1
|
Mardiana L, Milanda T, Hadisaputri YE, Chaerunisaa AY. Phytosome-Enhanced Secondary Metabolites for Improved Anticancer Efficacy: Mechanisms and Bioavailability Review. Drug Des Devel Ther 2025; 19:201-218. [PMID: 39816849 PMCID: PMC11734513 DOI: 10.2147/dddt.s483404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/24/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Phytosome technology, an advanced lipid-based delivery system, offers a promising solution for enhancing the bioavailability and therapeutic efficacy of secondary metabolites, particularly in cancer treatment. These metabolites, such as flavonoids, terpenoids, and alkaloids, possess significant anticancer potential but are often limited by poor solubility and low absorption. This review aims to investigate how phytosome encapsulation improves the pharmacokinetic profiles and anticancer effectiveness of these bioactive compounds. Patients and Methods This comprehensive review is based on an analysis of recent literature retrieved from PubMed, Scopus, and ScienceDirect databases. It focuses on findings from preclinical and in vitro studies that examine the pharmacokinetic enhancements provided by phytosome technology when applied to secondary metabolites. Results Phytosome-encapsulated secondary metabolites exhibit significantly improved solubility, absorption, distribution, and cellular uptake compared to non-encapsulated forms. This enhanced bioavailability facilitates more effective inhibition of cancer pathways, including NF-κB and PI3K/AKT, leading to increased anticancer efficacy in preclinical models. Conclusion Phytosome technology has demonstrated its potential to overcome bioavailability challenges, resulting in safer and more effective therapeutic options for cancer treatment. This review highlights the potential of phytosome-based formulations as a novel approach to anticancer therapy, supporting further development in preclinical, in vitro, and potential clinical applications.
Collapse
Affiliation(s)
- Lia Mardiana
- Doctoral Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Islam Kalimantan Muhammad Arsyad Al-Banjari, Banjarmasin, 70123, Indonesia
| | - Tiana Milanda
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Yuni Elsa Hadisaputri
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
2
|
Bhat AA, Moglad E, Goyal A, Afzal M, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Ali H, Gaur A, Singh TG, Singh SK, Dua K, Gupta G. Nrf2 pathways in neuroprotection: Alleviating mitochondrial dysfunction and cognitive impairment in aging. Life Sci 2024; 357:123056. [PMID: 39277133 DOI: 10.1016/j.lfs.2024.123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Mitochondrial dysfunction and cognitive impairment are widespread phenomena among the elderly, being crucial factors that contribute to neurodegenerative diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of cellular defense systems, including that against oxidative stress. As such, increased Nrf2 activity may serve as a strategy to avert mitochondrial dysfunction and cognitive decline. Scientific data on Nrf2-mediated neuroprotection was collected from PubMed, Google Scholar, and Science Direct, specifically addressing mitochondrial dysfunction and cognitive impairment in older people. Search terms included "Nrf2", "mitochondrial dysfunction," "cognitive impairment," and "neuroprotection." Studies focusing on in vitro and in vivo models and clinical investigations were included to review Nrf2's therapeutic potential comprehensively. The relative studies have demonstrated that increased Nrf2 activity could improve mitochondrial performance, decrease oxidative pressure, and mitigate cognitive impairment. To a large extent, this is achieved through the modulation of critical cellular signalling pathways such as the Keap1/Nrf2 pathway, mitochondrial biogenesis, and neuroinflammatory responses. The present review summarizes the recent progress in comprehending the molecular mechanisms regarding the neuroprotective benefits mediated by Nrf2 through its substantial role against mitochondrial dysfunction and cognitive impairment. This review also emphasizes Nrf2-target pathways and their contribution to cognitive function improvement and rescue from mitochondria-related abnormalities as treatment strategies for neurodegenerative diseases that often affect elderly individuals.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341 Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
3
|
Chen D, Man LY, Wang YY, Zhu WY, Zhao HM, Li SP, Zhang YL, Li SC, Wu YX, Ling-Ai, Pang QF. Nrf2 deficiency exacerbated pulmonary pyroptosis in maternal hypoxia-induced intrauterine growth restriction offspring mice. Reprod Toxicol 2024; 129:108671. [PMID: 39038764 DOI: 10.1016/j.reprotox.2024.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Maternal prenatal hypoxia is an important contributor to intrauterine growth restriction (IUGR), which impedes fetal lung maturation and leads to the development of chronic lung diseases. Although evidence suggests the involvement of pyroptosis in IUGR, the molecular mechanism of pyroptosis is still unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been found to potentially interact with gasdermin D (GSDMD), the key protein responsible for pyroptosis, indicating its crucial role in inhibiting pyroptosis. Therefore, we hypothesized that Nrf2 deficiency is a key molecular responsible for lung pyroptosis in maternal hypoxia-induced IUGR offspring mice. Pregnant WT and Nrf2-/- mice were exposed to hypoxia (10.5 % O2) to mimic IUGR model. We assessed body weight, lung histopathology, pulmonary angiogenesis, oxidative stress levels, as well as mRNA and protein expressions related to inflammation in the 2-week-old offspring. Additionally, we conducted a dual-luciferase reporter assay to confirm the targeting relationship between Nrf2 and GSDMD. Our findings revealed that offspring with maternal hypoxia-induced IUGR exhibited reduced birth weight, catch-up growth delay, and pulmonary dysplasia. Furthermore, we observed impaired nuclear translocation of Nrf2 and increased GSDMD-mediated pyroptosis in these offspring with IUGR. Moreover, the dual-luciferase reporter assay demonstrated that Nrf2 could directly inhibit GSDMD transcription; deficiency of Nrf2 exacerbated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR. Collectively, our findings suggest that Nrf2 deficiency induces GSDMD-mediated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR; thus highlighting the potential therapeutic approach of targeting Nrf2 for treating prenatal hypoxia-induced pulmonary dysplasia in offspring.
