1
|
Garrosa-Miró Y, Muñoz-Moreno L, D'Errico G, Tancredi M, Carmena MJ, Ottaviani MF, Ortega P, de la Mata J. Ruthenium(II) and copper(II) polyamine complexes as promising antitumor agents: synthesis, characterization, and biological evaluation. Dalton Trans 2025; 54:7506-7521. [PMID: 40232207 DOI: 10.1039/d4dt03377a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Ruthenium or copper complexes have emerged as some of the most promising alternatives for the treatment of many types of cancer. They have enhanced activity, greater selectivity and reduced side effects compared to their predecessors, cisplatin and its analogues. On the other hand, polyamine metabolism is often deregulated in cancer, leading to increased intracellular concentrations of polyamines that promote cell proliferation, differentiation, and tumorigenesis. In the present work, we report the synthesis and characterization of a family of mono- and binuclear Ru(II) and Cu(II) complexes functionalized with polyamine ligands derived from norspermine. The computer-aided analysis of the electron paramagnetic resonance (EPR) spectra provided magnetic and dynamic parameters, which helped to identify prevalent Cu-N2 coordination in a partially distorted square planar geometry of the Cu(II) complexes and the flexibility of the complexes in solution, slowed down by both the complex size and the hydrophobic interactions between chains. In vitro studies focused on advanced prostate cancer have demonstrated that these new metal complexes present a high level of cytotoxicity against PC3 cells. Furthermore, these metallic compounds exhibit the ability to inhibit cell adhesion and migration while reducing intracellular reactive oxygen species levels, which are key factors of metastasis.
Collapse
Affiliation(s)
- Yoel Garrosa-Miró
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain
| | - Laura Muñoz-Moreno
- Universidad de Alcalá, Department of Biology of Systems, Biochemistry and Molecular Biology Unit, Madrid, Spain
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, Complesso Universitario di Monte Sant'Angelo, I-80126 Naples, Italy
| | - Matilde Tancredi
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, Complesso Universitario di Monte Sant'Angelo, I-80126 Naples, Italy
| | - M Jose Carmena
- Universidad de Alcalá, Department of Biology of Systems, Biochemistry and Molecular Biology Unit, Madrid, Spain
| | - M Francesca Ottaviani
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via Saffi 2, I-61029 Urbino, Italy
| | - Paula Ortega
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain
| | - Javier de la Mata
- Universidad de Alcalá, Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
- Institute "Ramón y Cajal" for Health Research (IRYCIS), Spain
| |
Collapse
|
2
|
Silva JG, Tavares L, Belew GD, Rodrigues JA, Araújo R, Gil AM, Jones JG. Impact of High-Fat Diet-induced Metabolic Dysfunction-associated Steatotic Liver Disease on Heart, Kidney, and Skeletal Muscle Metabolomes in Wild-Type Mice. J Proteome Res 2025; 24:2491-2504. [PMID: 40222045 DOI: 10.1021/acs.jproteome.5c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) can be recapitulated in mice fed a high-fat diet. The development of MASLD and the diet per se can both perturb metabolism in key extrahepatic tissues such as the heart, kidney, and skeletal muscle. To date, these alterations have not been well described in this animal model of diet-induced MASLD. Methodology: Male C57BL/6J mice were fed either standard (SC, n = 12) or high-fat chow (HF, n = 11) for 18 weeks. Metabolites were extracted from the heart, kidney, and skeletal muscle and analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy, along with multivariate and univariate statistical analyses. Results: Kidney metabolite profiles exhibited the largest differences between HF and SC diets, followed by those of skeletal muscle and then the heart. Some alterations were common across all tissues, namely decreased trimethylamine and elevated levels of linoleic acid and polyunsaturated fatty acids in HF compared to SC (p < 0.05 for all three metabolites). Overall, the metabolite variations were consistent with shifts in carbohydrate and lipid substrate selection for oxidation, increased tissue stress in the heart and kidneys, and altered choline metabolism. These findings may serve as additional important descriptors of MASLD onset and progression.
