1
|
Chatzidaki MD, Mitsou E. Advancements in Nanoemulsion-Based Drug Delivery Across Different Administration Routes. Pharmaceutics 2025; 17:337. [PMID: 40143001 PMCID: PMC11945362 DOI: 10.3390/pharmaceutics17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Nanoemulsions (NEs) have emerged as effective drug delivery systems over the past few decades due to their multifaceted nature, offering advantages such as enhanced bioavailability, protection of encapsulated compounds, and low toxicity. In the present review, we focus on advancements in drug delivery over the last five years across (trans)dermal, oral, ocular, nasal, and intra-articular administration routes using NEs. Rational selection of components, surface functionalization, incorporation of permeation enhancers, and functionalization with targeting moieties are explored for each route discussed. Additionally, apart from NEs, we explore NE-based drug delivery systems (e.g., NE-based gels) while highlighting emerging approaches such as vaccination and theranostic applications. The growing interest in NEs for drug delivery purposes is reflected in clinical trials, which are also discussed. By summarizing the latest advances, exploring new strategies, and identifying critical challenges, this review focuses on developments for efficient NE-based therapeutic approaches.
Collapse
Affiliation(s)
- Maria D. Chatzidaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Institute for Bio-Innovation, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece
| | - Evgenia Mitsou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 6100 Rehovot, Israel
| |
Collapse
|
2
|
Xie H, Sha XM, Hu ZZ, Tu ZC. Enhanced stability of curcumin encapsulated in fish gelatin emulsions combined with γ-Polyglutamic acid. Int J Biol Macromol 2025; 284:137772. [PMID: 39557231 DOI: 10.1016/j.ijbiomac.2024.137772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
This study examined the rheological properties, interfacial characteristics, particle size, zeta potential, Turbiscan stability index (TSI), morphology, and encapsulation efficiency of curcumin (Cur) loaded fish gelatin (FG) emulsions modified with γ-polyglutamic acid (γ-PGA). The results showed that adding γ-PGA significantly increased curcumin encapsulation efficiency. At 0.3 mg/mL, FG emulsions had an encapsulation efficiency of 80.14 %, while FG-γ-PGA emulsions reached 90.35 %. The FG-γ-PGA emulsions also showed enhanced stability and resistance to phase separation, remaining stable for seven days, compared to three days for FG emulsions. After 24 h, the TSI of FG emulsions with 0.6 mg/mL Cur was 2.46, significantly higher than the 0.55 TSI for FG-γ-PGA emulsions at the same concentration. FG-γ-PGA emulsions had smaller droplet sizes, and analysis of interfacial characteristics, particle size, and zeta potential indicated better system stability than FG emulsions. These improved properties of FG-γ-PGA emulsions highlight their potential as efficient carriers for curcumin. Overall, the favorable characteristics of FG-γ-PGA emulsions suggest promising applications in the food industry, especially for developing functional foods with extended shelf life and enhanced nutritional benefits.
