1
|
Dang Q, Zhang L, Ma H, Sun X, Ren A, Chen J, Huang X, Zhang B, Sun W. Lighthouses illuminating tumor metastasis: The application of fluorescent probes in the localization and imaging metastatic lymph nodes across various tumors. Biomaterials 2025; 316:123020. [PMID: 39693784 DOI: 10.1016/j.biomaterials.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/24/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
The significance of metastatic lymph nodes in tumor diagnosis and prognosis is self-evident. With the deepening of research on the lymphatic system and the advancement of imaging technology, an increasing number of near-infrared fluorescent probes targeting tumor metastatic lymph nodes have been developed. These probes can identify tumors while further detecting lymph nodes (LNs), showcasing great potential in image-guided surgery. In this review, we comprehensively outline the design strategies and applications of near-infrared fluorescent probes for cancers with a high propensity for lymph node metastasis during disease progression. Particular emphasis is placed on two targeting mechanisms: tumor-directed probes capable of identifying metastatic lymph nodes and lymph node-specific probes utilizing passive targeting of metastatic lymph nodes or active targeting of lymph nodes directly. Additionally, we discuss current issues and future prospects in this field, which will facilitate the development of new fluorescent probes and their further clinical translation.
Collapse
Affiliation(s)
- Qi Dang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Linhao Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Huipeng Ma
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiaoshan Sun
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Anguo Ren
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Jiuyang Chen
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiaohua Huang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
2
|
Patrojanasophon P, Singpanna K, Rojanarata T, Opanasopit P, Ngawhirunpat T, Pengnam S, Pornpitchanarong C. Folate receptor-targeted thiol-maleimide clicked chitosan/carboxymethyl cellulose nanoparticles for cisplatin delivery in oral carcinoma. Int J Biol Macromol 2025; 290:138976. [PMID: 39708877 DOI: 10.1016/j.ijbiomac.2024.138976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study aimed to develop cisplatin (CDDP)-loaded folic acid (FA)-decorated nanoparticles (NPs) as targeted drug carrier towards overexpressed folate receptors on the oral carcinoma cell line (KB cells). The FA-conjugated thiolated succinyl chitosan (FA-SH-SCS) and maleimide-grafted-carboxymethyl cellulose (CMC-MAL) were synthesized and acquired in the preparation of NPs via thiol-maleimide click reaction. The physicochemical characteristics, drug loading, and drug release of the FA-decorated NPs (FA-NPs) were examined. Also, the in vitro biocompatibility, cellular uptake, and cell death mechanism were investigated. Relatively spherical NPs with negative charge were obtained with a size of approximately 200 nm. The formation of FA-NPs through click reaction was confirmed by the pH change and Ellman's assay. The release of CDDP from the FA-NPs was influenced by the acidic tumor environment. The FA-NPs were non-toxic to the normal cells. Furthermore, FA-NPs improved the cellular uptake of CDDP in oral carcinoma cells through specific recognition of folate receptors by FA-NPs. The delivery of CDDP by FA-NPs to the KB cell induced the apoptotic cell death pathway. Therefore, FA-NPs presented the potential to be effective nanocarriers for CDDP delivery in the treatment of oral cancer via active targeting approach.
Collapse
Affiliation(s)
- Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Kanokwan Singpanna
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
3
|
Rehim S, Yuan S, Wang H. Mirvetuximab Soravtansine in solid tumors: A systematic review and meta-analysis. PLoS One 2024; 19:e0310736. [PMID: 39729462 DOI: 10.1371/journal.pone.0310736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/05/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Mirvetuximab Soravtansine (MIRV) is a promising antibody‒drug conjugate (ADC) that targets folate receptor alpha (FRα), which is overexpressed in several types of solid tumors. In November 2022, MIRV was approved in the USA for the treatment of adult patients with FRα-positive, platinum-resistant epithelial ovarian, fallopian tube or primary peritoneal cancer who received 1-3 prior systemic treatment regimens. Therefore, high-quality evidence for its efficacy and safety in different cancers is urgently needed. METHODS A systematic search (e.g., PubMed, Embase, Web Of Science, Cochrane Library) was conducted to identify all relevant clinical trials of MIRV alone or in combination with chemo- and/or target-therapies in solid tumors. The primary end-point was median progression-free survival (mPFS). The secondary endpoints were the Objective response rate (ORR) and adverse effects (AEs). A random-effects model was applied. RESULTS The study included nine research studies with a total of 682 patients. The pooled mPFS and pooled ORR were 6.70 months (95% CI 4.54-8.86, I2 = 96.21%) and 36% (95% CI: 28% to 44%, I2 = 76.79%), respectively. Significant differences were observed among intervention regimens and response to platinum. The pooled mPFS of MIRV monotherapy and MIRV+ Bevacizumab (BEV) combined therapy was 4.28 (95% CI 3.90-4.65, I2 = 0.00%) and 7.78 (95% CI 6.62-8.95, I2 = 0.00%), respectively. The pooled ORRs of MIRV monotherapy and MIRV+BEV combined therapy were 25% (95% CI 21%-29%, I2 = 25.20%) and 43% (95% CI 36%-50%, I2 = 0.01%), respectively. The pooled ORRs of the platinum-sensitive, platinum-resistant groups were 59% (95% CI 36%-81%, I2 = 61.88%), 33% (95% CI 25%-40%, I2 = 69.73%), respectively. In addition, we conducted supplementary subgroup analyses to explore the influence of FRα receptor expression levels and the number of prior treatments on treatment outcomes. The most common adverse effects were blurred vision (45.20%), nausea (40.13%), diarrhea (39.52%), fatigue (33.84%) and keratopathy (31.20%). CONCLUSIONS MIRV has significant therapeutic effects in solid tumors, especially when combined with BEV. In platinum-tolerant tumors, the efficacy of MIRV is also considerable. Overall, MIRV is relatively safe in solid tumors, and adverse reactions are relatively rare and mild.