Collapse
Affiliation(s)
- Dan Chen
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ling-Yun Man
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ying-Ying Wang
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Wei-Ying Zhu
- Department of obstetric, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing 314000, China
| | - Hui-Min Zhao
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Sheng-Peng Li
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Yan-Li Zhang
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Shuai-Chao Li
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ya-Xian Wu
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ling-Ai
- Department of obstetric, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, Jiaxing 314000, China.
| | - Qing-Feng Pang
- Department of physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
4
|
Li J, Wang M, Zhou H, Jin Z, Yin H, Yang S. The role of pyroptosis in the occurrence and development of pregnancy-related diseases. Front Immunol 2024; 15:1400977. [PMID: 39351226 PMCID: PMC11439708 DOI: 10.3389/fimmu.2024.1400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Pyroptosis is a form of programmed cell death that is crucial in the development of various diseases, including autoimmune diseases, atherosclerotic diseases, cancer, and pregnancy complications. In recent years, it has gained significant attention in national and international research due to its association with inflammatory immune overactivation and its involvement in pregnancy complications such as miscarriage and preeclampsia (PE). The mechanisms discussed include the canonical pyroptosis pathway of gasdermin activation and pore formation (caspase-1-dependent pyroptosis) and the non-canonical pyroptosis pathway (cysteoaspartic enzymes other than caspase-1). These pathways work on various cellular and factorial levels to influence normal pregnancy. This review aims to summarize and analyze the pyroptosis pathways associated with abnormal pregnancies and pregnancy complications. The objective is to enhance pregnancy outcomes by identifying various targets to prevent the onset of pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin
University, Changchun, Jilin, China
| |
Collapse
|
5
|
Pant T, Uche N, Juric M, Zielonka J, Bai X. Regulation of immunomodulatory networks by Nrf2-activation in immune cells: Redox control and therapeutic potential in inflammatory diseases. Redox Biol 2024; 70:103077. [PMID: 38359749 PMCID: PMC10877431 DOI: 10.1016/j.redox.2024.103077] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Nnamdi Uche
- Department of Pharmacology and Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
6
|
Yasuda T, Kashima Y. A soy protein enzymatic digest mitigates Nrf2-related oxidative stress and attenuates depression-like behavior in a mouse model of sub-chronic restraint stress. Heliyon 2024; 10:e27826. [PMID: 38524573 PMCID: PMC10958348 DOI: 10.1016/j.heliyon.2024.e27826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Continuous oxidative stress conditions have been identified as a major cause of various neuropsychiatric disorders, including depression. The present study investigated the potential antidepressant-like effects of a soy protein enzymatic digest (SPD) containing soy-deprestatin, which is a soy-derived peptide with reported antidepressant-like effects, as well as its ability to mitigate oxidative stress in the brain caused by sub-chronic restraint stress. Mice were divided into two groups: a control group and restraint stress group. The restraint stress group was further divided into two groups administered water or SPD. After repeated short-time restraints over five days, we evaluated immobility times in the tail suspension test, and antioxidant enzyme activities, glutathione levels, oxidative stress maker levels, and the gene expression levels of Nrf2 and antioxidant enzymes in the brain. The results obtained showed that the oral administration of SPD reduced immobility times in mice exposed to restraint stress. In comparisons with the water-treated restraint group, the administration of SPD restored superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities and glutathione levels and prevented restraint stress-induced increases in malondialdehyde, carbonyl protein, and 8-OHdG levels in the restraint stress group. In addition, high expression levels of Nrf2, HO-1, NQO-1 and GCLC were observed in the SPD-treated restraint group. These results suggest that SPD attenuated repeated restraint stress-induced depression-like behaviors by mitigating oxidative stress through the activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Takuwa Yasuda