Collapse
Affiliation(s)
- Huan Xie
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiao-Mei Sha
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| | - Zi-Zi Hu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
3
|
Liu Y, Yin R, Tian Y, Xu S, Meng X. Curcumin nanopreparations: recent advance in preparation and application. Biomed Mater 2024; 19:052009. [PMID: 39189065 DOI: 10.1088/1748-605x/ad6dc7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Curcumin is a natural polyphenolic compound extracted from turmeric with antibacterial, antioxidant, antitumor, preventive and therapeutic neurological disorders and a variety of bioactivities, which is widely used in the field of food and medicine. However, the drawbacks of curcumin such as poor aqueous solubility and stability have limited the practical application of curcumin. To overcome these defects and enhance its functional properties, various nanoscale systems (liposomes, polymer nanoparticles, protein nanoparticles, solid lipid nanoparticles, metal nanoparticles, etc) have been extensively employed for curcumin encapsulation and delivery. Despite the rapid development of curcumin nanoformulations, there is a lack of comprehensive reviews on their preparation and properties. This review provides an overview of the construction of curcumin nano-delivery systems, mechanisms of action, nanocarrier preparation methods and the applications of curcumin nanocarriers in the food and pharmaceutical fields to provide a theoretical basis and technological support for the efficient bio-utilization, product development and early clinical application of curcumin.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Rui Yin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Yuan Tian
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Shujun Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| | - Xin Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040, People's Republic of China
| |
Collapse
|
4
|
Li T, Li S, Xiong Y, Li X, Ma C, Guan Z, Yang L. Binary Nano-inhalant Formulation of Icariin Enhances Cognitive Function in Vascular Dementia via BDNF/TrkB Signaling and Anti-inflammatory Effects. Neurochem Res 2024; 49:1720-1734. [PMID: 38520637 DOI: 10.1007/s11064-024-04129-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/25/2024]
Abstract
Vascular dementia (VaD) has a serious impact on the patients' quality of life. Icariin (Ica) possesses neuroprotective potential for treating VaD, yet its oral bioavailability and blood-brain barrier (BBB) permeability remain challenges. This research introduced a PEG-PLGA-loaded chitosan hydrogel-based binary formulation tailored for intranasal delivery, enhancing the intracerebral delivery efficacy of neuroprotective agents. The formulation underwent optimization to facilitate BBB crossing, with examinations conducted on its particle size, morphology, drug-loading capacity, in vitro release, and biodistribution. Using the bilateral common carotid artery occlusion (BCCAO) rat model, the therapeutic efficacy of this binary formulation was assessed against chitosan hydrogel and PEG-PLGA nanoparticles loaded with Ica. Post-intranasal administration, enhanced cognitive function was evident in chronic cerebral hypoperfusion (CCH) rats. Further mechanistic evaluations, utilizing immunohistochemistry (IHC), RT-PCR, and ELISA, revealed augmented transcription of synaptic plasticity-associated proteins like SYP and PSD-95, and a marked reduction in hippocampal inflammatory markers such as IL-1β and TNF-α, highlighting the formulation's promise in alleviating cognitive impairment. The brain-derived neurotrophic factor (BDNF)/tropomyosin related kinase B (TrkB) pathway was activated significantly in the binary formulation compared with the other two. Our study demonstrates that the intranasal application of chitosan hydrogel loaded with Ica-encapsulated PEG-PLGA could effectively deliver Ica into the brain and enhance its neuroprotective effect.
Collapse
Affiliation(s)
- Tieshu Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, People's Republic of China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, People's Republic of China
| | - Yin Xiong
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, 130021, People's Republic of China
| | - Xinxin Li
- Affiliated Hospital of Yangzhou University, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, People's Republic of China
| | - Chun Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, People's Republic of China
| | - Zhiying Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, People's Republic of China
| | - Lihua Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, People's Republic of China.
| |
Collapse
|
5
|
Cimino C, Bonaccorso A, Tomasello B, Alberghina GA, Musumeci T, Puglia C, Pignatello R, Marrazzo A, Carbone C. W/O/W Microemulsions for Nasal Delivery of Hydrophilic Compounds: A Preliminary Study. J Pharm Sci 2024; 113:1636-1644. [PMID: 38281664 DOI: 10.1016/j.xphs.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The administration of hydrophilic therapeutics has always been a great challenge because of their low bioavailability after administration. For this purpose, W/O/W microemulsion resulted to be a potential successful strategy for the delivery of hydrophilic compounds, interesting for the nasal mucosal therapy. Herein, an optimized biphasic W/O microemulsion was designed, through a preliminary screening, and it was inverted in a triphasic W/O/W microemulsion, intended for the nasal administration. In order to enhance the mucosal retention, surface modification of the biphasic W/O microemulsion was performed adding didodecyldimethylammonium bromide, and then converting the system into a cationic triphasic W/O/W microemulsion. The developed samples were characterized in terms of droplet size, polydispersity, zeta potential, pH and osmolality. The physical long-term stability was analyzed storing samples at accelerated conditions (40 ± 2 °C and 75 ± 5 % RH) for 6 months in a constant climate chamber, following ICH guidelines Q1A (R2). In order to verify the potential retention on the nasal mucosa, the two triphasic systems were analyzed in terms of mucoadhesive properties, measuring the in vitro interaction with mucin over time. Furthermore, fluorescein sodium salt was selected as a model hydrophilic drug to be encapsulated into the inner core of the two triphasic W/O/W microemulsions, and its release was analyzed compared to the free probe solution. The cytocompatibility of the two platforms was assessed on two cell lines, human fibroblasts HFF1 and Calu-3 cell lines, chosen as pre-clinical models for nasal and bronchial/tracheal airway epithelium.