Collapse
Affiliation(s)
- Shamsnur Rehim
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuang Yuan
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongjing Wang
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Niazi SK, Magoola M. MicroRNA Nobel Prize: Timely Recognition and High Anticipation of Future Products-A Prospective Analysis. Int J Mol Sci 2024; 25:12883. [PMID: 39684593 PMCID: PMC11641023 DOI: 10.3390/ijms252312883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) maintain cellular homeostasis by blocking mRNAs by binding with them to fine-tune the expression of genes across numerous biological pathways. The 2024 Nobel Prize in Medicine and Physiology for discovering miRNAs was long overdue. We anticipate a deluge of research work involving miRNAs to repeat the history of prizes awarded for research on other RNAs. Although miRNA therapies are included for several complex diseases, the realization that miRNAs regulate genes and their roles in addressing therapies for hundreds of diseases are expected; but with advancement in drug discovery tools, we anticipate even faster entry of new drugs. To promote this, we provide details of the current science, logic, intellectual property, formulations, and regulatory process with anticipation that many more researchers will introduce novel therapies based on the discussion and advice provided in this paper.
Collapse
|
5
|
Li Y, Liu Q, Ding J, Zou J, Yang B. Responsive Supramolecular Nanomicelles Formed through Self-Assembly of Acyclic Cucurbit[ n]uril for Targeted Drug Delivery to Cancer Cells. Mol Pharm 2024; 21:5784-5796. [PMID: 39374616 DOI: 10.1021/acs.molpharmaceut.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The supramolecular drug delivery systems (SDDSs) based on host-guest recognition through noncovalent interactions, capable of responsive behavior and dynamic switching to external stimuli, have attracted considerable attention in cancer therapy. In this study, a targeted dual-functional drug delivery system was designed and synthesized. A hydrophilic macrocyclic host molecule (acyclic cucurbit[n]uril ACB) was modified with folic acid (FA) as a targeting ligand. The guest molecule consists of a disulfide bond attached to adamantane (DA) and cannabidiol (CBD) at both ends of the response element of glutathione. Recognition and self-assembly of host and guest molecules successfully functionalize supramolecular nanomicelles (SNMs), targeting cancer cells and releasing drugs in a high glutathione environment. The interactions between host and guest molecules were investigated by using nuclear magnetic resonance (NMR), fluorescence titration, Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis (TGA). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the nanostructure of the SNMs. Experimentation with 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) demonstrated the responsiveness of SNMs to glutathione (GSH). In vitro cytotoxicity assays demonstrated that SNMs had a greater targeting efficacy for four types of cancer cells (HeLa, HCT-116, A549, and HepG2) compared to normal 293T cells. Cellular uptake studies revealed that HeLa cells more readily absorbed SNMs, leading to their accumulation in the tumor cell cytoplasm. Fluorescence colocalization assays verified that SNMs efficiently accumulated in organelles related to energy metabolism and signaling, including mitochondria and the endoplasmic reticulum, affecting cellular metabolic death. Both flow cytometry and confocal nuclear staining assays confirmed that SNMs effectively induced apoptosis over time, ultimately resulting in the death of cancer cells. These findings demonstrate that SNMs exhibit excellent targeting ability, responsiveness, high bioavailability, and stability, suggesting significant potential in drug delivery applications.
Collapse
Affiliation(s)
- Yamin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qingmeng Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiawei Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jia Zou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| |
Collapse
|
6
|
Agwa MM, Elmotasem H, El-Lakany SA. Small molecules and peptide ligands directed nano-therapeutics for precise oncological phototherapy: Emphasis towards enhancing chemotherapeutic active tumor targeting efficacy. J Drug Deliv Sci Technol 2024; 101:106313. [DOI: 10.1016/j.jddst.2024.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Kesharwani P, Halwai K, Jha SK, Al Mughram MH, Almujri SS, Almalki WH, Sahebkar A. Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers. Mol Cancer 2024; 23:244. [PMID: 39482651 PMCID: PMC11526716 DOI: 10.1186/s12943-024-02163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Chitosan nanoparticles (NPs) are well-recognized as promising vehicles for delivering anticancer drugs due to their distinctive characteristics. They have the potential to enclose hydrophobic anticancer molecules, thereby enhancing their solubilities, permeabilities, and bioavailabilities; without the use of surfactant, i.e., through surfactant-free solubilization. This allows for higher drug concentrations at the tumor sites, prevents excessive toxicity imparted by surfactants, and could circumvent drug resistance. Moreover, biomedical engineers and formulation scientists can also fabricate chitosan NPs to slowly release anticancer agents. This keeps the drugs at the tumor site longer, makes therapy more effective, and lowers the frequency of dosing. Notably, some types of cancer cells (fallopian tube, epithelial tumors of the ovary, and primary peritoneum; lung, kidney, ependymal brain, uterus, breast, colon, and malignant pleural mesothelioma) have overexpression of folate receptors (FRs) on their outer surface, which lets folate-drug conjugate-incorporated NPs to target and kill them more effectively. Strikingly, there is evidence suggesting that the excessively produced FR&αgr (isoforms of the FR) stays consistent throughout treatment in ovarian and endometrial cancer, indicating resistance to conventional treatment; and in this regard, folate-anchored chitosan NPs can overcome it and improve the therapeutic outcomes. Interestingly, overly expressed FRs are present only in certain tumor types, which makes them a promising biomarker for predicting the effectiveness of FR-targeted therapy. On the other hand, the folate-modified chitosan NPs can also enhance the oral absorption of medicines, especially anticancer drugs, and pave the way for effective and long-term low-dose oral metronomic scheduling of poorly soluble and permeable drugs. In this review, we talked briefly about the techniques used to create, characterize, and tailor chitosan-based NPs; and delved deeper into the potential applications of folate-engineered chitosan NPs in treating various cancer types.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Uttar Pradesh, Kanpur, 208016, India
| | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Qiao L, Du X, Wang H, Wang Z, Gao S, Zhao CQ. Research Progress on the Strategies for Crossing the Blood-Brain Barrier. Mol Pharm 2024; 21:4786-4803. [PMID: 39231367 DOI: 10.1021/acs.molpharmaceut.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Recently, the incidence of brain diseases, such as central nervous system degenerative diseases, brain tumors, and cerebrovascular diseases, has increased. However, the blood-brain barrier (BBB) limits the effective delivery of drugs to brain disease areas. Therefore, the mainstream direction of new drug development for these diseases is to engineer drugs that can better cross the BBB to exert their effects in the brain. This paper reviews the research progress and application of the main trans-BBB drug delivery strategies (receptor/transporter-mediated BBB crossing, focused ultrasound to open the BBB, adenosine agonist reversible opening of the BBB, aromatic resuscitation, transnasal administration, cell-mediated trans-BBB crossing, and viral vector system-mediated brain drug delivery). Meanwhile, the potential applications, advantages, and disadvantages of these strategies for crossing the BBB are analyzed. Finally, the future development prospects of strategies for crossing the BBB are also discussed. These strategies have potential value for treating brain diseases.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xiuwei Du
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Hua Wang
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Zhiyi Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Shijie Gao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chun-Qin Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| |
Collapse
|
9
|
Das T, Mondal S, Das S, Das S, Das Saha K. Enhanced anticancer activity of (-)-epigallocatechin-3-gallate (EGCG) encapsulated NPs toward colon cancer cell lines. Free Radic Res 2024; 58:565-582. [PMID: 38810269 DOI: 10.1080/10715762.2024.2360013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), a bioactive polyphenol of green tea, has chemo-preventive effects against various cancer cells. Nanoparticles (NPs) carrying different ligands are able to specifically interact with their receptors on different cancer cells that can provide effective release of cytotoxic drugs. In the present study, we have prepared EGCG entrapped NPs using PLGA (poly(d,l-lactide-co-glycolide)). Polyethylene glycol (PEG) and folic acid (FA) via double emulsion solvent evaporation (DESE) method obtained PLGA-EGCG (P-E), PLGA-PEG-EGCG (PP-E), and PLGA-PEG-FA-EGCG (PPF-E). Nanoformulations had been characterized with 1H NMR and FT-IR techniques, AFM, and DLS. PPF-E NPs showed an average size of 220 nm. Analysis of zeta potential confirmed the stability of NPs. HCT-116, HT-29, HCT-15, and HEK 293 cells were treated with both the prepared NPs and free EGCG (0-140 μM). Result showed PPF-E NPs had improved delivery, uptake and cell cytotoxicity toward human folic acid receptor-positive (FR+) colorectal cancer (CRC) cells as mainly on HCT-116 compared to HT-29, but not on the folic acid-negative cells (FR-) as HCT-15. PPF-E NPs enhanced intracellular reactive oxygen species (ROS) level in absence of N-acetyl-l-cysteine (NAC), elevated DNA fragmentation level, and increased apoptotic cell death at higher doses compared to other two NPs and free EGCG. In conclusion, PPF-E NPs exerted greater efficacy than PP-E, P-E, and free EGCG in HCT-116 cells.
Collapse
Affiliation(s)
- Tanushree Das
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sanchaita Mondal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sujata Das
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sanjib Das
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
10
|
Li J, He H, Liu S, Li X, Wu F. Revealing tumor cells and tissues with high selectivity through folic acid-targeted nanofluorescence probes responsive to acidic microenvironments. Front Oncol 2024; 14:1404148. [PMID: 38933449 PMCID: PMC11199542 DOI: 10.3389/fonc.2024.1404148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor-specific fluorescent probes must fulfill the dual requirements of targeted accumulation within tumors and high-resolution imaging capabilities. To achieve both tumor-targeted accumulation and high-resolution imaging performance, we developed a composite comprising an acid-responsive bodipy conjugated to amphiphilic PEG-b-PLA polymer, along with folic acid (FA)-modified PEG-b-PLA as a targeting moiety for active tumor-specific accumulation. Finally, a novel assembly of hybrid fluorescent nanoparticles was successfully synthesized by integrating these two components, demonstrating exceptional responsiveness to acidic conditions for fluorescence excitation and remarkable tumor-targeted accumulation capabilities. We conducted comprehensive in vitro and in vivo investigations employing techniques such as analysis of physicochemical properties, fluorescence-based probes detection at varying pH levels, assessment of in vitro cytotoxicity, evaluation of cellular uptake capacity, analysis of lysosomal co-localization imaging, examination of tumor fluorescence images in vivo, and investigation of biological distribution patterns. The results demonstrated that the acid-responsive nanofluorescence probe we designed and synthesized possesses desirable physical and chemical characteristics, including a small particle size and low cytotoxicity. Moreover, it exhibits rapid real-time response to acidic environments and displays enhanced fluorescence intensity, enabling the real-time tracking of probe entry into tumor cells as well as intracellular lysozyme accumulation. We achieved highly specific in vivo tumor visualization by combining nanoprobes targeting folate receptor. Through imaging cervical tumor mice, we demonstrated the precise imaging performance and high targeted accumulation of FA-targeted nanofluorescence probes in tumor tissue. Furthermore, we confirmed the in vivo safety of the FA-targeted nanofluorescence probe through biological distribution analysis. These findings highlight the potential widespread application of FA-targeted acid-responsive nanofluorescence probes for selective imaging of tumor cells and tissues.
