1
|
Hussein L, Moaness M, Mabrouk M, Farahat MG, Beherei HH. Advancements in mesoporous bioactive glasses for effective bone cancer therapy: Recent developments and future perspectives. BIOMATERIALS AND BIOSYSTEMS 2025; 17:100108. [PMID: 40083816 PMCID: PMC11904600 DOI: 10.1016/j.bbiosy.2025.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
This review focuses on recent advancements in the effective use of mesoporous bioactive glasses (MBG) in the treatment of bone cancer, focusing on Osteosarcoma (OS). Bone cancers are rare but are associated with significant morbidity and mortality; often, aggressive treatment is required. Conventional treatments such as surgery, radiation, and chemotherapy are often not enough. This is because surgery cannot completely remove the tumor, without creating a critical size which are defects larger than 2 cm that cannot be repaired by physiological mechanisms. As a result, patients often face the additional burden of radiation and chemotherapy. Scientists have been exploring new treatments, including hyperthermia-targeted therapy, polymeric nanoparticles, and stem cell therapy. This could potentially negatively impact healthy tissues and organs. MBG offers a promising alternative to chemotherapeutic agents and ions for disease treatment as it acts as a multifunctional drug delivery system (DDS). In addition, MBG can also be engineered into scaffolds to facilitate local delivery of growth factors and drugs, thus promoting the efficiency of bone healing and restoration. Therefore, the current review highlights various MBG types reported in the past decade and explores potential future paths to enhance their use in bone cancer treatment while also giving insight on the already commercially available BGs that are used in different bone-related disease.
Collapse
Affiliation(s)
- Laila Hussein
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mona Moaness
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| | - Mohamed G. Farahat
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Biotechnology Department, Faculty of Postgraduate Studies for Nanotechnology, Sheikh Zayed Branch Campus, Cairo University, Sheikh Zayed City 12588, Egypt
| | - Hanan H. Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, PO Box 12622, Cairo, Egypt
| |
Collapse
|
2
|
Amani AM, Tayebi L, Vafa E, Bazargan-Lari R, Abbasi M, Vaez A, Kamyab H, Gnanasekaran L, Chelliapan S, Azizli MJ. Innovative cancer therapy: Unleashing the potential of macromolecule-loaded mesoporous bioactive glasses for precision diagnosis and treatment. Int J Pharm 2024; 667:124847. [PMID: 39486491 DOI: 10.1016/j.ijpharm.2024.124847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/04/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024]
Abstract
Cancer continues to pose a formidable threat, claiming millions of lives annually. A beacon of hope in this battle lies in the realm of bioactive glasses, which have undergone a remarkable evolution over the past five decades. Among these, mesoporous bioactive glasses (MBGs) emerge as a dynamic subset endowed with customizable attributes such as high surface area and porosity. While holding immense promise for cancer care, the full clinical potential of MBGs remains largely unexplored. This review delves into the cutting-edge advancements in MBG technology, illuminating their pivotal role in cancer management - spanning from early detection to targeted therapeutic interventions like photothermal and photodynamic treatments. Furthermore, the molecular mechanisms underpinning MBGs' anticancer properties are elucidated, alongside an exploration of existing limitations in their application. Through this comprehensive synthesis, the significance of MBGs in revolutionizing cancer therapy is underscored, underscoring the urgent need for continued research to unlock their full potential in reshaping the landscape of cancer care.