Collapse
Affiliation(s)
- Cinzia Cimino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Barbara Tomasello
- Section of Biochemistry, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Giovanni Anfuso Alberghina
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Carmelo Puglia
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Agostino Marrazzo
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; Medicinal Chemistry Laboratory, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy.
| |
Collapse
|
6
|
Vaiss DP, Rodrigues JL, Yurgel VC, do Carmo Guedes F, da Matta LLM, Barros PAB, Vaz GR, Dos Santos RN, Matte BF, Kupski L, Garda-Buffon J, Bidone J, Muccillo-Baisch AL, Sonvico F, Dora CL. Curcumin and quercetin co-encapsulated in nanoemulsions for nasal administration: A promising therapeutic and prophylactic treatment for viral respiratory infections. Eur J Pharm Sci 2024; 197:106766. [PMID: 38615970 DOI: 10.1016/j.ejps.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
One of the most frequent causes of respiratory infections are viruses. Viruses reaching the airways can be absorbed by the human body through the respiratory mucosa and mainly infect lung cells. Several viral infections are not yet curable, such as coronavirus-2 (SARS-CoV-2). Furthermore, the side effect of synthetic antiviral drugs and reduced efficacy against resistant variants have reinforced the search for alternative and effective treatment options, such as plant-derived antiviral molecules. Curcumin (CUR) and quercetin (QUE) are two natural compounds that have been widely studied for their health benefits, such as antiviral and anti-inflammatory activity. However, poor oral bioavailability limits the clinical applications of these natural compounds. In this work, nanoemulsions (NE) co-encapsulating CUR and QUE designed for nasal administration were developed as promising prophylactic and therapeutic treatments for viral respiratory infections. The NEs were prepared by high-pressure homogenization combined with the phase inversion temperature technique and evaluated for their physical and chemical characteristics. In vitro assays were performed to evaluate the nanoemulsion retention into the porcine nasal mucosa. In addition, the CUR and QUE-loaded NE antiviral activity was tested against a murine β-COV, namely MHV-3. The results evidenced that CUR and QUE loaded NE had a particle size of 400 nm and retention in the porcine nasal mucosa. The antiviral activity of the NEs showed a percentage of inhibition of around 99 %, indicating that the developed NEs has interesting properties as a therapeutic and prophylactic treatment against viral respiratory infections.
Collapse
Affiliation(s)
- Daniela Pastorim Vaiss
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900 Brazil, RS, Brazil
| | - Virginia Campello Yurgel
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Frank do Carmo Guedes
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | | | | | - Gustavo Richter Vaz
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Raíssa Nunes Dos Santos
- Virology Laboratory of the Biotechnology Startup Núcleo Vitro, Porto Alegre 91040-600, Brazil; Laboratory of Bioinformatics and Biotechnology, Campus de Gurupi, Federal University of Tocantins, Gurupi 77402-970, Brazil
| | - Bibiana Franzen Matte
- Virology Laboratory of the Biotechnology Startup Núcleo Vitro, Porto Alegre 91040-600, Brazil
| | - Larine Kupski
- Laboratory for Mycotoxins and Food Science, School of Chemistry and Food, Federal University of Rio Grande - FURG, Italy Avenue 8 km, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Jaqueline Garda-Buffon
- Laboratory for Mycotoxins and Food Science, School of Chemistry and Food, Federal University of Rio Grande - FURG, Italy Avenue 8 km, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Juliana Bidone
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Capão do Leão, 96010-610 Pelotas, RS, Brazil
| | - Ana Luiza Muccillo-Baisch
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parma, Italy.
| | - Cristiana Lima Dora
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil.