Collapse
Affiliation(s)
- Jing Li
- Neurobiology Laboratory, Wannan Medical College, Wuhu, China
| | - Hongyi He
- College of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Shuyan Liu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, China
| | - Xining Li
- School of Medicine, Huzhou University, Huzhou, China
| | - Fengfeng Wu
- Department of Orthopedics and Rehabilitation, Huzhou Hospital of Zhejiang University School of Medicine, Huzhou, China
- Department of Orthopedics and Rehabilitation, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
11
|
Hoffmann M, Ermler TF, Hoffmann F, Alexa R, Kranz J, Steinke N, Leypold S, Gaisa NT, Saar M. Therapeutic and Diagnostic Potential of Folic Acid Receptors and Glycosylphosphatidylinositol (GPI) Transamidase in Prostate Cancer. Cancers (Basel) 2024; 16:2008. [PMID: 38893127 PMCID: PMC11170984 DOI: 10.3390/cancers16112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Due to the proliferation-induced high demand of cancer cells for folic acid (FA), significant overexpression of folate receptors 1 (FR1) is detected in most cancers. To our knowledge, a detailed characterization of FR1 expression and regulation regarding therapeutic and diagnostic feasibilities in prostate cancer (PCa) has not been described. In the present study, cell cultures, as well as tissue sections, were analyzed using Western blot, qRT-PCR and immunofluorescence. In addition, we utilized FA-functionalized lipoplexes to characterize the potential of FR1-targeted delivery into PCa cells. Interestingly, we detected a high level of FR1-mRNA in healthy prostate epithelial cells and healthy prostate tissue. However, we were able to show that PCa cells in vitro and PCa tissue showed a massively enhanced FR1 membrane localization where the receptor can finally gain its function. We were able to link these changes to the overexpression of GPI-transamidase (GPI-T) by image analysis. PCa cells in vitro and PCa tissue show the strongest overexpression of GPI-T and thereby induce FR1 membrane localization. Finally, we utilized FA-functionalized lipoplexes to selectively transfer pDNA into PCa cells and demonstrate the therapeutic potential of FR1. Thus, FR1 represents a very promising candidate for targeted therapeutic transfer pathways in PCa and in combination with GPI-T, may provide predictive imaging in addition to established diagnostics.
Collapse
Affiliation(s)
- Marco Hoffmann
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
| | - Thomas Frank Ermler
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
| | - Felix Hoffmann
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
| | - Radu Alexa
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
| | - Jennifer Kranz
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
- Department of Urology and Kidney Transplantation, Martin Luther University, 06097 Halle (Saale), Germany
| | - Nathalie Steinke
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Sophie Leypold
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Nadine Therese Gaisa
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Saar
- Department of Urology and Pediatric Urology, University Medical Center RWTH Aachen, 52074 Aachen, Germany; (T.F.E.)
- Center for Integrated Oncology (CIO), University Hospital RWTH Aachen, 52074 Aachen, Germany (S.L.); (N.T.G.)
| |
Collapse
|
12
|
Jackson N, Cecchi D, Beckham W, Chithrani DB. Application of High-Z Nanoparticles to Enhance Current Radiotherapy Treatment. Molecules 2024; 29:2438. [PMID: 38893315 PMCID: PMC11173748 DOI: 10.3390/molecules29112438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Radiotherapy is an essential component of the treatment regimens for many cancer patients. Despite recent technological advancements to improve dose delivery techniques, the dose escalation required to enhance tumor control is limited due to the inevitable toxicity to the surrounding healthy tissue. Therefore, the local enhancement of dosing in tumor sites can provide the necessary means to improve the treatment modality. In recent years, the emergence of nanotechnology has facilitated a unique opportunity to increase the efficacy of radiotherapy treatment. The application of high-atomic-number (Z) nanoparticles (NPs) can augment the effects of radiotherapy by increasing the sensitivity of cells to radiation. High-Z NPs can inherently act as radiosensitizers as well as serve as targeted delivery vehicles for radiosensitizing agents. In this work, the therapeutic benefits of high-Z NPs as radiosensitizers, such as their tumor-targeting capabilities and their mechanisms of sensitization, are discussed. Preclinical data supporting their application in radiotherapy treatment as well as the status of their clinical translation will be presented.