Collapse
Affiliation(s)
- Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Institute for Engineering in Medicine, Health & Human Performance (EnMed), Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA 23529, USA
| | - Ehsan Vafa
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesam Kamyab
- Universidad UTE, Centro de Investigación en Salud Públicay Epidemiología Clínica (CISPEC), Quito 170527, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| | | | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Mohammad Javad Azizli
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Kurtuldu F, Mutlu N, Friedrich RP, Beltrán AM, Liverani L, Detsch R, Alexiou C, Galusek D, Boccaccini AR. Gallium-containing mesoporous nanoparticles influence in-vitro osteogenic and osteoclastic activity. BIOMATERIALS ADVANCES 2024; 162:213922. [PMID: 38878645 DOI: 10.1016/j.bioadv.2024.213922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Mesoporous silica nanoparticles were synthesized using a microemulsion-assisted sol-gel method, and calcium, gallium or a combination of both, were used as dopants. The influence of these metallic ions on the physicochemical properties of the nanoparticles was investigated by scanning and transmission electron microscopy, as well as N2 adsorption-desorption methods. The presence of calcium had a significant impact on the morphology and textural features of the nanoparticles. The addition of calcium increased the average diameter of the nanoparticles from 80 nm to 150 nm, while decreasing their specific surface area from 972 m2/g to 344 m2/g. The nanoparticles of all compositions were spheroidal, with a disordered mesoporous structure. An ion release study in cell culture medium demonstrated that gallium was released from the nanoparticles in a sustained manner. In direct contact with concentrations of up to 100 μg/mL of the nanoparticles, gallium-containing nanoparticles did not exhibit cytotoxicity towards pre-osteoblast MC3T3-E1 cells. Moreover, in vitro cell culture tests revealed that the addition of gallium to the nanoparticles enhanced osteogenic activity. Simultaneously, the nanoparticles disrupted the osteoclast differentiation of RAW 264.7 macrophage cells. These findings suggest that gallium-containing nanoparticles possess favorable physicochemical properties and biological characteristics, making them promising candidates for applications in bone tissue regeneration, particularly for unphysiological or pathological conditions such as osteoporosis.
Collapse
Affiliation(s)
- Fatih Kurtuldu
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nurshen Mutlu
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Seville, Spain
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; DGS S.p.A., 00142 Rome, Italy
| | - Rainer Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Section for Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Dušan Galusek
- FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; Joint Glass Centre of the IIC SAS, TnUAD and FChFT STU, FunGlass, 911 50 Trenčín, Slovakia.
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany.
| |
Collapse
|
4
|
Aguiar VCPF, Bezerra RDN, Dos Santos KW, Gonçalves IDS, Costa KJSG, Lauda DP, Campos TMB, do Prado RF, de Vasconcellos LMR, de Oliveira IR. Development and characterization of ceramic-polymeric hybrid scaffolds for bone regeneration: incorporating of bioactive glass BG-58S into PDLLA matrix. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1493-1510. [PMID: 38569077 DOI: 10.1080/09205063.2024.2334981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
In recent years, there has been a notable surge of interest in hybrid materials within the biomedical field, particularly for applications in bone repair and regeneration. Ceramic-polymeric hybrid scaffolds have shown promising outcomes. This study aimed to synthesize bioactive glass (BG-58S) for integration into a bioresorbable polymeric matrix based on PDLLA, aiming to create a bioactive scaffold featuring stable pH levels. The synthesis involved a thermally induced phase separation process followed by lyophilization to ensure an appropriate porous structure. BG-58S characterization revealed vitreous, bioactive, and mesoporous structural properties. The scaffolds were analyzed for morphology, interconnectivity, chemical groups, porosity and pore size distribution, zeta potential, pH, in vitro degradation, as well as cell viability tests, total protein content and mineralization nodule production. The PDLLA scaffold displayed a homogeneous morphology with interconnected macropores, while the hybrid scaffold exhibited a heterogeneous morphology with smaller diameter pores due to BG-58S filling. The hybrid scaffold also demonstrated a pH buffering effect on the polymer surface. In addition to structural characteristics, degradation tests indicated that by incorporating BG-58S modified the acidic degradation of the polymer, allowing for increased total protein production and the formation of mineralization nodules, indicating a positive influence on cell culture.