| |
Collapse
|
7
|
Mancim-Imbriani MJ, Duarte JL, Di Filippo LD, Durão LPL, Chorilli M, Palomari Spolidorio DM, Maquera-Huacho PM. Formulation of a Novel Hesperetin-Loaded Nanoemulsion and Its Promising Effect on Osteogenesis. Pharmaceutics 2024; 16:698. [PMID: 38931821 PMCID: PMC11206411 DOI: 10.3390/pharmaceutics16060698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Alternative therapies associating natural products and nanobiotechnology show new perspectives on controlled drug release. In this context, nanoemulsions (NEs) present promising results for their structural design and properties. Hesperetin (HT), a flavonoid mainly found in citrus fruits, presents highlighted bone benefits. In this context, we developed a hesperetin-loaded nanoemulsion (HT-NE) by sonication method and characterized it by dynamic light scattering, analyzing its encapsulation efficiency, and cumulative release. The biocompatibility in human osteoblasts Saos-2-like was evaluated by the cytotoxicity assay and IC50. Then, the effects of the HT-NE on osteogenesis were evaluated by the cellular proliferation, calcium nodule formation, bone regulators gene expression, collagen quantification, and alkaline phosphatase activity. The results showed that the formulation presented ideal values of droplet size, polydispersity index, and zeta potential, and the encapsulation efficiency was 74.07 ± 5.33%, showing a gradual and controlled release. Finally, HT-NE was shown to be biocompatible and increased cellular proliferation, and calcium nodule formation, regulated the expression of Runx2, ALPL, and TGF-β genes, and increased the collagen formation and alkaline phosphatase activity. Therefore, the formulation of this NE encapsulated the HT appropriately, allowing the increasing of its effects on mechanisms to improve or accelerate the osteogenesis process.
Collapse
Affiliation(s)
- Maria Júlia Mancim-Imbriani
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Jonatas Lobato Duarte
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Leonardo Delello Di Filippo
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Letícia Pereira Lima Durão
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara CEP 14800-903, São Paulo, Brazil; (J.L.D.); (L.D.D.F.); (M.C.)
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| | - Patricia Milagros Maquera-Huacho
- Department of Diagnosis and Surgery, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil; (M.J.M.-I.); (L.P.L.D.)
- Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, Araraquara CEP 14801-385, São Paulo, Brazil;
| |
Collapse
|
8
|
Gadhave DG, Quadros M, Ugale AR, Goyal M, Ayehunie S, Gupta V. Mucoadhesive chitosan-poly (lactic-co-glycolic acid) nanoparticles for intranasal delivery of quetiapine - Development & characterization in physiologically relevant 3D tissue models. Int J Biol Macromol 2024; 267:131491. [PMID: 38599435 DOI: 10.1016/j.ijbiomac.2024.131491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Quetiapine hemifumarate (QF) delivery to the CNS via conventional formulations is challenging due to poor solubility and lower oral bioavailability (9 %). Similarly, many other second-generation antipsychotics, such as olanzapine, clozapine, and paliperidone, have also shown low oral bioavailability of <50 %. Hence, the present work was intended to formulate QF-loaded biodegradable PLGA-NPs with appropriate surface charge modification through poloxamer-chitosan and investigate its targeting potential on RPMI-2650 cell lines to overcome the limitations of conventional therapies. QF-loaded poloxamer-chitosan-PLGA in-situ gel (QF-PLGA-ISG) was designed using emulsification and solvent evaporation techniques. Developed QF-PLGA-ISG were subjected to evaluation for particle size, PDI, zeta potential, ex-vivo mucoadhesion, entrapment efficiency (%EE), and drug loading, which revealed 162.2 nm, 0.124, +20.5 mV, 52.4 g, 77.5 %, and 9.7 %, respectively. Additionally, QF-PLGA formulation showed >90 % release within 12 h compared to 80 % of QF-suspension, demonstrating that the surfactant with chitosan-poloxamer polymers could sustainably release medicine across the membrane. Ex-vivo hemolysis study proved that developed PLGA nanoparticles did not cause any hemolysis compared to negative control. Further, in-vitro cellular uptake and transepithelial permeation were assessed using the RPMI-2650 nasal epithelial cell line. QF-PLGA-ISG not only improved intracellular uptake but also demonstrated a 1.5-2-fold increase in QF transport across RPMI-2650 epithelial monolayer. Further studies in the EpiNasal™ 3D nasal tissue model confirmed the safety and efficacy of the developed QF-PLGA-ISG formulation with up to a 4-fold increase in transport compared to plain QF after 4 h. Additionally, histological reports demonstrated the safety of optimized formulation. Finally, favorable outcomes of IN QF-PLGA-ISG formulation could provide a novel platform for safe and effective delivery of QF in schizophrenic patients.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Mural Quadros
