1
|
Al Hamwi G, Alnouri MW, Verdonck S, Leonczak P, Chaki S, Frischbutter S, Kolkhir P, Matthey M, Kopp C, Bednarski M, Riedel YK, Marx D, Clemens S, Namasivayam V, Gattner S, Thimm D, Sylvester K, Wolf K, Kremer AE, De Jonghe S, Wenzel D, Kotańska M, Ali H, Herdewijn P, Müller CE. Subnanomolar MAS-related G protein-coupled receptor-X2/B2 antagonists with efficacy in human mast cells and disease models. Signal Transduct Target Ther 2025; 10:128. [PMID: 40254631 PMCID: PMC12010006 DOI: 10.1038/s41392-025-02209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
The MAS-related G protein-coupled receptor-X2 (MRGPRX2), an orphan receptor expressed on mast cells (MCs), is upregulated upon inflammation and induces hypersensitivity and inflammatory diseases. In contrast to the large number of MRGPRX2 agonists, only a few antagonists have been described, and no optimization has been reported to improve potency, selectivity, and drug-like properties. Antagonists with ancillary inhibition of the putative mouse ortholog MRGPRB2 have not been described. Here, we present a multi-disciplinary approach involving chemistry, biology, and computational science, resulting in the development of a small-molecule MRGPRX2 antagonist (PSB-172656, 3-ethyl-7,8-difluoro-2-isopropylbenzo[4,5]imidazo [1,2-a] pyrimidin-4(1H)-one) based on a fragment screening hit. The compound exhibits metabolic stability, low cytotoxicity, and competitive blockade of MRGPRX2 activation induced by a diverse range of agonists. It displays subnanomolar potency in Ca2+ mobilization assays (Ki value 0.142 nM) and was found to block MRGPRX2-mediated Gαq and Gαi1 dissociation, in addition to β-arrestin-2 recruitment. PSB-172656 is selective for MRGPRX2 versus all other MRGPRX subtypes. Its effect on MCs was confirmed in cell lines, including rat basophilic leukemia cells (RBL-2H3) recombinantly expressing human MRGPRX2, human Laboratory of Allergic Diseases 2 (LAD2) MCs, and native human skin MCs. PSB-172656 was found to additionally block the putative mouse ortholog of MRGPRX2, MRGPRB2, as determined in Ca2+ mobilization assays (Ki 0.302 nM), and to prevent mouse tracheal contractions, local allergic reactions, and systemic anaphylactic symptoms. PSB-172656 constitutes a unique pharmacological tool and has the potential to be developed as a drug for mast cell-mediated hypersensitivity reactions and chronic inflammatory diseases, addressing a huge unmet medical need.
Collapse
Affiliation(s)
- Ghazl Al Hamwi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Mohamad Wessam Alnouri
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Sven Verdonck
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Piotr Leonczak
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Shaswati Chaki
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefan Frischbutter
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, 12203, Berlin, Germany
| | - Pavel Kolkhir
- Institute of Allergology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology, 12203, Berlin, Germany
| | - Michaela Matthey
- Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, 44801, Bochum, Germany
| | - Constantin Kopp
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University, Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Yvonne K Riedel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Daniel Marx
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Sophie Clemens
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Susanne Gattner
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Dominik Thimm
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Katharina Sylvester
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Katharina Wolf
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz (HI-TRON Mainz)-A Helmholtz Institute of the DKFZ, Mainz, Germany
| | - Andreas E Kremer
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Nürnberg, Germany
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Steven De Jonghe
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Daniela Wenzel
- Department of Systems Physiology, Institute of Physiology, Medical Faculty, Ruhr University of Bochum, 44801, Bochum, Germany
- Institute of Physiology I, Life & Brain Center, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University, Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Hydar Ali
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
2
|
Abo-Zaid MA, Elsapagh RM, Sultan NS, Mawkili W, Hegazy MM, Ismail AH. Allergy Treatment: A Comprehensive Review of Nanoparticle-based Allergen Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:26550. [PMID: 40152375 DOI: 10.31083/fbl26550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 03/29/2025]
Abstract
Allergic disorders rising in prevalence globally, affecting a substantial proportion of individuals in industrialized nations. The imbalance in the immune system, characterized by elevated allergen-specific T helper 2 (Th2) cells and immunoglobulin E (IgE) antibodies, is a key factor in allergy development. Allergen-specific immunotherapy (AIT) is the only treatment capable of alleviating allergic symptoms, preventing new sensitizations, and reducing asthma risk in allergic rhinitis patients. Traditional AIT, however, faces challenges such as frequent administration, adverse effects, and inconsistent patient outcomes. Nanoparticle-based approaches have emerged as a promising strategy to enhance AIT. This review explores the utilization of nanoparticles in AIT, highlighting their ability to interact with the immune system and improve therapeutic outcomes. Various types of nanoparticles, including polyesters, polysaccharide polymers, liposomes, protamine-based nanoparticles (NPs), and polyanhydrides, have been employed as adjuvants or carriers to enhance AIT's efficacy and safety. Nanoparticles offer advantages such as allergen protection, improved immune response modulation, targeted cell delivery, and reduced side effects. This review provides an overview of the current landscape of nanoparticle-based allergen immunotherapy, discussing its potential to revolutionize allergy treatment compared to traditional immunotherapy.