Collapse
Affiliation(s)
- Nolan Jackson
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Daniel Cecchi
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Wayne Beckham
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
- British Columbia Cancer-Victoria, Victoria, BC V8R 6V5, Canada
| | - Devika B. Chithrani
- Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada
- Centre for Advanced Materials and Related Technologies, Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Computer Science, Mathematics, Physics and Statistics, Okanagan Campus, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
13
|
Marques AC, Costa PC, Velho S, Amaral MH. Analytical Techniques for Characterizing Tumor-Targeted Antibody-Functionalized Nanoparticles. Life (Basel) 2024; 14:489. [PMID: 38672759 PMCID: PMC11051252 DOI: 10.3390/life14040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Zhao Y, Jia C, Yao Z, Chen G, Huang G, Li H, Lu L, Jin T, Tang Y, Zhu Z, Zhang X. Dexamethasone Pretreatment Potentiates a Folic Acid-Functionalized Delivery System for Enhanced Lung Cancer Therapy. Mol Pharm 2024; 21:1077-1089. [PMID: 38346386 DOI: 10.1021/acs.molpharmaceut.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Folic acid (FA) has been widely engineered to promote the targeted delivery of FA-modified nanoparticles (NPs) by recognizing the folate receptor α (FRα). However, the efficacy of FA-targeted therapy significantly varied with the abundance of FRα and natural immunoglobulin levels in different tumors. Therefore, a sequential therapy of dexamethasone (Dex)-induced FRα amplification and immunosuppression combined with FA-functionalized doxorubicin (DOX) micelles to synergistically suppress tumor proliferation was proposed in this study. In brief, a pH/reduction-responsive FA-functionalized micelle (FCSD) was obtained by grafting FA, derivatization-modified cholesterol, and 2,3-dimethylmaleic anhydride onto a chitosan oligosaccharide. The obtained FCSD/DOX NPs can effectively deliver DOX in tumors, and their targeting efficiency can be further improved with Dex pretreatment to decrease the immunoglobulin M (IgM) content in serum and amplify FRα levels on the surface of M109 cells. After internalization, charge reversal and disulfide bond breakage of FCSD vectors under the stimulation of tumor extracellular pH (pHe) and intracellular glutathione (GSH) would contribute to the disintegration of vectors and the rapid release of DOX. The sequential therapy that combined Dex pretreatment and targeted chemotherapy by FCSD/DOX NPs demonstrated superior tumor suppression compared with monotherapy, which is expected to provide a potential strategy for FRα-positive lung cancer patients.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Changhao Jia
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhixin Yao
- School of Pharmacy, Yancheng Teachers' University, Yancheng 224002, China
| | - Gang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Gui Huang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Hui Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Linghong Lu
- Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Taiwei Jin
- Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Yan Tang
- School of Pharmacy, Yancheng Teachers' University, Yancheng 224002, China
| | - Zengyan Zhu
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Xuenong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Liang N, Xu Y, Zhao W, Liu Z, Li G, Sun S. AIE luminogen labeled polymeric micelles for biological imaging and chemotherapy. Colloids Surf B Biointerfaces 2024; 235:113792. [PMID: 38340417 DOI: 10.1016/j.colsurfb.2024.113792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
In this study, an amphiphilic polymer FA-CS-DBA-CHO with aggregation-induced emission (AIE) feature was prepared by introducing 4-(diphenylamino)benzaldehyde derivative (DBA-CHO), imine bond and folic acid (FA) to the molecular structure of chitosan (CS). The amphiphilicity drove the polymer to self-assemble into micelles, and paclitaxel (PTX) could be solubilized in the hydrophobic core. Due to the excellent AIE effect, FA-CS-DBA-CHO exhibited strong cellular imaging capability. The pH-sensitive imine bond in the polymer allowed for accurate drug release in acidic environment. Both in vitro and in vivo studies demonstrated that the PTX-loaded FA-CS-DBA-CHO micelles could significantly inhibit the growth of tumor cells but without any notable toxicity. This micellar system was excellent carrier for bioimaging and chemotherapeutic drug delivery.
Collapse
Affiliation(s)
- Na Liang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingxue Xu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Wei Zhao
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Zhenrong Liu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Gang Li
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Shaoping Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
16
|
Wen T, Gao Y, Zheng Y, Shan B, Song C, An Y, Cui J. Evaluation of New Folate Receptor-mediated Mitoxantrone Targeting Liposomes In Vitro. Curr Pharm Biotechnol 2024; 25:510-519. [PMID: 37957921 DOI: 10.2174/0113892010258845231101091359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023]
Abstract
Background: Ligand-mediated liposomes targeting folate receptors (FRs) that are overexpressed on the surface of tumor cells may improve drug delivery. However, the properties of liposomes also affect cellular uptake and drug release. Objective: Mitoxantrone folate targeted liposomes were prepared to increase the enrichment of drugs in tumor cells and improve the therapeutic index of drugs by changing the route of drug administration. Methods: Liposomes were prepared with optimized formulation, including mitoxantrone folatetargeted small unilamellar liposome (MIT-FSL), mitoxantrone folate-free small unilamellar liposome (MIT-SL), mitoxantrone folate-targeted large unilamellar liposome (MIT-FLL), mitoxantrone folate-free large unilamellar liposomes (MIT-LL). Cells with different levels of folate alpha receptor (FRα) expression were used to study the differences in the enrichment of liposomes, the killing effect on tumor cells, and their ability to overcome multidrug resistance. The results of the drug release experiment showed that the particle size of liposomes affected their release behavior. Large single-compartment liposomes could hardly be effectively released, while small single-compartment liposomes could be effectively released, MIT-FSL vs MIT-FLL and MIT-SL vs MIT-LL had significant differences in the drug release rate (P<0.0005). Cell uptake experiments results indicated that the ability of liposomes to enter folic acid receptor-expressing tumor cells could be improved after modification of folic acid ligands on the surface of liposomes and it was related to the expression of folate receptors on the cell surface. There were significant differences in cell uptake rates (p<0.0005) for cells with high FRα expression (SPC-A-1 cells), when MIT-FSL vs MIT-SL and MIT-FLL vs MIT-LL. For cells with low FRα expression (MCF-7 cells), their cell uptake rates were still different (p<0.05), but less pronounced than in SPC-A-1 cells. The results of the cell inhibition experiment suggest that MIT-FLL and MIT-LL had no inhibitory effect on cells, MIT-FSL had a significant inhibitory effect on cells and its IC50 value was calculated to be 4502.4 ng/mL, MIT-SL also had an inhibitory effect, and its IC50 value was 25092.1 ng/mL, there was a statistical difference (p<0.05), MIT-FSL had a higher inhibitory rate than MIT-SL at the same drug concentration. Afterward, we did an inhibitory experiment of different MIT-loaded nanoparticles on MCF-7 cells compared to the drug-resistant cells (ADR), Observing the cell growth inhibition curve, both MIT-FSL and MIT-SL can inhibit the growth of MCF-7 and MCF-7/ADR cells. For MCF- 7 cells, at the same concentration, there is little difference between the inhibition rate of MITFSL and MIT-SL, but for MCF-7/ADR, the inhibition rate of MIT-FSL was significantly higher than that of MIT-SL at the same concentration (P<0.05). Conclusion: By modifying folic acid on the surface of liposomes, tumor cells with high expression of folic acid receptors can be effectively targeted, thereby increasing the enrichment of intracellular drugs and improving efficacy. It can also change the delivery pathway, increase the amount of drug entering resistant tumor cells, and overcome resistance. .