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Akanksha R Ugale
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
9
|
He YQ, Zhou CC, Jiang SG, Lan WQ, Zhang F, Tao X, Chen WS. Natural products for the treatment of chemotherapy-related cognitive impairment and prospects of nose-to-brain drug delivery. Front Pharmacol 2024; 15:1292807. [PMID: 38348396 PMCID: PMC10859466 DOI: 10.3389/fphar.2024.1292807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Chemotherapy-related cognitive deficits (CRCI) as one of the common adverse drug reactions during chemotherapy that manifest as memory, attention, and executive function impairments. However, there are still no effective pharmacological therapies for the treatment of CRCI. Natural compounds have always inspired drug development and numerous natural products have shown potential therapeutic effects on CRCI. Nevertheless, improving the brain targeting of natural compounds in the treatment of CRCI is still a problem to be overcome at present and in the future. Accumulated evidence shows that nose-to-brain drug delivery may be an excellent carrier for natural compounds. Therefore, we reviewed natural products with potential anti-CRCI, focusing on the signaling pathway of these drugs' anti-CRCI effects, as well as the possibility and prospect of treating CRCI with natural compounds based on nose-to-brain drug delivery in the future. In conclusion, this review provides new insights to further explore natural products in the treatment of CRCI.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng-Gui Jiang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen-Qian Lan
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Al Fatease A, Alqahtani A, Khan BA, Mohamed JMM, Farhana SA. Preparation and characterization of a curcumin nanoemulsion gel for the effective treatment of mycoses. Sci Rep 2023; 13:22730. [PMID: 38123572 PMCID: PMC10733357 DOI: 10.1038/s41598-023-49328-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Fungal infections of skin including mycoses are one of the most common infections in skin or skins. Mycosis is caused by dermatophytes, non-dermatophyte moulds and yeasts. Various studies show different drugs to treat mycoses, yet there is need to treat it with applied drugs delivery. This study was designed to prepare a bio curcumin (CMN) nanoemulsion (CMN-NEs) for transdermal administration to treat mycoses. The self-nanoemulsification approach was used to prepare a nanoemulsion (NE), utilizing an oil phase consisting of Cremophor EL 100 (Cre EL), glyceryl monooleate (GMO), and polyethylene glycol 5000 (PEG 5000). Particle size (PS), polydispersity index (PDI), zeta potential (ZP), Fourier transform infrared (FTIR) spectrophotometric analysis, and morphological analyses were performed to evaluate the nanoemulsion (NE). The in vitro permeation of CMN was investigated using a modified vertical diffusion cell with an activated dialysis membrane bag. Among all the formulations, a stable, spontaneously produced nanoemulsion was determined with 250 mg of CMN loaded with 10 g of the oil phase. The average droplet size, ZP, and PDI of CMN-NEs were 90.0 ± 2.1 nm, - 7.4 ± 0.4, and 0.171 ± 0.03 mV, respectively. The release kinetics of CMN differed from zero order with a Higuchi release profile as a result of nanoemulsification, which also significantly increased the flux of CMN permeating from the hydrophilic matrix gel. Overall, the prepared nanoemulsion system not only increased the permeability of CMN but also protected it against chemical deterioration. Both CMN-ME (24.0 ± 0.31 mm) and CMN-NE gel (29.6 ± 0.25 mm) had zones of inhibition against Candida albicans that were significantly larger than those of marketed Itrostred gel (21.5 ± 0.34 mm). The prepared CMN-NE improved the bioavailability, better skin penetration, and the CMN-NE gel enhanced the release of CMN from the gel matrix on mycotic patients.