- Global Healthcare Research Laboratory, UHA Mikakuto Co., Ltd., Osaka, Japan
| | - Yasuhiro Kashima
- Global Healthcare Research Laboratory, UHA Mikakuto Co., Ltd., Osaka, Japan
| |
Collapse
|
7
|
Tonev D, Momchilova A. Oxidative Stress and the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Pathway in Multiple Sclerosis: Focus on Certain Exogenous and Endogenous Nrf2 Activators and Therapeutic Plasma Exchange Modulation. Int J Mol Sci 2023; 24:17223. [PMID: 38139050 PMCID: PMC10743556 DOI: 10.3390/ijms242417223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The pathogenesis of multiple sclerosis (MS) suggests that, in genetically susceptible subjects, T lymphocytes undergo activation in the peripheral compartment, pass through the BBB, and cause damage in the CNS. They produce pro-inflammatory cytokines; induce cytotoxic activities in microglia and astrocytes with the accumulation of reactive oxygen species, reactive nitrogen species, and other highly reactive radicals; activate B cells and macrophages and stimulate the complement system. Inflammation and neurodegeneration are involved from the very beginning of the disease. They can both be affected by oxidative stress (OS) with different emphases depending on the time course of MS. Thus, OS initiates and supports inflammatory processes in the active phase, while in the chronic phase it supports neurodegenerative processes. A still unresolved issue in overcoming OS-induced lesions in MS is the insufficient endogenous activation of the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) pathway, which under normal conditions plays an essential role in mitochondria protection, OS, neuroinflammation, and degeneration. Thus, the search for approaches aiming to elevate endogenous Nrf2 activation is capable of protecting the brain against oxidative damage. However, exogenous Nrf2 activators themselves are not without drawbacks, necessitating the search for new non-pharmacological therapeutic approaches to modulate OS. The purpose of the present review is to provide some relevant preclinical and clinical examples, focusing on certain exogenous and endogenous Nrf2 activators and the modulation of therapeutic plasma exchange (TPE). The increased plasma levels of nerve growth factor (NGF) in response to TPE treatment of MS patients suggest their antioxidant potential for endogenous Nrf2 enhancement via NGF/TrkA/PI3K/Akt and NGF/p75NTR/ceramide-PKCζ/CK2 signaling pathways.
Collapse
Affiliation(s)
- Dimitar Tonev
- Department of Anesthesiology and Intensive Care, University Hospital “Tzaritza Yoanna—ISUL”, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| |
Collapse
|
8
|
Li C, Wang Z, Lei H, Zhang D. Recent progress in nanotechnology-based drug carriers for resveratrol delivery. Drug Deliv 2023; 30:2174206. [PMID: 36852655 PMCID: PMC9980162 DOI: 10.1080/10717544.2023.2174206] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Resveratrol is a polyphenol with diverse pharmacological activities, but its clinical efficacy is limited due to low solubility/permeability, light-induced isomerization, auto-oxidation, and rapid metabolism. Nanodelivery systems, such as liposomes, polymeric nanoparticles, lipid nanocarriers, micelles, nanocrystals, inorganic nanoparticles, nanoemulsions, protein-based nanoparticles, exosomes, macrophages, and red blood cells (RBCs) have shown great potential for improving the solubility, biocompatibility, and therapeutic efficacy of resveratrol. This review comprehensively summarizes the recent advances in resveratrol nanoencapsulation and describes potential strategies to improve the pharmacokinetics of existing nanoformulations, enhance targeting, reduce toxicity, and increase drug release and encapsulation efficiency. The article also suggests that in order to avoid potential safety issues, resveratrol nanoformulations must be tested in vivo in a wide range of diseases.