Collapse
Affiliation(s)
- Tianjiao Wen
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yuan Gao
- Department of Pharmacy, the Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Ying Zheng
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Bin Shan
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Cong Song
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Yahui An
- Department of Pharmacy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Jingxia Cui
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| |
Collapse
|
17
|
Thabet RH, Alessa REM, Al-Smadi ZKK, Alshatnawi BSG, Amayreh BMI, Al-Dwaaghreh RBA, Salah SKA. Folic acid: friend or foe in cancer therapy. J Int Med Res 2024; 52:3000605231223064. [PMID: 38229460 PMCID: PMC10935767 DOI: 10.1177/03000605231223064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
Folic acid plays a crucial role in diverse biological processes, notably cell maturation and proliferation. Here, we performed a literature review using articles listed in electronic databases, such as PubMed, Scopus, MEDLINE, and Google Scholar. In this review article, we describe contradictory data regarding the role of folic acid in cancer development and progression. While some studies have confirmed its beneficial effects in diminishing the risk of various cancers, others have reported a potential carcinogenic effect. The current narrative review elucidates these conflicting data by highlighting the possible molecular mechanisms explaining each point of view. Further multicenter molecular and genetic studies, in addition to human randomized clinical trials, are necessary to provide a more comprehensive understanding of the relationship between folic acid and cancer.
Collapse
Affiliation(s)
- Romany H. Thabet
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, Jordan
| | | | | | | | | | | | | |
Collapse
|
18
|
Agwa MM, Elmotasem H, Moustafa RI, Abdelsattar AS, Mohy-Eldin MS, Fouda MMG. Advent in proteins, nucleic acids, and biological cell membranes functionalized nanocarriers to accomplish active or homologous tumor targeting for smart amalgamated chemotherapy/photo-therapy: A review. Int J Biol Macromol 2023; 253:127460. [PMID: 37866559 DOI: 10.1016/j.ijbiomac.2023.127460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Conventional cancer mono-therapeutic approaches including radiotherapy, surgery, and chemotherapy don't always achieve satisfactory outcomes and are frequently associated with significant limitations. Although chemotherapy is a vital intervention, its effectiveness is frequently inadequate and is associated with metastasis, multidrug resistance, off-target effect, and normal cells toxicity. Phototherapies are employed in cancer therapy, encompassing photo-dynamic and photo-thermal therapies which under favorable NIR laser light irradiation initiate the included photosensitizers and photo-thermal agents to generate ROS or thermal heat respectively for cancer cells destruction. Photo-therapy is considered noninvasive, posing no resistance, but it still suffers from several pitfalls like low penetration depth and excessive heat generation affecting neighboring tissues. Improved selectivity and tumor-homing capacity could be attained through surface modulation of nanoparticles with targeting ligands that bind to receptors, which are exclusively overexpressed on cancerous cells. Developing novel modified targeted nanoparticulate platforms integrating different therapeutic modalities like photo-therapy and chemotherapy is a topic of active research. This review aimed to highlight recent advances in proteins, nucleic acids, and biological cell membranes functionalized nanocarriers for smart combinatorial chemotherapy/photo-therapy. Nanocarriers decorated with precise targeting ligands, like aptamers, antibody, and lactoferrin, to achieve active tumor-targeting or camouflaging using various biological cell membrane coating are designed to achieve homologous tumor-targeting.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt
| | - Rehab I Moustafa
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research and Technology Institute, (TRT) National Research Centre, 33 El- Behooth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
19
|
Kumar M, Virmani T, Kumar G, Deshmukh R, Sharma A, Duarte S, Brandão P, Fonte P. Nanocarriers in Tuberculosis Treatment: Challenges and Delivery Strategies. Pharmaceuticals (Basel) 2023; 16:1360. [PMID: 37895831 PMCID: PMC10609727 DOI: 10.3390/ph16101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The World Health Organization identifies tuberculosis (TB), caused by Mycobacterium tuberculosis, as a leading infectious killer. Although conventional treatments for TB exist, they come with challenges such as a heavy pill regimen, prolonged treatment duration, and a strict schedule, leading to multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The rise of MDR strains endangers future TB control. Despite these concerns, the hunt for an efficient treatment continues. One breakthrough has been the use of nanotechnology in medicines, presenting a novel approach for TB treatment. Nanocarriers, such as lipid nanoparticles, nanosuspensions, liposomes, and polymeric micelles, facilitate targeted delivery of anti-TB drugs. The benefits of nanocarriers include reduced drug doses, fewer side effects, improved drug solubility, better bioavailability, and improved patient compliance, speeding up recovery. Additionally, nanocarriers can be made even more targeted by linking them with ligands such as mannose or hyaluronic acid. This review explores these innovative TB treatments, including studies on nanocarriers containing anti-TB drugs and related patents.