Collapse
Affiliation(s)
- Veronica Cristina Pêgo Fiebig Aguiar
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
| | | | - Kennedy Wallace Dos Santos
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
- Selaz - Industry and Commercialization of Biomechanical Devices, São Paulo, Brazil
| | - Isabela Dos Santos Gonçalves
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
| | | | - Diogo Ponte Lauda
- Selaz - Industry and Commercialization of Biomechanical Devices, São Paulo, Brazil
| | - Tiago Moreira Bastos Campos
- Laboratório de Plasma e Processos, Instituto Tecnológico de Aeronáutica. Laboratório, São José dos Campos. Praça Marechal Eduardo Gomes, CEP, Brasil
| | - Renata Falchete do Prado
- Institute of Science and Technology, Paulista State University, Francisco José Longo, São José dos Campos, SP, CEP, Brazil
| | | | - Ivone Regina de Oliveira
- Characterization and Processing Laboratory of Advanced Materials, Institute for Research and Development, University of Vale do Paraíba, São Paulo, Brazil
| |
Collapse
|
5
|
Lozano D, Gortazar AR, Portal-Núñez S. Osteostatin, a peptide for the future treatment of musculoskeletal diseases. Biochem Pharmacol 2024; 223:116177. [PMID: 38552853 DOI: 10.1016/j.bcp.2024.116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Nowadays, the treatment of musculoskeletal diseases represents a major challenge in the developed world. Diseases such as osteoporosis, osteoarthritis and arthritis have a high incidence and prevalence as a consequence of population aging, and they are also associated with a socioeconomic burden. Many efforts have been made to find a treatment for these diseases with various levels of success, but new approaches are still needed to deal with these pathologies. In this context, one peptide derived for the C-terminal extreme of the Parathormone related Peptide (PTHrP) called Osteostatin can be useful to treat musculoskeletal diseases. This pentapeptide (TRSAW) has demonstrated both in different in vitro and in vivo models, its role as a molecule with anti-resorptive, anabolic, anti-inflammatory, and anti-antioxidant properties. Our aim with this work is to review the Osteostatin main features, the knowledge of its mechanisms of action as well as its possible use for the treatment of osteoporosis, bone regeneration and fractures and against arthritis given its anti-inflammatory properties.
Collapse
Affiliation(s)
- Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Hospital 12 de Octubre (i+12), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Arancha R Gortazar
- Grupo de Fisiopatología Ósea, Departamento de Ciencias Médicas Básicas, Instituto de Medicina Aplicada de la Universidad San Pablo-CEU, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Urbanización Montepríncipe s/n, 28925 Madrid, Spain
| | - Sergio Portal-Núñez
- Grupo de Fisiopatología Ósea, Departamento de Ciencias Médicas Básicas, Instituto de Medicina Aplicada de la Universidad San Pablo-CEU, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Urbanización Montepríncipe s/n, 28925 Madrid, Spain.
| |
Collapse
|
6
|
Sánchez-Salcedo S, Heras C, Lozano D, Vallet-Regí M, Salinas AJ. Nanodevices based on mesoporous glass nanoparticles enhanced with zinc and curcumin to fight infection and regenerate bone. Acta Biomater 2023; 166:655-669. [PMID: 37142110 DOI: 10.1016/j.actbio.2023.04.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023]
Abstract
Nanotechnology-based approaches are emerging as promising strategies to treat different bone pathologies such as infection, osteoporosis or cancer. To this end, several types of nanoparticles are being investigated, including those based on mesoporous bioactive glasses (MGN) which exhibit exceptional structural and textural properties and whose biological behaviour can be improved by including therapeutic ions in their composition and loading them with biologically active substances. In this study, the bone regeneration capacity and antibacterial properties of MGNs in the SiO2-CaO-P2O5 system were evaluated before and after being supplemented with 2.5% or 4% ZnO and loaded with curcumin. in vitro studies with preosteoblastic cells and mesenchymal stem cells allowed determining the biocompatible MGNs concentrations range. Moreover, the bactericidal effect of MGNs with zinc and curcumin against S. aureus was demonstrated, as a significant reduction of bacterial growth was detected in both planktonic and sessile states and the degradation of a pre-formed bacterial biofilm in the presence of the nanoparticles also occurred. Finally, MC3T3-E1 preosteoblastic cells and S. aureus were co-cultured to investigate competitive colonisation between bacteria and cells in the presence of the MGNs. Preferential colonisation and survival of osteoblasts and effective inhibition of both bacterial adhesion and biofilm formation of S. aureus in the co-culture system were detected. Our study demonstrated the synergistic antibacterial effect of zinc ions combined with curcumin and the enhancement of the bone regeneration characteristics of MGNs containing zinc and curcumin to obtain systems capable of simultaneously promoting bone regeneration and controlling infection. STATEMENT OF SIGNIFICANCE: In search of a new approach to regenerate bone and fight infections, a nanodevice based on mesoporous SiO2-CaO-P2O5 glass nanoparticles enriched with Zn2+ ions and loaded with curcumin was designed. This study demonstrates the synergistic effect of the simultaneous presence of zinc ions and curcumin in the nanoparticles that significantly reduces the bacterial growth in planktonic state and is capable to degrade pre-formed S. aureus biofilms whereas the nanosystem exhibits a cytocompatible behaviour in the presence of preosteoblasts and mesenchymal stem cells. Based on these results, the designed nanocarrier represents a promising alternative for the treatment of acute and chronic infections in bone tissues, while avoiding the significant current problem of bacterial resistance to antibiotics.
