer stem cells is still an issue in protecting affected individuals against associated multidrug resistance and disease progression. Nanotherapeutic agents have the potential to go beyond state-of-the-art approaches in overall cancer management. Specially assembled nanoparticles act as carriers for targeted drug delivery. Several nanodrugs have already been approved by the US Food and Drug Administration (FDA) for treating different cancer types. Phytochemicals isolated from plants demonstrate considerable potential for nanomedical applications in oncology thanks to their antioxidant, anti-inflammatory, anti-proliferative, and other health benefits. Phytochemical-based NPs can enhance anticancer therapeutic effects, improve cellular uptake of therapeutic agents, and mitigate the side effects of toxic anticancer treatments. Per evidence, phytochemical-based NPs can specifically target CSCs decreasing risks of tumor relapse and metastatic disease manifestation. Therefore, this review focuses on current outlook of phytochemical-based NPs and their potential targeting CSCs in cancer research studies and their consideration in the framework of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jana Jakubikova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dana Cholujova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Tatiana Hurtova
- Department of Dermatology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
11
|
Jen CT, Hsu BY, Chen BH. A study on anti-fatigue effects in rats by nanoemulsion and liposome prepared from American ginseng root residue extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
13
|
Lee ES, Shin JM. Natural-Product-Inspired Approaches for Cancer Diagnosis and Therapy. Pharmaceutics 2022; 14:pharmaceutics14091884. [PMID: 36145634 PMCID: PMC9502965 DOI: 10.3390/pharmaceutics14091884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eun Sook Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea
| | - Jung Min Shin
- Division of Biotechnology, Convergence Research Institute, DGIST, 333 Techno Jungang-Daero, Daegu 42988, Korea
- Correspondence: ; Tel.: +82-53-785-2535
| |
Collapse
|
14
|
Sridhar K, Inbaraj BS, Chen BH. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. CHEMOSPHERE 2022; 301:134702. [PMID: 35472615 DOI: 10.1016/j.chemosphere.2022.134702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Organic toxins are persistent chemicals of global concern capable of accumulating in environment and food. Surface enhanced Raman spectroscopy (SERS) is a promising technique that facilitates onsite detection of organic toxins. However, the fabrication of a SERS substrate is complicated and difficult to provide flexibility, fastness and cost-effectiveness. This study aims to develop a paper-based SERS method using grape skin-gold nanoparticles/graphene oxide (GE-AuNPs/GO) as SERS substrate and evaluate its efficiency with rhodamine 6G (Rh6G) as a model organic toxin and a real water and food contaminant. GE-AuNPs synthesized by green method using grape skin waste extract and GE-AuNPs/GO showed a surface plasmon resonance at 536 and 539 nm, particle size 18.6 and 19.5 nm, and zeta potential -44.6 and -59.7 mV, respectively. Paper-based SERS substrates were prepared by coating a hydrophobic thin-film of 30% polydimethylsiloxane solution in hexane on Whatman no. 1 filter paper, followed by drop-casting GE-AuNPs or GE-AuNPs/GO and drying. The SERS signals of Rh6G showed an enhancement factor of 5.8 × 104 for GE-AuNPs and 1.92 × 109 for GE-AuNPs/GO, implying that a combination of electromagnetic surface plasmon, charge transfer and molecular resonances may be responsible for a higher enhancement of signal by the latter. A low detection limit of 7.33 × 10-11 M in the linear range of 10-11-10-5 M was obtained for GE-AuNPs/GO, while the relative standard deviation of repeatability and reproducibility was 9.6 and 12.6%, respectively. Paper-based GE-AuNPs/GO SERS substrate was highly stable as <20% loss in efficiency was shown over a 60-day storage period. Application to real samples showed a high recovery of Rh6G from tap water (93.9-100.8%) as well as food samples such as red chilli powder (91.0-95.4%), red glutinous rice ball (96.6-98.3%) and tomato ketchup (98.9-102.3%) after QuEChERS extraction. Collectively, the developed paper-based GE-AuNPs/GO can be a potential substrate for sensitive onsite detection of rhodamine 6G by SERS method.
Collapse
Affiliation(s)
- Kandi Sridhar
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; Department of Nutrition, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|