Collapse
Affiliation(s)
- Mahesh Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Sofia Duarte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
20
|
Sadri M, Najafi A, Rahimi A, Behranvand N, Hossein Kazemi M, Khorramdelazad H, Falak R. Hypoxia effects on oncolytic virotherapy in Cancer: Friend or Foe? Int Immunopharmacol 2023; 122:110470. [PMID: 37433246 DOI: 10.1016/j.intimp.2023.110470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Researchers have tried to find novel strategies for cancer treatment in the past decades. Among the utilized methods, administering oncolytic viruses (OVs) alone or combined with other anticancer therapeutic approaches has had promising outcomes, especially in solid tumors. Infecting the tumor cells by these viruses can lead to direct lysis or induction of immune responses. However, the immunosuppressive tumor microenvironment (TME) is considered a significant challenge for oncolytic virotherapy in treating cancer. Based on OV type, hypoxic conditions in the TME can accelerate or repress virus replication. Therefore, genetic manipulation of OVs or other molecular modifications to reduce hypoxia can induce antitumor responses. Moreover, using OVs with tumor lysis capability in the hypoxic TME may be an attractive strategy to overcome the limitations of the therapy. This review summarizes the latest information available in the field of cancer virotherapy and discusses the dual effect of hypoxia on different types of OVs to optimize available related therapeutic methods.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Behranvand
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Al-Serwi RH, Eladl MA, El-Sherbiny M, Saleh MA, Othman G, Alshahrani SM, Alnefaie R, Jan AM, Alnasser SM, Albalawi AE, Mohamed JMM, Menaa F. Targeted Drug Administration onto Cancer Cells Using Hyaluronic Acid-Quercetin-Conjugated Silver Nanoparticles. Molecules 2023; 28:molecules28104146. [PMID: 37241888 DOI: 10.3390/molecules28104146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Quercetin (QtN) displays low systemic bioavailability caused by poor water solubility and instability. Consequently, it exerts limited anticancer action in vivo. One solution to increase the anticancer efficacy of QtN is the use of appropriate functionalized nanocarriers that preferentially target and deliver the drug to the tumor location. Herein, a direct advanced method was designed to develop water-soluble hyaluronic acid (HA)-QtN-conjugated silver nanoparticles (AgNPs). HA-QtN reduced silver nitrate (AgNO3) while acting as a stabilizing agent to produce AgNPs. Further, HA-QtN#AgNPs served as an anchor for folate/folic acid (FA) conjugated with polyethylene glycol (PEG). The resulting PEG-FA-HA-QtN#AgNPs (further abbreviated as PF/HA-QtN#AgNPs) were characterized both in vitro and ex vivo. Physical characterizations included UV-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), particle size (PS) and zeta potential (ZP) measurements, and biopharmaceutical evaluations. The biopharmaceutical evaluations included analyses of the cytotoxic effects on the HeLa and Caco-2 cancer cell lines using the MTT assay; cellular drug intake into cancer cells using flow cytometry and confocal microscopy; and blood compatibility using an automatic hematology analyzer, a diode array spectrophotometer, and an enzyme-linked immunosorbent assay (ELISA). The prepared hybrid delivery nanosystem was hemocompatible and more oncocytotoxic than the free, pure QtN. Therefore, PF/HA-QtN#AgNPs represent a smart nano-based drug delivery system (NDDS) and could be a promising oncotherapeutic option if the data are validated in vivo.
Collapse
Affiliation(s)
- Rasha H Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed A Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura 35511, Egypt
| | - Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Gamal Othman
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Sultan M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Rasha Alnefaie
- Department of Biology, Faculty of Science, Al-Baha University, Al Baha 65779, Saudi Arabia
| | - Afnan M Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, Unaizah Colleage of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47913, Saudi Arabia
| | - Jamal Moideen Muthu Mohamed
- Vaasudhara College of Pharmacy, Rajiv Gandhi University of Health Sciences, Sante Circle, Chintamani Road, Hoskote 562114, Karnataka, India
| | - Farid Menaa
- Departments of Medicine and Nanomedicine, California Innovations Corporation, San Diego, CA 92037, USA
| |
Collapse
|
22
|
Chauhan N, Cabrera M, Chowdhury P, Nagesh PK, Dhasmana A, Pranav, Jaggi M, Chauhan SC, Yallapu MM. Indocyanine Green-based Glow Nanoparticles Probe for Cancer Imaging. Nanotheranostics 2023; 7:353-367. [PMID: 37151801 PMCID: PMC10161388 DOI: 10.7150/ntno.78405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/22/2023] [Indexed: 08/31/2023] Open
Abstract
Indocyanine green (ICG) is one of the FDA-approved near infra-red fluorescent (NIRF) probes for cancer imaging and image-guided surgery in the clinical setting. However, the limitations of ICG include poor photostability, high concentration toxicity, short circulation time, and poor cancer cell specificity. To overcome these hurdles, we engineered a nanoconstruct composed of poly (vinyl pyrrolidone) (PVP)-indocyanine green that is cloaked self-assembled with tannic acid (termed as indocyanine green-based glow nanoparticles probe, ICG-Glow NPs) for the cancer cell/tissue-specific targeting. The self-assembled ICG-Glow NPs were confirmed by spherical nanoparticles formation (DLS and TEM) and spectral analyses. The NIRF imaging characteristic of ICG-Glow NPs was established by superior fluorescence counts on filter paper and chicken tissue. The ICG-Glow NPs exhibited excellent hemo and cellular compatibility with human red blood cells, kidney normal, pancreatic normal, and other cancer cell lines. An enhanced cancer-specific NIRF binding and imaging capability of ICG-Glow NPs was confirmed using different human cancer cell lines and human tumor tissues. Additionally, tumor-specific binding/accumulation of ICG-Glow NPs was confirmed in MDA-MB-231 xenograft mouse model. Collectively, these findings suggest that ICG-Glow NPs have great potential as a novel and safe NIRF imaging probe for cancer cell/tumor imaging. This can lead to a quicker cancer diagnosis facilitating precise disease detection and management.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Marco Cabrera
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Prashanth K.B. Nagesh
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Pranav
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, United States
| |
Collapse
|
23
|
Cyclodextrin-Based Polymeric Drug Delivery Systems for Cancer Therapy. Polymers (Basel) 2023; 15:polym15061400. [PMID: 36987181 PMCID: PMC10052104 DOI: 10.3390/polym15061400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Cyclodextrins (CDs) are one of the most extensively studied cyclic-oligosaccharides due to their low toxicity, good biodegradability and biocompatibility, facile chemical modification, and unique inclusion capacity. However, problems such as poor pharmacokinetics, plasma membrane disruption, hemolytic effects and a lack of target specificity still exist for their applications as drug carriers. Recently, polymers have been introduced into CDs to combine the advantages of both biomaterials for the superior delivery of anticancer agents in cancer treatment. In this review, we summarize four types of CD-based polymeric carriers for the delivery of chemotherapeutics or gene agents for cancer therapy. These CD-based polymers were classified based on their structural properties. Most of the CD-based polymers were amphiphilic with the introduction of hydrophobic/hydrophilic segments and were able to form nanoassemblies. Anticancer drugs could be included in the cavity of CDs, encapsulated in the nanoparticles or conjugated on the CD-based polymers. In addition, the unique structures of CDs enable the functionalization of targeting agents and stimuli-responsive materials to realize the targeting and precise release of anticancer agents. In summary, CD-based polymers are attractive carriers for anticancer agents.