Collapse
Affiliation(s)
- Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, PR China
| | - Zhen Wang
- Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, PR China
| | - Hui Lei
- Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, PR China,CONTACT Hui Lei
| | - Dan Zhang
- Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, PR China,Dan Zhang Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou646000, Sichuan, PR China
| |
Collapse
|
9
|
Silberstein S, Spierings ELH, Kunkel T. Celecoxib Oral Solution and the Benefits of Self-Microemulsifying Drug Delivery Systems (SMEDDS) Technology: A Narrative Review. Pain Ther 2023; 12:1109-1119. [PMID: 37329440 PMCID: PMC10444713 DOI: 10.1007/s40122-023-00529-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023] Open
Abstract
INTRODUCTION The oral route of drug delivery is the most widespread and preferred route of administration, but it has several limitations, including variable pharmacokinetics (PK), reduced dissolution and absorption, and gastrointestinal irritation. Further, many compounds have low aqueous solubility, which also limits intestinal absorption. METHODS For this narrative review, we conducted a literature search of PubMed until August 2022, focusing on emulsions, microemulsions, nanoemulsions, and self-emulsifying drug delivery systems. RESULTS The self-microemulsifying drug delivery system (SMEDDS) overcomes these limitations of hydrophobic compounds to enhance their bioavailability. A SMEDDS formulation is a clear, thermodynamically stable, oil-in-water emulsion of lipid, solubilized drug, and two surfactants, which spontaneously forms droplets < 100 nm in diameter. These components help deliver presolubilized drugs to the gastrointestinal tract, while protecting them from degradation in gastric acid or first-pass hepatic metabolism. SMEDDS formulations have improved oral drug delivery in the treatment of cancer (paclitaxel), viral infections (ritonavir), and migraine headache (ibuprofen and celecoxib oral solution). The American Headache Society recently updated their consensus statement for the acute treatment of migraine and included a selective cyclo-oxygenase-2 selective inhibitor formulated in SMEDDS, celecoxib oral solution. This SMEDDS formulation showed pronounced improvement in bioavailability compared with celecoxib capsules, allowing for a low dose of celecoxib in the oral solution to provide safe and effective acute migraine treatment. Here, we will focus on SMEDDS formulations, what differentiates them from other analogous emulsions as vehicles for poorly soluble drugs, and their clinical application in the acute treatment of migraine. CONCLUSIONS Oral drugs reformulated in SMEDDS have shown accelerated times to peak plasma drug concentrations and increased maximum plasma concentrations, compared with capsules, tablets, or suspensions. SMEDDS technology increases both drug absorption and bioavailability of lipophilic drugs, compared with other formulations. Clinically, this allows the use of lower doses with improved PK profiles without compromising efficacy, as shown with celecoxib oral solution for the acute treatment of migraine.
Collapse
Affiliation(s)
| | | | - Todd Kunkel
- Collegium Pharmaceutical, Inc., 100 Technology Center Drive, Suite 300, Stoughton, MA, 02072, USA.
| |
Collapse
|
10
|
Zhang G, Huang L, Feng M, Zhang T, Gao Y, Yao Y, Li S, Li X, Lin Y. Nano shield: a new tetrahedral framework nucleic acids-based solution to radiation-induced mucositis. NANOSCALE 2023; 15:7877-7893. [PMID: 37060124 DOI: 10.1039/d2nr07174f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Radiation-induced oral mucositis (RIOM) is considered to be one of the most important public health problems today, affecting the overall well-being of millions of patients who have received radiotherapy. Nevertheless, the field of preventing and treating RIOM is still widely unexplored. Curcumin (Cur) with its promising anti-inflammatory and antioxidant properties is accompanied with obstacles in application, including poor dissolubility, instability and low bioavailability. In this study, a tetrahedral framework nucleic acid drug delivery system (TFNAS) was synthesized and established using a novel method to carry Cur (Cur-TFNAS) for efficient drug delivery. The results showed that Cur-TFNAS enhanced the antioxidant capacity of human oral mucosal keratin-forming cells (HOKs) compared to free Cur and TFNAS. Meanwhile, Cur-TFNAS reduced DNA damage and shielded the cells from inflammatory factors. A similar result was also well documented in vivo. Herein, we consider that Cur-TFNAS acts as a nano-shield for preventing radiation oral mucositis and shows important clinical value in the future.