Collapse
Affiliation(s)
- Sandra Sánchez-Salcedo
- Dpt. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de octubre, imas12; Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - Clara Heras
- Dpt. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de octubre, imas12; Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Daniel Lozano
- Dpt. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de octubre, imas12; Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - María Vallet-Regí
- Dpt. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de octubre, imas12; Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Antonio J Salinas
- Dpt. Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de octubre, imas12; Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
7
|
Chen H, Qiu X, Xia T, Li Q, Wen Z, Huang B, Li Y. Mesoporous Materials Make Hydrogels More Powerful in Biomedicine. Gels 2023; 9:gels9030207. [PMID: 36975656 PMCID: PMC10048667 DOI: 10.3390/gels9030207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Scientists have been attempting to improve the properties of mesoporous materials and expand their application since the 1990s, and the combination with hydrogels, macromolecular biological materials, is one of the research focuses currently. Uniform mesoporous structure, high specific surface area, good biocompatibility, and biodegradability make the combined use of mesoporous materials more suitable for the sustained release of loaded drugs than single hydrogels. As a joint result, they can achieve tumor targeting, tumor environment stimulation responsiveness, and multiple therapeutic platforms such as photothermal therapy and photodynamic therapy. Due to the photothermal conversion ability, mesoporous materials can significantly improve the antibacterial ability of hydrogels and offer a novel photocatalytic antibacterial mode. In bone repair systems, mesoporous materials remarkably strengthen the mineralization and mechanical properties of hydrogels, aside from being used as drug carriers to load and release various bioactivators to promote osteogenesis. In hemostasis, mesoporous materials greatly elevate the water absorption rate of hydrogels, enhance the mechanical strength of the blood clot, and dramatically shorten the bleeding time. As for wound healing and tissue regeneration, incorporating mesoporous materials can be promising for enhancing vessel formation and cell proliferation of hydrogels. In this paper, we introduce the classification and preparation methods of mesoporous material-loaded composite hydrogels and highlight the applications of composite hydrogels in drug delivery, tumor therapy, antibacterial treatment, osteogenesis, hemostasis, and wound healing. We also summarize the latest research progress and point out future research directions. After searching, no research reporting these contents was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (B.H.); (Y.L.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (B.H.); (Y.L.)
| |
Collapse
|
8
|
Liu J, Du G, Yu H, Zhang X, Chen T. Synthesis of Hierarchically Porous Bioactive Glass and Its Mineralization Activity. Molecules 2023; 28:molecules28052224. [PMID: 36903467 PMCID: PMC10005475 DOI: 10.3390/molecules28052224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Mesoporous bioactive glass is a promising biomaterial for bone tissue engineering due to its good biocompatibility and bioactivity. In this work, we synthesized a hierarchically porous bioactive glass (HPBG) using polyelectrolyte-surfactant mesomorphous complex as template. Through the interaction with silicate oligomers, calcium and phosphorus sources were successfully introduced into the synthesis of hierarchically porous silica, and HPBG with ordered mesoporous and nanoporous structures was obtained. The morphology, pore structure and particle size of HPBG can be controlled by adding block copolymer as co-template or adjusting the synthesis parameters. The ability to induce hydroxyapatite deposition in simulated body fluids (SBF) demonstrated the good in vitro bioactivity of HPBG. Overall, this work provides a general method for the synthesis of hierarchically porous bioactive glasses.