Collapse
Affiliation(s)
- Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, 45142 Jazan, Kingdom of Saudi Arabia
| | | | - Nourhan S Sultan
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142 Jazan, Kingdom of Saudi Arabia
| | - Maysa M Hegazy
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, 45142 Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Rad LM, Arellano G, Podojil JR, O'Konek JJ, Shea LD, Miller SD. Engineering nanoparticle therapeutics for food allergy. J Allergy Clin Immunol 2024; 153:549-559. [PMID: 37926124 PMCID: PMC10939913 DOI: 10.1016/j.jaci.2023.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Food allergy is a growing public health issue among children and adults that can lead to life-threatening anaphylaxis following allergen exposure. The criterion standard for disease management includes food avoidance and emergency epinephrine administration because current allergen-specific immunotherapy treatments are limited by adverse events and unsustained desensitization. A promising approach to remedy these shortcomings is the use of nanoparticle-based therapies that disrupt disease-driving immune mechanisms and induce more sustained tolerogenic immune pathways. The pathophysiology of food allergy includes multifaceted interactions between effector immune cells, including lymphocytes, antigen-presenting cells, mast cells, and basophils, mainly characterized by a TH2 cell response. Regulatory T cells, TH1 cell responses, and suppression of other major allergic effector cells have been found to be major drivers of beneficial outcomes in these nanoparticle therapies. Engineered nanoparticle formulations that have shown efficacy at reducing allergic responses and revealed new mechanisms of tolerance include polymeric-, lipid-, and emulsion-based nanotherapeutics. This review highlights the recent engineering design of these nanoparticles, the mechanisms induced by them, and their future potential therapeutic targets.
Collapse
Affiliation(s)
- Laila M Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich
| | - Gabriel Arellano
- Department of Microbiology-Immunology, Northwestern University, Chicago, Ill; Center for Human Immunology, Northwestern University, Chicago, Ill
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University, Chicago, Ill; Center for Human Immunology, Northwestern University, Chicago, Ill; Cour Pharmaceutical Development Company, Skokie, Ill
| | - Jessica J O'Konek
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, Mich.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich.
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University, Chicago, Ill; Center for Human Immunology, Northwestern University, Chicago, Ill.
| |
Collapse
|
4
|
Park J, Wu Y, Li Q, Choi J, Ju H, Cai Y, Lee J, Oh YK. Nanomaterials for antigen-specific immune tolerance therapy. Drug Deliv Transl Res 2023; 13:1859-1881. [PMID: 36094655 DOI: 10.1007/s13346-022-01233-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 11/26/2022]
Abstract
Impairment of immune tolerance might cause autologous tissue damage or overactive immune response against non-pathogenic molecules. Although autoimmune disease and allergy have complicated pathologies, the current strategies have mainly focused on symptom amelioration or systemic immunosuppression which can lead to fatal adverse events. The induction of antigen-specific immune tolerance may provide therapeutic benefits to autoimmune disease and allergic response, while reducing nonspecific immune adverse responses. Diverse nanomaterials have been studied to induce antigen-specific immune tolerance therapy. This review will cover the immunological background of antigen-specific tolerance, clinical importance of antigen-specific immune tolerance, and nanomaterials designed for autoimmune and allergic diseases. As nanomaterials for modulating immune tolerances, lipid-based nanoparticles, polymeric nanoparticles, and biological carriers have been covered. Strategies to provide antigen-specific immune tolerance have been addressed. Finally, current challenges and perspectives of nanomaterials for antigen-specific immune tolerance therapy will be discussed.