Collapse
Affiliation(s)
- Geru Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Liwei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Maogeng Feng
- The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Yangxue Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Gu G, Ren J, Zhu B, Shi Z, Feng S, Wei Z. Multiple mechanisms of curcumin targeting spinal cord injury. Biomed Pharmacother 2023; 159:114224. [PMID: 36641925 DOI: 10.1016/j.biopha.2023.114224] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/16/2023] Open
Abstract
Spinal cord injury (SCI) is an irreversible disease process with a high disability and mortality rate. After primary spinal cord injury, the secondary injury may occur in sequence, which is composed of ischemia and hypoxia, excitotoxicity, calcium overload, oxidative stress and inflammation, resulting in massive death of parenchymal cells in the injured area, followed by the formation of syringomyelia. Effectively curbing the process of secondary injury can promote nerve repair and improve functional prognosis. As the main active ingredient in turmeric, curcumin can play an important role in reducing inflammation and oxidation, protecting the neurons, and ultimately reducing spinal cord injury. This article reviews the effects of curcumin on the repair of nerve injury, with emphasis on the various mechanisms by which curcumin promotes the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Guangjin Gu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Ren
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bin Zhu
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhongju Shi
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Zhijian Wei
- National Spinal Cord Injury International Cooperation Base, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
12
|
Yamaoka S, Sasaki K, Sato S. Curcumin intake during lactation suppresses oxidative stress through upregulation of nuclear factor erythroid 2-related factor 2 in the kidneys of fructose-loaded female rat offspring exposed to maternal protein restriction. Birth Defects Res 2023; 115:674-686. [PMID: 36811147 DOI: 10.1002/bdr2.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND A high-fructose diet causes the progression of chronic kidney disease. Maternal malnutrition during pregnancy and lactation increases oxidative stress, leading to chronic renal diseases later in life. We investigated whether curcumin intake during lactation could suppress oxidative stress and regulate NF-E2-related factor 2 (Nrf2) expression in the kidneys of fructose-loaded female rat offspring exposed to maternal protein restriction. METHODS Pregnant Wistar rats received diets containing 20% (NP) or 8% (LP) casein and 0 or 2.5 g "highly absorptive curcumin" /kg diet containing-LP diets (LP/LP or LP/Cur) during lactation. At weaning, female offspring received either distilled water (W) or 10% fructose solution (Fr) and were divided into four groups: NP/NP/W, LP/LP/W, LP/LP/Fr, and LP/Cur/Fr. At week 13, glucose (Glc), triacylglycerol (Tg), and malondialdehyde (MDA) levels in the plasma, macrophages number, fibrotic area, glutathione (GSH) levels, glutathione peroxidase (GPx) activity, protein expression levels of Nrf2, heme oxygenase-1 (HO-1), and superoxide dismutase 1 (SOD1) in the kidneys were examined. RESULTS The plasma levels of Glc, TG, and MDA, the number of macrophages, and the percentage of fibrotic area in the kidneys of the LP/Cur/Fr group were significantly lower than those of the LP/LP/Fr group. The expression of Nrf2 and its downstream molecules HO-1 and SOD1, GSH levels, and GPx activity in the kidneys of the LP/Cur/Fr group were significantly higher than those of the LP/LP/Fr group. CONCLUSIONS Maternal curcumin intake during lactation may suppress oxidative stress by upregulating Nrf2 expression in the kidneys of fructose-loaded female offspring exposed to maternal protein restriction.
Collapse
Affiliation(s)
- Shin Yamaoka
- Aomori University of Health and Welfare, Graduate School of Health Sciences, Aomori, Japan.,Department of Nutrition, Akita Nutrition Junior College, Akita, Japan
| | - Kotomi Sasaki
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Shin Sato
- Aomori University of Health and Welfare, Graduate School of Health Sciences, Aomori, Japan.,Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| |
Collapse
|
13
|
Nasr M, Ahmed-Farid OAH, Ahmed RF. Curcumin-resveratrol nano-formulation counteracting hyperammonemia in rats. Metab Brain Dis 2023; 38:1365-1377. [PMID: 36696035 PMCID: PMC10110714 DOI: 10.1007/s11011-023-01162-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
Malnutrition and low dietary protein intake could be risk factors for developing peripheral and central hyperammonemia, especially in pediatrics. Both curcumin and resveratrol proved to be effective against several hepatic and cerebral injuries. They were reported to be beneficial in lowering circulating ammonia levels, yet both are known for their low bioavailability. The use of pharmaceutical nano-formulations as delivery systems for these two nutraceuticals could solve the aforementioned problem. Hence, the present study aimed to investigate the valuable outcome of using a combination of curcumin and resveratrol in a nanoemulsion formulation, to counteract protein-deficient diet (PDD)-induced hyperammonemia and the consequent complications in male albino rats. Results revealed that using a nanoemulsion containing both curcumin and resveratrol at a dose of (5 + 5 mg/kg) effectively reduced hepatic and brain ammonia levels, serum ALT and AST levels, hepatic and brain nitric oxide levels, oxidative DNA damage as well as disrupted cellular energy performance. In addition, there was a substantial increase in brain levels of monoamines, and a decrease in glutamate content. Therefore, it can be concluded that the use of combined curcumin and resveratrol nanoemulsion is an effective means of ameliorating the hepatic and cerebral adverse effects resulting from PDD-induced hyperammonemia in rats.
Collapse
Affiliation(s)
- Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, 12553, Giza, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical studies Institute, National Research Centre, 12622, Dokki, Giza, Egypt.