Collapse
Affiliation(s)
- Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, 62529, Guraiger, Abha, Saudi Arabia
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, 62529, Guraiger, Abha, Saudi Arabia
| | - Barkat A Khan
- Drug Delivery and Cosmetics Lab (DDCL), GCPS, Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, Pakistan.
| | - Jamal Moideen Muthu Mohamed
- Faculty of Pharmacy and BioMedical Sciences, MAHSA University, Bandar Saujana Putra, 42610, Jenjarom, Selangor, Malaysia.
| | - Syeda Ayesha Farhana
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, 51911, Unaizah, Saudi Arabia
| |
Collapse
|
11
|
Gadhave D, Quadros M, Ugale AR, Goyal M, Gupta V. A Nanoemulgel for Nose-to-Brain delivery of Quetiapine - QbD-Enabled formulation development & in-vitro characterization. Int J Pharm 2023; 648:123566. [PMID: 37918496 DOI: 10.1016/j.ijpharm.2023.123566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Second-generation antipsychotics, quetiapine hemifumarate (QF), exhibited highly active against negative and positive signs of psychosis. However, contemporary reports have shown that long-term therapy with QF causes lethal thrombocytopenia and leukopenia. Hence, to circumvent the drawbacks of available therapies, the current work aimed to design a QF-loaded biodegradable nanoemulsion (QF-NE) with suitable surface charge modification by poloxamer-chitosan and evaluate its targeting efficiency against RPMI-2650 cell lines. QF-loaded poloxamer-chitosan in-situ gel (QF-Nanoemulgel) was formulated through the O/W emulsification aqueous titration technique and optimized using the QbD approach. Optimized QF-Nanoemulgel subjected to evaluate for globule size, PDI, zeta potential, %T, viscosity, %EE, and ex-vivo mucoadhesive strength were found to be 15.0 ± 0.3 nm, 0.05 ± 0.001, -18.3 ± 0.2 mV, 99.8 ± 0.8 %, 13.5 ± 2.1 cP, 69.0 ± 1.5 %, and 43.7 ± 1.5 g, respectively. QF-Nanoemulgel revealed sustained release and obeyed zero-order kinetics compared to QF-NE and QF-suspension. Additionally, nanoformulations treated blood samples did not cause hemolytic activity compared to drug and negative control after 10 h treatment. Further, in-vitro cytotoxicity, cellular uptake, and permeation of 12.5 and 25 μM QF-Nanoemulgel were assessed on RPMI-2650 cells and discovered nontoxic with 0.55 ± 0.02 µg and 1.1 ± 0.04 µg cellular permeation, respectively, which ensured the safety and potency of QF-Nanogel. Current research revealed the successful development of intranasal QF-Nanoemulgel as a novel dosage form for the safe and effective delivery of QF in schizophrenia patients.
Collapse
Affiliation(s)
- Dnyandev Gadhave
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Mural Quadros
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Akanksha R Ugale
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
12
|
Phongpradist R, Jiaranaikulwanitch J, Thongkorn K, Lekawanvijit S, Sirilun S, Chittasupho C, Poomanee W. KLVFF Conjugated Curcumin Microemulsion-Based Hydrogel for Transnasal Route: Formulation Development, Optimization, Physicochemical Characterization, and Ex Vivo Evaluation. Gels 2023; 9:610. [PMID: 37623065 PMCID: PMC10453774 DOI: 10.3390/gels9080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Curcumin is a potent natural compound used to treat Alzheimer's disease (AD). However, the clinical usefulness of curcumin to treat AD is restricted by its low oral bioavailability and difficulty permeating the blood-brain barrier. To overcome such drawbacks, various alternative strategies have been explored, including the transnasal route. However, rapid mucociliary clearance in the nasal cavity is a major hindrance to drug delivery. Thus, designing a delivery system for curcumin to lengthen the contact period between the drug and nasal mucosa must be employed. This study describes the optimization of KLVFF conjugated curcumin microemulsion-base hydrogel (KCMEG) to formulate a prototype transnasal preparation using the response surface method to improve a mucoadhesive property. A central composite design was employed to optimize and evaluate two influencing factors: the concentration of carbopol 940 and the percentage of KLVFF conjugated curcumin microemulsion (KCME). The physicochemical