Collapse
Affiliation(s)
- Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qiaoyun Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyemin Ju
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Paris JL, Vora LK, José Torres M, Mayorga C, Donnelly RF. Microneedle array patches for allergen-specific immunotherapy. Drug Discov Today 2023; 28:103556. [PMID: 36931387 DOI: 10.1016/j.drudis.2023.103556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/25/2022] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
The incidence of allergies has been steadily increasing in recent years. Allergen-specific immunotherapy (AIT) represents the only approach capable of inducing long-term immune tolerance toward allergens. However, the clinical success of AIT is limited by efficacy or safety concerns related to the administration route. Therapeutic delivery in the skin appears promising, given the presence of immune cells in the skin and the relatively low level of systemic distribution that occurs with this delivery method. However, the stratum corneum greatly limits this route. In this regard, the use of microneedles has been proposed to improve the delivery of therapeutics into the skin. In this review, we discuss recent developments in the use of microneedles for AIT, highlighting avenues for future research.
Collapse
Affiliation(s)
- Juan L Paris
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| | - María José Torres
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Cristobalina Mayorga
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain; Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, UK.
| |
Collapse
|
6
|
Hu M, Alashkar Alhamwe B, Santner-Nanan B, Miethe S, Harb H, Renz H, Potaczek DP, Nanan RK. Short-Chain Fatty Acids Augment Differentiation and Function of Human Induced Regulatory T Cells. Int J Mol Sci 2022; 23:ijms23105740. [PMID: 35628549 PMCID: PMC9143307 DOI: 10.3390/ijms23105740] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Regulatory T cells (Tregs) control immune system activity and inhibit inflammation. While, in mice, short-chain fatty acids (SCFAs) are known to be essential regulators of naturally occurring and in vitro induced Tregs (iTregs), data on their contribution to the development of human iTregs are sparse, with no reports of the successful SCFAs-augmented in vitro generation of fully functional human iTregs. Likewise, markers undoubtedly defining human iTregs are missing. Here, we aimed to generate fully functional human iTregs in vitro using protocols involving SCFAs and to characterize the underlying mechanism. Our target was to identify the potential phenotypic markers best characterizing human iTregs. Naïve non-Treg CD4+ cells were isolated from the peripheral blood of 13 healthy adults and cord blood of 12 healthy term newborns. Cells were subjected to differentiation toward iTregs using a transforming growth factor β (TGF-β)-based protocol, with or without SCFAs (acetate, butyrate, or propionate). Thereafter, they were subjected to flow cytometric phenotyping or a suppression assay. During differentiation, cells were collected for chromatin-immunoprecipitation (ChIP)-based analysis of histone acetylation. The enrichment of the TGF-β-based protocol with butyrate or propionate potentiated the in vitro differentiation of human naïve CD4+ non-Tregs towards iTregs and augmented the suppressive capacity of the latter. These seemed to be at least partly underlain by the effects of SCFAs on the histone acetylation levels in differentiating cells. GITR, ICOS, CD39, PD-1, and PD-L1 were proven to be potential markers of human iTregs. Our results might boost the further development of Treg-based therapies against autoimmune, allergic and other chronic inflammatory disorders.
Collapse
Affiliation(s)
- Mingjing Hu
- Charles Perkins Centre Nepean, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia; (M.H.); (B.S.-N.)
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Discipline of Obstetrics, Gynaecology and Neonatology, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia
- Nepean Hospital, Derby Street, Kingswood, NSW 2747, Australia
| | - Bilal Alashkar Alhamwe
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute for Tumor Immunology, Clinic for Hematology, Immunology, and Oncology, Philipps University Marburg, 35043 Marburg, Germany
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Brigitte Santner-Nanan
- Charles Perkins Centre Nepean, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia; (M.H.); (B.S.-N.)
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
| | - Sarah Miethe
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany
| | - Hani Harb
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- Institute of Medical Microbiology and Virology, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany
| | - Harald Renz
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
| | - Daniel P. Potaczek
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany
| | - Ralph K. Nanan
- Charles Perkins Centre Nepean, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia; (M.H.); (B.S.-N.)
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Correspondence: ; Tel.: +61-2-4734-2612; Fax: +61-2-4734-1144
| |
Collapse
|