| |
Collapse
|
14
|
Wang C, Jiang X, Zhang X, Xu Y, Li L, Li X, Wang S, Shi P, Gao X, Liu Z, Clark WD, Cao Y. A novel solvent-free co-grinding preparation improves curcumin bioavailability in healthy volunteers: A single-center crossover study. Heliyon 2023; 9:e12829. [PMID: 36685407 PMCID: PMC9852671 DOI: 10.1016/j.heliyon.2023.e12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Curcumin, from the rhizome of turmeric (Curcuma longa L.), has a wide variety of biological activities. Unfortunately, its poor water-solubility greatly limits its bioavailability. The purpose of this study was to evaluate CUMINUP60®, a novel preparation utilizing a solvent-free, co-grinding method designed to improve curcumin's bioavailability. We performed a single-center crossover experiment to compare the new product with standard 95% curcumin in the blood plasma of twelve healthy adults (10 males, 2 females). Total bioavailability of curcumin and its sulfate and glucuronide conjugates from the test product, measured by their areas under the curve over 12 h (AUC0-T), showed a combined increase of 178-fold over standard curcumin and its conjugates from the reference product. The new product represents a significant improvement for providing greater bioavailability of curcumin, as compared with several other branded preparations. It therefore has broad applications for preparing curcumin as a more effective health ingredient in functional foods, beverages, and nutraceuticals.
Collapse
Affiliation(s)
- Chenjing Wang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Shinan District, Qingdao City, Shandong Province 266003, China
| | - Xin Jiang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Shinan District, Qingdao City, Shandong Province 266003, China
| | - Xiaolei Zhang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Shinan District, Qingdao City, Shandong Province 266003, China
| | - Yi Xu
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Shinan District, Qingdao City, Shandong Province 266003, China
| | - Li Li
- Chenland Research Institute, 333 Songling Road, Laoshan District, Qingdao City, Shandong Province 266104, China
| | - Xin Li
- Chenland Research Institute, 333 Songling Road, Laoshan District, Qingdao City, Shandong Province 266104, China
| | - Shanglong Wang
- Chenland Research Institute, 333 Songling Road, Laoshan District, Qingdao City, Shandong Province 266104, China
| | - Ping Shi
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Shinan District, Qingdao City, Shandong Province 266003, China
| | - Xiaomeng Gao
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Shinan District, Qingdao City, Shandong Province 266003, China
| | - Zimin Liu
- Chenland Research Institute, 333 Songling Road, Laoshan District, Qingdao City, Shandong Province 266104, China
- Chenland Nutritionals, Inc., 3 Park Plaza, Suite 0410, Irvine, CA 92614, USA
| | - W. Dennis Clark
- Chenland Nutritionals, Inc., 3 Park Plaza, Suite 0410, Irvine, CA 92614, USA
- Corresponding author.
| | - Yu Cao
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Shinan District, Qingdao City, Shandong Province 266003, China
| |
Collapse
|
15
|
Ma F, Luo S, Lu C, Jiang X, Chen K, Deng J, Ma S, Li Z. The role of Nrf2 in periodontal disease by regulating lipid peroxidation, inflammation and apoptosis. Front Endocrinol (Lausanne) 2022; 13:963451. [PMID: 36482997 PMCID: PMC9723463 DOI: 10.3389/fendo.2022.963451] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Nuclear factor E2-related factor 2(Nrf2) is a transcription factor that mainly regulates oxidative stress in the body. It initiates the expression of several downstream antioxidants, anti-inflammatory proteins and detoxification enzymes through the Kelch-like ECH-associating protein 1 (Keap1) -nuclear factor E2-related factor 2(Nrf2) -antioxidant response element (ARE) signaling pathway. Its anti-apoptosis, anti-oxidative stress and anti-inflammatory effects have gradually become the focus of periodontal disease research in recent years. In this paper, the structure and function of Nrf2 pathway and its mechanism of action in the treatment of periodontitis in recent years were analyzed and summarized, so as to further clarify the relationship between Nrf2 pathway and oxidative stress in the occurrence and development of periodontitis, and to provide ideas for the development of new treatment drugs targeting Nrf2 pathway.
Collapse
Affiliation(s)
- Fengyu Ma
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Shangdie Luo
- Department of Orthodontics, Huizhou Stomatological Hospital, Huizhou, Guangdong, China
| | - Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xinrong Jiang
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Kexiao Chen
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Jianwen Deng
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Shuyuan Ma
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zejian Li
- Department of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China
- Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou, Guangdong, China
| |
Collapse
|
16
|
Therapeutic potency of curcumin for allergic diseases: A focus on immunomodulatory actions. Biomed Pharmacother 2022; 154:113646. [PMID: 36063645 DOI: 10.1016/j.biopha.2022.113646] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
In light of increasing research evidence on the molecular mechanisms of allergic diseases, the crucial roles of innate and acquired immunity in the disease's pathogenesis have been well highlighted. In this respect, much attention has been paid to the modulation of unregulated and unabated inflammatory responses aiming to suppress pathologic immune responses in treating allergic diseases. One of the most important natural compounds with a high potency of immune modulation is curcumin, an active polyphenol compound derived from turmeric, Curcuma longa L. Curcumin's immunomodulatory action mainly arises from its interactions with an extensive collection of immune cells such as mast cells, eosinophils, epithelial cells, basophils, neutrophils, and lymphocytes. Up to now, there has been no detailed investigation of curcumin's immunomodulatory actions in allergic diseases. So, the present review study aims to prepare an overview of the immunomodulatory effects of curcumin on the pathologic innate immune responses and dysregulated functions of T helper (TH) subtypes, including TH1, TH2, TH17, and regulator T cells (Tregs) by gathering evidence from several studies of In-vitro and In-vivo. As the second aim of the present review, we also discuss some novel strategies to overcome the limitation of curcumin in clinical use. Finally, this review also assesses the therapeutic potential of curcumin regarding its immunomodulatory actions in allergic diseases.