Collapse
|
24
|
Ying N, Lin X, Xie M, Zeng D. Effect of surface ligand modification on the properties of anti-tumor nanocarrier. Colloids Surf B Biointerfaces 2022; 220:112944. [DOI: 10.1016/j.colsurfb.2022.112944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
25
|
Carborane-Containing Folic Acid bis-Amides: Synthesis and In Vitro Evaluation of Novel Promising Agents for Boron Delivery to Tumour Cells. Int J Mol Sci 2022; 23:ijms232213726. [PMID: 36430206 PMCID: PMC9692863 DOI: 10.3390/ijms232213726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The design of highly selective low-toxic, low-molecular weight agents for boron delivery to tumour cells is of decisive importance for the development of boron neutron capture therapy (BNCT), a modern efficient combined method for cancer treatment. In this work, we developed a simple method for the preparation of new closo- and nido-carborane-containing folic acid bis-amides containing 18-20 boron atoms per molecule. Folic acid derivatives containing nido-carborane residues were characterised by high water solubility, low cytotoxicity, and demonstrated a good ability to deliver boron to tumour cells in in vitro experiments (up to 7.0 µg B/106 cells in the case of U87 MG human glioblastoma cells). The results obtained demonstrate the high potential of folic acid-nido-carborane conjugates as boron delivery agents to tumour cells for application in BNCT.
Collapse
|
26
|
Emerging photodynamic/sonodynamic therapies for urological cancers: progress and challenges. J Nanobiotechnology 2022; 20:437. [PMID: 36195918 PMCID: PMC9531473 DOI: 10.1186/s12951-022-01637-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/14/2022] [Indexed: 12/01/2022] Open
Abstract
Photodynamic therapy (PDT), and sonodynamic therapy (SDT) that developed from PDT, have been studied for decades to treat solid tumors. Compared with other deep tumors, the accessibility of urological tumors (e.g., bladder tumor and prostate tumor) makes them more suitable for PDT/SDT that requires exogenous stimulation. Due to the introduction of nanobiotechnology, emerging photo/sonosensitizers modified with different functional components and improved physicochemical properties have many outstanding advantages in cancer treatment compared with traditional photo/sonosensitizers, such as alleviating hypoxia to improve quantum yield, passive/active tumor targeting to increase drug accumulation, and combination with other therapeutic modalities (e.g., chemotherapy, immunotherapy and targeted therapy) to achieve synergistic therapy. As WST11 (TOOKAD® soluble) is currently clinically approved for the treatment of prostate cancer, emerging photo/sonosensitizers have great potential for clinical translation, which requires multidisciplinary participation and extensive clinical trials. Herein, the latest research advances of newly developed photo/sonosensitizers for the treatment of urological cancers, and the efficacy, as well as potential biological effects, are highlighted. In addition, the clinical status of PDT/SDT for urological cancers is presented, and the optimization of the photo/sonosensitizer development procedure for clinical translation is discussed.
Collapse
|
27
|
Folate Receptor 4-Expressing T cell Is Associated with Disease-Free Survival in Patients with Esophageal Squamous Cell Carcinoma. DISEASE MARKERS 2022; 2022:4351949. [PMID: 35756495 PMCID: PMC9217542 DOI: 10.1155/2022/4351949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022]
Abstract
Background Folic acid receptor 4 (FR4) significantly downregulates the expression of regular T cells (Treg) and improves the effect of chemotherapy and PD-1/PD-L1 inhibitors. However, the FR4 expression in squamous cell carcinoma (ESCC) remains unclear. Methods Patients with primary ESCC who visited our hospital between 1st February 2012 and 30th September 2016 were enrolled in this study. FR4 expressions in ESCC patients were detected by immunohistochemistry staining, and the association with clinical characteristics and the overall survival (OS) or disease-free survival (DFS) was analyzed. Results One hundred and forty-eight qualified cases of ESCC patients were retrieved, including 34 females. Ninety-four cases had lymph node metastasis (63.51%), 104 patients received adjuvant therapy (70.27%), and the rate of FR4 positive was 67.57% (100/148). Among FR4 positive patients, 75 cases received adjuvant therapy, and patients who received chemotherapy were significantly better than that of patients who did not receive chemotherapy. In patients with FR4 negative expression, 48 cases received adjuvant therapy, which was significantly worse than that of patients who did not receive chemotherapy. Conclusions Postoperative adjuvant chemotherapy prolonged the survival in FR4 positive ESCC patients, whereas adjuvant therapy in patients with FR4 negative needs to be further improved.
Collapse
|