Collapse
|
9
|
Sánchez-Salcedo S, García A, González-Jiménez A, Vallet-Regí M. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Acta Biomater 2023; 155:654-666. [PMID: 36332875 DOI: 10.1016/j.actbio.2022.10.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
The development of new biomaterials for bone tissue regeneration with high bioactivity abilities and antibacterial properties is being intensively investigated. We have synthesized nanocomposites formed by mesoporous bioactive glasses (MBGs) in the ternary SiO2, CaO and P2O5 system doped with metallic silver nanoparticles (AgNPs) that were homogenously embedded in the MBG matrices. Ag/MBG nanocomposites have been directly synthesized and silver species were spontaneously reduced to metallic AgNPs by high temperatures (700 °C) obtained of last MBG synthesis step. Three-dimensional silver-containing mesoporous bioactive glass scaffolds were fabricated showing uniformly interconnected ultrapores, macropores and mesopores. The manufacture method consisted of a combination of a single-step sol-gel route in the mesostructure directing agent (P123) presence and a biomacromolecular polymer such as (hydroxypropyl)methyl cellulose (HPMC) as the macrostructure template, followed by rapid prototyping (RP) technique. Biological properties of Ag/MBG nanocomposites were evaluated by MC3T3-E1 preosteoblastic cells culture tests and bacterial (E. coli and S. aureus) assays. The results showed that the MC3T3-E1 cells morphology was not affected while preosteoblastic proliferation decreased when the presence of silver increased. Antimicrobial assays indicated that bacterial growth inhibition and biofilm destruction were directly proportional to the increased presence of AgNPs in the MBG matrices. Furthermore, in vitro co-culture of MC3T3-E1 cells and S. aureus bacteria confirmed that AgNPs presence was necessary for antibacterial activity, and AgNPs slightly affected cell proliferation parameters. Therefore, 3D printed scaffolds with hierarchical pore structure and high antimicrobial capacity have potential applications in bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study combines three key scientific aspects for bone tissue engineering: (i) materials with high bioactivity to repair and regenerate bone tissue that (ii) contain antibacterial agents to reduce the infection risk (iii) in the form of three-dimensional scaffolds with hierarchical porosity. Innovative methodology is described here: sol-gel method, which is employed to obtain mesoporous bioactive glass matrices doped with metallic silver nanoparticles where different polymer templates facilitate the different size scales presence, and rapid prototyping technique that provides ultra-large macroporosity according to computer-aided design. The dual scaffolds obtained are biocompatible and deliver active doses of silver capable of combating bone infections, which represent one of the most serious complications associated to surgical treatments of bone diseases and fractures.
Collapse
Affiliation(s)
- Sandra Sánchez-Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Ana García
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - Adela González-Jiménez
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
10
|
Achievements in Mesoporous Bioactive Glasses for Biomedical Applications. Pharmaceutics 2022; 14:pharmaceutics14122636. [PMID: 36559130 PMCID: PMC9782017 DOI: 10.3390/pharmaceutics14122636] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Nowadays, mesoporous bioactive glasses (MBGs) are envisaged as promising candidates in the field of bioceramics for bone tissue regeneration. This is ascribed to their singular chemical composition, structural and textural properties and easy-to-functionalize surface, giving rise to accelerated bioactive responses and capacity for local drug delivery. Since their discovery at the beginning of the 21st century, pioneering research efforts focused on the design and fabrication of MBGs with optimal compositional, textural and structural properties to elicit superior bioactive behavior. The current trends conceive MBGs as multitherapy systems for the treatment of bone-related pathologies, emphasizing the need of fine-tuning surface functionalization. Herein, we focus on the recent developments in MBGs for biomedical applications. First, the role of MBGs in the design and fabrication of three-dimensional scaffolds that fulfil the highly demanding requirements for bone tissue engineering is outlined. The different approaches for developing multifunctional MBGs are overviewed, including the incorporation of therapeutic ions in the glass composition and the surface functionalization with zwitterionic moieties to prevent bacterial adhesion. The bourgeoning scientific literature on MBGs as local delivery systems of diverse therapeutic cargoes (osteogenic/antiosteoporotic, angiogenic, antibacterial, anti-inflammatory and antitumor agents) is addressed. Finally, the current challenges and future directions for the clinical translation of MBGs are discussed.
