1
|
Sathi Devi L, Gigliobianco MR, Gabrielli S, Agas D, Sabbieti MG, Morelli MB, Amantini C, Casadidio C, Di Martino P, Censi R. Localized Cancer Treatment Using Thiol-Ene Hydrogels for Dual Drug Delivery. Biomacromolecules 2025. [PMID: 40198273 DOI: 10.1021/acs.biomac.5c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Combinatorial cancer therapy benefits from injectable hydrogels for localized, controlled drug delivery. This study presents a thiol-ene conjugated hydrogel formed by cross-linking thiol-modified hyaluronic acid (HASH) with vinyl sulfone-modified β-cyclodextrin (CDVS). Four formulations (23Gel-16, 23Gel-33, 99Gel-16, 99Gel-33) were synthesized by varying HASH molecular weight (23 or 99 kDa) and CDVS modification (16% or 33%). Rheological analysis confirmed enhanced viscoelasticity with increasing molecular weight and modification (99Gel-33 > 99Gel-16 > 23Gel-33 > 23Gel-16). The system enabled combinatorial delivery of doxorubicin (DOX) and carvacrol (CRV), exhibiting tumor-responsive degradation and tunable release. DOX release accelerated under tumor-mimicking conditions (100% in 46 h vs 58.7% in PBS), while CRV showed an initial burst followed by sustained release. The hydrogel promoted mesenchymal stem cell proliferation and effectively inhibited triple-negative breast cancer cells. This injectable, tumor-responsive hydrogel system offers a promising platform for minimally invasive, personalized cancer therapy.
Collapse
Affiliation(s)
- Lakshmi Sathi Devi
- School of Pharmacy, ChIP Chemistry Interdisciplinary Project Research Centre, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Maria Rosa Gigliobianco
- Department of Pharmacy, University of "G. D'Annunzio" Chieti and Pescara, Via dei Vestini 1, 66100 Chieti, CH, Italy
| | - Serena Gabrielli
- School of Science and Technology, ChIP Chemistry Interdisciplinary Project Research Centre, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Maria Beatrice Morelli
- School of Pharmacy, Department of Experimental Medicine and Public Health, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Cristina Casadidio
- School of Pharmacy, ChIP Chemistry Interdisciplinary Project Research Centre, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| | - Piera Di Martino
- Department of Pharmacy, University of "G. D'Annunzio" Chieti and Pescara, Via dei Vestini 1, 66100 Chieti, CH, Italy
| | - Roberta Censi
- School of Pharmacy, ChIP Chemistry Interdisciplinary Project Research Centre, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, MC, Italy
| |
Collapse
|
2
|
Liu Y, Liang Y, Yuhong J, Xin P, Han JL, Du Y, Yu X, Zhu R, Zhang M, Chen W, Ma Y. Advances in Nanotechnology for Enhancing the Solubility and Bioavailability of Poorly Soluble Drugs. Drug Des Devel Ther 2024; 18:1469-1495. [PMID: 38707615 PMCID: PMC11070169 DOI: 10.2147/dddt.s447496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.
Collapse
Affiliation(s)
- Yifan Liu
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yushan Liang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jing Yuhong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Peng Xin
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jia Li Han
- School of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yongle Du
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xinru Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Runhe Zhu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Mingxun Zhang
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Wen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Yingjie Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
3
|
Design of Nanoparticles in Cancer Therapy Based on Tumor Microenvironment Properties. Pharmaceutics 2022; 14:pharmaceutics14122708. [PMID: 36559202 PMCID: PMC9785496 DOI: 10.3390/pharmaceutics14122708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and battling cancer has always been a challenging subject in medical sciences. All over the world, scientists from different fields of study try to gain a deeper knowledge about the biology and roots of cancer and, consequently, provide better strategies to fight against it. During the past few decades, nanoparticles (NPs) have attracted much attention for the delivery of therapeutic and diagnostic agents with high efficiency and reduced side effects in cancer treatment. Targeted and stimuli-sensitive nanoparticles have been widely studied for cancer therapy in recent years, and many more studies are ongoing. This review aims to provide a broad view of different nanoparticle systems with characteristics that allow them to target diverse properties of the tumor microenvironment (TME) from nanoparticles that can be activated and release their cargo due to the specific characteristics of the TME (such as low pH, redox, and hypoxia) to nanoparticles that can target different cellular and molecular targets of the present cell and molecules in the TME.
Collapse
|
4
|
Wu Y, Sun Z, Song J, Mo L, Wang X, Liu H, Ma Y. Preparation of multifunctional mesoporous SiO 2nanoparticles and anti-tumor action. NANOTECHNOLOGY 2022; 34:055101. [PMID: 36317264 DOI: 10.1088/1361-6528/ac9e5f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
A targeted drug delivery system was developed to accumulate specific drugs around tumor cells based on the redox, temperature, and enzyme synergistic responses of mesoporous silica nanoparticles. Mesoporous silica nanoparticles (MSN-NH2) and Doxorubicin (DOX) for tumor therapy were prepared and loaded into the pores of MSN- NH2 to obtain DOX@MSN(DM NPs). Hyaluronic acid (HA) was used as the backbone and disulfide bond was used as the linker arm to graft carboxylated poly (N-isopropylacrylamide)(PNIPAAm-COOH) to synthesize the macromolecular copolymer (HA-SS-PNIPAAm), which was modified to DM NPs with capped ends to obtain the nano-delivery system DOX@MSN@HA-SS-PNIPAAm(DMHSP NPs), and a control formulation was prepared in a similar way. DMHSP NPs specifically entered tumor cells via CD44 receptor-mediated endocytosis; the high GSH concentration (10 mM) of cells severed the disulfide bonds, the hyaluronidase sheared the capped HA to open the pores, and increased tumor microenvironment temperature due to immune response can trigger the release of encapsulated drugs in thermosensitive materials.In vitroandin vivoantitumor and hemolysis assays showed that DMHSP NPs can accurately target hepatocellular carcinoma cells with a good safety profile and have synergistic effects, which meant DMHSP NPs had great potential for tumor therapy.
Collapse
Affiliation(s)
- Yijun Wu
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Zhiqiang Sun
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Jinfeng Song
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Liufang Mo
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Xiaochen Wang
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Hanhan Liu
- College of Pharmacy of Henan University, Kaifeng Henan, 475004, People's Republic of China
| | - Yunfeng Ma
- Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, People's Republic of China
| |
Collapse
|