properties, anti-cholinesterase activity, and anti-aggregation activities of KCME were investigated in this study. The studied factors, in terms of main and interaction effects, significantly (p < 0.05) influenced hardness and adhesiveness. The optimized KCMEG was evaluated for pH, spreadability, and mucoadhesive properties. Ex vivo nasal ciliotoxicity to optimize KCMEG was performed through the porcine nasal mucosa. KCME was transparent, with a mean globule size of 70.8 ± 3.4 nm and a pH of 5.80 ± 0.02. The optimized KCMEG containing 2% carbopol 940 showed higher in vitro mucoadhesive potential (9.67 ± 0.13 min) compared with microemulsion and was also found to be free from nasal ciliotoxicity during histopathologic evaluation of the porcine nasal mucosa. The result revealed that both the concentration of carbopol 940 and the percentage of KCME play a crucial role in mucoadhesive properties. In conclusion, incorporating a mucoadhesive agent in a microemulsion can increase the retention time of the formulation, leading to enhanced brain delivery of the drug. Findings from the investigation revealed that KCMEG has the potential to constitute a promising approach to treating AD via transnasal administration.
Collapse
Affiliation(s)
- Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (J.J.); (S.S.); (C.C.)
| | - Jutamas Jiaranaikulwanitch
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (J.J.); (S.S.); (C.C.)
| | - Kriangkrai Thongkorn
- Department of Companion Animals and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Suree Lekawanvijit
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (J.J.); (S.S.); (C.C.)
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (J.J.); (S.S.); (C.C.)
| | - Worrapan Poomanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (R.P.); (J.J.); (S.S.); (C.C.)
| |
Collapse
|
13
|
Manta K, Papakyriakopoulou P, Nikolidaki A, Balafas E, Kostomitsopoulos N, Banella S, Colombo G, Valsami G. Comparative Serum and Brain Pharmacokinetics of Quercetin after Oral and Nasal Administration to Rats as Lyophilized Complexes with β-Cyclodextrin Derivatives and Their Blends with Mannitol/Lecithin Microparticles. Pharmaceutics 2023; 15:2036. [PMID: 37631250 PMCID: PMC10459069 DOI: 10.3390/pharmaceutics15082036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Quercetin (Que) is one of the most studied flavonoids with strong antioxidant properties ascribed to its ability to bind free radicals and inactivate them. However, the low solubility of the compound along with its inadequate absorption after oral administration limit its beneficial effects. Que's complexation with two different cyclodextrin (CD) derivatives (hydroxypropyl-β-CD and methyl-β-CD) via the neutralization/lyophilization method has been found to improve its physicochemical properties. Moreover, blends of the lyophilized powders with mannitol/lecithin microparticles (MLMPs) have been proposed as candidates for intranasal (IN) administration after in vitro and ex vivo evaluations. In this context, a comparative pharmacokinetic (PK) study of the IN vs oral administration of Que lyophilized powders and their blends with MLMPs (75:25 w/w) was performed on Wistar rats. The PK parameters estimated by a non-compartmental analysis using the sparse data methodology in Phoenix® 8.3 (Certara, Princeton, NJ, USA) illustrated the effectiveness of IN administration either in brain targeting or in reaching the bloodstream. Significant levels of the compound were achieved at both sites, compared to those after oral delivery which were negligible. These results favor the potential application of the prepared Que nasal powders for systemic and nose-to-brain delivery for the prevention and/or treatment of neuroinflammatory degenerative conditions, such as Parkinson's and Alzheimer's disease.
Collapse
Affiliation(s)
- Konstantina Manta
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| | - Anna Nikolidaki
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| | - Evangelos Balafas
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (E.B.); (N.K.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (E.B.); (N.K.)
| | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.)
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.)