Collapse
|
11
|
Jiménez-Holguín J, Sánchez-Salcedo S, Cicuéndez M, Vallet-Regí M, Salinas AJ. Cu-Doped Hollow Bioactive Glass Nanoparticles for Bone Infection Treatment. Pharmaceutics 2022; 14:pharmaceutics14040845. [PMID: 35456679 PMCID: PMC9027665 DOI: 10.3390/pharmaceutics14040845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
In search of new approaches to treat bone infection and prevent drug resistance development, a nanosystem based on hollow bioactive glass nanoparticles (HBGN) of composition 79.5SiO2-(18-x)CaO-2.5P2O5-xCuO (x = 0, 2.5 or 5 mol-% CuO) was developed. The objective of the study was to evaluate the capacity of the HBGN to be used as a nanocarrier of the broad-spectrum antibiotic danofloxacin and source of bactericidal Cu2+ ions. Core-shell nanoparticles with specific surface areas close to 800 m2/g and pore volumes around 1 cm3/g were obtained by using hexadecyltrimethylammonium bromide (CTAB) and poly(styrene)-block-poly(acrylic acid) (PS-b-PAA) as structure-directing agents. Flow cytometry studies showed the cytocompatibility of the nanoparticles in MC3T3-E1 pre-osteoblastic cell cultures. Ion release studies confirmed the release of non-cytotoxic concentrations of Cu2+ ions within the therapeutic range. Moreover, it was shown that the inclusion of copper in the system resulted in a more gradual release of danofloxacin that was extended over one week. The bactericidal activity of the nanosystem was evaluated with E. coli and S. aureus strains. Nanoparticles with copper were not able to reduce bacterial viability by themselves and Cu-free HBGN failed to reduce bacterial growth, despite releasing higher antibiotic concentrations. However, HBGN enriched with copper and danofloxacin drastically reduced bacterial growth in sessile, planktonic and biofilm states, which was attributed to a synergistic effect between the action of Cu2+ ions and danofloxacin. Therefore, the nanosystem here investigated is a promising candidate as an alternative for the local treatment of bone infections.
Collapse
Affiliation(s)
- Javier Jiménez-Holguín
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, Imas12, 28040 Madrid, Spain; (J.J.-H.); (M.C.); (M.V.-R.)
| | - Sandra Sánchez-Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, Imas12, 28040 Madrid, Spain; (J.J.-H.); (M.C.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (S.S.-S.); (A.J.S.)
| | - Mónica Cicuéndez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, Imas12, 28040 Madrid, Spain; (J.J.-H.); (M.C.); (M.V.-R.)
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, Imas12, 28040 Madrid, Spain; (J.J.-H.); (M.C.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
| | - Antonio J. Salinas
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, UCM, Instituto de Investigación Hospital 12 de Octubre, Imas12, 28040 Madrid, Spain; (J.J.-H.); (M.C.); (M.V.-R.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (S.S.-S.); (A.J.S.)
| |
Collapse
|
12
|
Silver, Copper, Magnesium and Zinc Contained Electroactive Mesoporous Bioactive S53P4 Glass–Ceramics Nanoparticle for Bone Regeneration: Bioactivity, Biocompatibility and Antibacterial Activity. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02295-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|