Collapse
|
17
|
Yang K, Chen J, Zhang T, Yuan X, Ge A, Wang S, Xu H, Zeng L, Ge J. Efficacy and safety of dietary polyphenol supplementation in the treatment of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Front Immunol 2022; 13:949746. [PMID: 36159792 PMCID: PMC9500378 DOI: 10.3389/fimmu.2022.949746] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dietary polyphenol treatment of non-alcoholic fatty liver disease (NAFLD) is a novel direction, and the existing clinical studies have little effective evidence for its therapeutic effect, and some studies have inconsistent results. The effectiveness of dietary polyphenols in the treatment of NAFLD is still controversial. The aim of this study was to evaluate the therapeutic efficacy of oral dietary polyphenols in patients with NAFLD. Methods The literature (both Chinese and English) published before 30 April 2022 in PubMed, Cochrane, Medline, CNKI, and other databases on the treatment of NAFLD with dietary polyphenols was searched. Manual screening, quality assessment, and data extraction of search results were conducted strictly according to the inclusion and exclusion criteria. RevMan 5.3 software was used to perform the meta-analysis. Results The RCTs included in this study involved dietary supplementation with eight polyphenols (curcumin, resveratrol, naringenin, anthocyanin, hesperidin, catechin, silymarin, and genistein) and 2,173 participants. This systematic review and meta-analysis found that 1) curcumin may decrease body mass index (BMI), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), Triglycerides (TG) total cholesterol (TC), and Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) compared to placebo; and curcumin does not increase the occurrence of adverse events. 2) Although the meta-analysis results of all randomized controlled trials (RCTs) did not reveal significant positive changes, individual RCTs showed meaningful results. 3) Naringenin significantly decreased the percentage of NAFLD grade, TG, TC, and low-density lipoprotein cholesterol (LDL-C) and increased high-density lipoprotein cholesterol (HDL-C) but had no significant effect on AST and ALT, and it is a safe supplementation. 4) Only one team presents a protocol about anthocyanin (from Cornus mas L. fruit extract) in the treatment of NAFLD. 5) Hesperidin may decrease BMI, AST, ALT, TG, TC, HOMA-IR, and so on. 6) Catechin may decrease BMI, HOMA-IR, and TG level, and it was well tolerated by the patients. 7) Silymarin was effective in improving ALT and AST and reducing hepatic fat accumulation and liver stiffness in NAFLD patients. Conclusion Based on current evidence, curcumin can reduce BMI, TG, TC, liver enzymes, and insulin resistance; catechin can reduce BMI, insulin resistance, and TG effectively; silymarin can reduce liver enzymes. For resveratrol, naringenin, anthocyanin, hesperidin, and catechin, more RCTs are needed to further evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Junpeng Chen
- School of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Tianqing Zhang
- The First Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jinwen Ge,
| |
Collapse
|
18
|
Heurtaux T, Bouvier DS, Benani A, Helgueta Romero S, Frauenknecht KBM, Mittelbronn M, Sinkkonen L. Normal and Pathological NRF2 Signalling in the Central Nervous System. Antioxidants (Basel) 2022; 11:1426. [PMID: 35892629 PMCID: PMC9394413 DOI: 10.3390/antiox11081426] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.
Collapse
Affiliation(s)
- Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - David S. Bouvier
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Sergio Helgueta Romero
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - Katrin B. M. Frauenknecht
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
- Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
| |
Collapse
|
19
|
Synergistic Antioxidant Activity and Enhanced Stability of Curcumin Encapsulated in Vegetal Oil-Based Microemulsion and Gel Microemulsions. Antioxidants (Basel) 2022; 11:antiox11050854. [PMID: 35624718 PMCID: PMC9137544 DOI: 10.3390/antiox11050854] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Curcumin, due to its antioxidant, antibacterial, anti-inflammatory, and antitumoral activity, has attracted huge attention in applications in many fields such as pharmacy, medicine, nutrition, cosmetics, and biotechnology. The stability of curcumin-based products and preservation of antioxidant properties are still challenges in practical applications. Stability and antioxidant properties were studied for curcumin encapsulated in O/W microemulsion systems and three related gel microemulsions. Only biodegradable and biocompatible ingredients were used for carriers: grape seed oil as oily phase, Tween 80, and Plurol® Diisostearique CG as a surfactant mix, and ethanol as a co-solvent. For the gel microemulsions, water-soluble polymers, namely Carbopol® 980 NF, chitosan, and sodium hyaluronate were used. The influence of UVC irradiation and heat treatment on the degradation kinetics of curcumin in the formulations was studied. Because of the antioxidant character of the microemulsion oily phase, the possibility of a synergistic effect between grape seed oil and curcumin was explored. In this study, the high efficiency of the studied drug delivery systems to ensure protection from external degradative factors was confirmed. Also, the influence of the encapsulation in microemulsion and derived gel microemulsion systems on the antioxidant capacity curcumin was studied, and a synergistic effect with vegetal oil was demonstrated.