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| |
Collapse
|
14
|
Ciuca MD, Racovita RC. Curcumin: Overview of Extraction Methods, Health Benefits, and Encapsulation and Delivery Using Microemulsions and Nanoemulsions. Int J Mol Sci 2023; 24:ijms24108874. [PMID: 37240220 DOI: 10.3390/ijms24108874] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin is the principal curcuminoid found in the rhizomes of turmeric. Due to its therapeutic action against cancer, depression, diabetes, some bacteria, and oxidative stress, it has been used widely in medicine since ancient times. Due to its low solubility, the human organism cannot completely absorb it. Advanced extraction technologies, followed by encapsulation in microemulsion and nanoemulsion systems, are currently being used to improve bioavailability. This review discusses the different methods available for curcumin extraction from plant material, methods for the identification of curcumin in the resulting extracts, its beneficial effects on human health, and the encapsulation techniques into small colloidal systems that have been used over the past decade to deliver this compound.
Collapse
Affiliation(s)
- Maria D Ciuca
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
| | - Radu C Racovita
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
| |
Collapse
|
15
|
Sah MK, Gautam B, Pokhrel KP, Ghani L, Bhattarai A. Quantification of the Quercetin Nanoemulsion Technique Using Various Parameters. Molecules 2023; 28:molecules28062540. [PMID: 36985511 PMCID: PMC10052722 DOI: 10.3390/molecules28062540] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
Natural antioxidant polyphenolic compounds obtained from different plants are considered antioxidants for curing various chronic pathological diseases such as cardiovascular disorders and cancer. Quercetin (a polyphenolic flavonol) has attracted much attention from dietitians and medicinal chemists due to its wide variety of pharmacological activities, including anti-diabetic, anti-hypertensive, anti-carcinogenic, anti-asthmatic, anti-viral, and antioxidant activities. Furthermore, structurally, it is well suited to stabilize emulsions. The present review depicts the important role of the quercetin nanoemulsion technique, used to enhance the solubility of target materials both in vivo and in vitro as well as to decrease the risk of degradation and metabolism of drugs. Researchers have used cryo-TEM to study the morphology of quercetin nanoemulsions. The effects of various parameters such as pH, salts, and solvent concentration on quercetin nanoemulsion have been investigated for quercetin nanoemulsion. Many studies have used UV–Vis spectroscopy and HPLC for the characterization of these particles such as solubility, stability, and encapsulating efficiency.
Collapse
Affiliation(s)
- Manish Kumar Sah
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Bibaran Gautam
- Central Department of Chemistry, Tribhuvan University Campus, Kathmandu 44618, Nepal
| | | | - Lubna Ghani
- Department of Chemistry, Women University of Azad Jammu and Kashmir, Bagh 12500, Pakistan
- Correspondence: or (L.G.); or (A.B.); Tel.: +977-9842077434 (A.B.)
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- Department of Chemistry, Indian Institute of Technology, Chennai 600036, India
- Correspondence: or (L.G.); or (A.B.); Tel.: +977-9842077434 (A.B.)
| |
Collapse
|
16
|
Food-Derived Bioactive Molecules from Mediterranean Diet: Nanotechnological Approaches and Waste Valorization as Strategies to Improve Human Wellness. Polymers (Basel) 2022; 14:polym14091726. [PMID: 35566894 PMCID: PMC9103748 DOI: 10.3390/polym14091726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The beneficial effects of the Mediterranean diet (MedDiet), the most widely followed healthy diet in the world, are principally due to the presence in the foods of secondary metabolites, mainly polyphenols, whose healthy characteristics are widely recognized. However, one of the biggest problems associated with the consumption of polyphenols as nutraceutical adjuvant concerns their bioavailability. During the last decades, different nanotechnological approaches have been developed to enhance polyphenol bioavailability, avoiding the metabolic modifications that lead to low absorption, and improving their retention time inside the organisms. This review focuses on the most recent findings regarding the encapsulation and delivery of the bioactive molecules present in the foods daily consumed in the MedDiet such as olive oil, wine, nuts, spice, and herbs. In addition, the possibility of recovering the polyphenols from food waste was also explored, taking into account the increased market demand of functional foods and the necessity to obtain valuable biomolecules at low cost and in high quantity. This circular economy strategy, therefore, represents an excellent approach to respond to both the growing demand of consumers for the maintenance of human wellness and the economic and ecological exigencies of our society.
Collapse
|