Collapse
|
20
|
González-Jamett A, Vásquez W, Cifuentes-Riveros G, Martínez-Pando R, Sáez JC, Cárdenas AM. Oxidative Stress, Inflammation and Connexin Hemichannels in Muscular Dystrophies. Biomedicines 2022; 10:biomedicines10020507. [PMID: 35203715 PMCID: PMC8962419 DOI: 10.3390/biomedicines10020507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of congenital neuromuscular disorders whose clinical signs include myalgia, skeletal muscle weakness, hypotonia, and atrophy that leads to progressive muscle disability and loss of ambulation. MDs can also affect cardiac and respiratory muscles, impairing life-expectancy. MDs in clude Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy and limb-girdle muscular dystrophy. These and other MDs are caused by mutations in genes that encode proteins responsible for the structure and function of skeletal muscles, such as components of the dystrophin-glycoprotein-complex that connect the sarcomeric-actin with the extracellular matrix, allowing contractile force transmission and providing stability during muscle contraction. Consequently, in dystrophic conditions in which such proteins are affected, muscle integrity is disrupted, leading to local inflammatory responses, oxidative stress, Ca2+-dyshomeostasis and muscle degeneration. In this scenario, dysregulation of connexin hemichannels seem to be an early disruptor of the homeostasis that further plays a relevant role in these processes. The interaction between all these elements constitutes a positive feedback loop that contributes to the worsening of the diseases. Thus, we discuss here the interplay between inflammation, oxidative stress and connexin hemichannels in the progression of MDs and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
- Correspondence: (A.G.-J.); (A.M.C.)
| | - Walter Vásquez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
| | - Gabriela Cifuentes-Riveros
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
| | - Rafaela Martínez-Pando
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile; (G.C.-R.); (R.M.-P.)
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (W.V.); (J.C.S.)
- Correspondence: (A.G.-J.); (A.M.C.)
| |
Collapse
|
21
|
Cox FF, Misiou A, Vierkant A, Ale-Agha N, Grandoch M, Haendeler J, Altschmied J. Protective Effects of Curcumin in Cardiovascular Diseases—Impact on Oxidative Stress and Mitochondria. Cells 2022; 11:cells11030342. [PMID: 35159155 PMCID: PMC8833931 DOI: 10.3390/cells11030342] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) contribute to a large part of worldwide mortality. Similarly, two of the major risk factors for these diseases, aging and obesity, are also global problems. Aging, the gradual decline of body functions, is non-modifiable. Obesity, a modifiable risk factor for CVDs, also predisposes to type 2 diabetes mellitus (T2DM). Moreover, it affects not only the vasculature and the heart but also specific fat depots, which themselves have a major impact on the development and progression of CVDs. Common denominators of aging, obesity, and T2DM include oxidative stress, mitochondrial dysfunction, metabolic abnormalities such as altered lipid profiles and glucose metabolism, and inflammation. Several plant substances such as curcumin, the major active compound in turmeric root, have been used for a long time in traditional medicine and for the treatment of CVDs. Newer mechanistic, animal, and human studies provide evidence that curcumin has pleiotropic effects and attenuates numerous parameters which contribute to an increased risk for CVDs in aging as well as in obesity. Thus, curcumin as a nutraceutical could hold promise in the prevention of CVDs, but more standardized clinical trials are required to fully unravel its potential.
Collapse
Affiliation(s)
- Fiona Frederike Cox
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Angelina Misiou
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Annika Vierkant
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
| | - Maria Grandoch
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Judith Haendeler
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Correspondence: (J.H.); (J.A.); Tel.: +49-211-3389-291 (J.H. & J.A.); Fax: +49-211-3389-331 (J.H. & J.A.)
| | - Joachim Altschmied
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Correspondence: (J.H.); (J.A.); Tel.: +49-211-3389-291 (J.H. & J.A.); Fax: +49-211-3389-331 (J.H. & J.A.)
| |
Collapse
|