Collapse
Affiliation(s)
- João G Silva
- Institute for Interdisciplinary Research (III-UC), Centre for Innovative Biomedicine and Biotechnology (CIBB), Metabolism, Aging and Disease, University of Coimbra, Cantanhede 3060-197, Portugal
- Institute for Interdisciplinary Research (III-UC), Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, Coimbra 3030-789, Portugal
- University School Vasco da Gama (EUVG), Vasco da Gama Research Center (CIVG), Coimbra 3020-210, Portugal
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Ludgero Tavares
- Institute for Interdisciplinary Research (III-UC), Centre for Innovative Biomedicine and Biotechnology (CIBB), Metabolism, Aging and Disease, University of Coimbra, Cantanhede 3060-197, Portugal
- University School Vasco da Gama (EUVG), Vasco da Gama Research Center (CIVG), Coimbra 3020-210, Portugal
| | - Getachew D Belew
- Institute for Interdisciplinary Research (III-UC), Centre for Innovative Biomedicine and Biotechnology (CIBB), Metabolism, Aging and Disease, University of Coimbra, Cantanhede 3060-197, Portugal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, United States
| | - João A Rodrigues
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Rita Araújo
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - John G Jones
- Institute for Interdisciplinary Research (III-UC), Centre for Innovative Biomedicine and Biotechnology (CIBB), Metabolism, Aging and Disease, University of Coimbra, Cantanhede 3060-197, Portugal
| |
Collapse
|
3
|
Carneiro T, Batista de Carvalho ALM, Vojtek M, Laginha RC, Marques MPM, Diniz C, Gil AM. Pd 2Spermine as an Alternative Therapeutics for Cisplatin-Resistant Triple-Negative Breast Cancer. J Med Chem 2024; 67:6839-6853. [PMID: 38590144 PMCID: PMC11056979 DOI: 10.1021/acs.jmedchem.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Cisplatin (cDDP) resistance is a matter of concern in triple-negative breast cancer therapeutics. We measured the metabolic response of cDDP-sensitive (S) and -resistant (R) MDA-MB-231 cells to Pd2Spermine(Spm) (a possible alternative to cDDP) compared to cDDP to investigate (i) intrinsic response/resistance mechanisms and (ii) the potential cytotoxic role of Pd2Spm. Cell extracts were analyzed by untargeted nuclear magnetic resonance metabolomics, and cell media were analyzed for particular metabolites. CDDP-exposed S cells experienced enhanced antioxidant protection and small deviations in the tricarboxylic acid cycle (TCA), pyrimidine metabolism, and lipid oxidation (proposed cytotoxicity signature). R cells responded more strongly to cDDP, suggesting a resistance signature of activated TCA cycle, altered AMP/ADP/ATP and adenine/uracil fingerprints, and phospholipid biosynthesis (without significant antioxidant protection). Pd2Spm impacted more markedly on R/S cell metabolisms, inducing similarities to cDDP/S cells (probably reflecting high cytotoxicity) and strong additional effects indicative of amino acid depletion, membrane degradation, energy/nucleotide adaptations, and a possible beneficial intracellular γ-aminobutyrate/glutathione-mediated antioxidant mechanism.
Collapse
Affiliation(s)
- Tatiana
J. Carneiro
- Department
of Chemistry and CICECO − Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Molecular
Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- LAQV/REQUIMTE,
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of
Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | | | - Martin Vojtek
- LAQV/REQUIMTE,
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of
Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Raquel C. Laginha
- Molecular
Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Maria Paula M. Marques
- Molecular
Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department
of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE,
Laboratory of Pharmacology, Department of Drug Sciences, Faculty of
Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Ana M. Gil
- Department
of Chemistry and CICECO − Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Silva JD, Marques J, Santos IP, Batista de Carvalho ALM, Martins CB, Laginha RC, Batista de Carvalho LAE, Marques MPM. A Non-Conventional Platinum Drug against a Non-Small Cell Lung Cancer Line. Molecules 2023; 28:molecules28041698. [PMID: 36838683 PMCID: PMC9964417 DOI: 10.3390/molecules28041698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
A dinuclear Pt(II) complex with putrescine as bridging polyamine ligand ([Pt2Put2(NH3)4]Cl4) was synthesized and assessed as to its potential anticancer activity against a human non-small cell lung cancer line (A549), as well as towards non-cancer cells (BEAS-2B). This effect was evaluated through in vitro cytotoxicity assays (MTT and SRB) coupled to microFTIR and microRaman spectroscopies, the former delivering information on growth-inhibiting and cytotoxic abilities while the latter provided very specific information on the metabolic impact of the metal agent (at the sub-cellular level). Regarding cancer cells, a major impact of [Pt2Put2(NH3)4]Cl4 was evidenced on cellular proteins and lipids, as compared to DNA, particularly via the Amide I and Amide II signals. The effect of the chelate on non-malignant cells was lower than on malignant ones, evidencing a promising low toxicity towards healthy cells.
Collapse
Affiliation(s)
- Jéssica D. Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Joana Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Inês P. Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | | | - Clara B. Martins
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Raquel C. Laginha
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Luís A. E. Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-854-462
| | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
5
|
Carneiro TJ, Vojtek M, Gonçalves-Monteiro S, Batista de Carvalho ALM, Marques MPM, Diniz C, Gil AM. Effect of Pd 2Spermine on Mice Brain-Liver Axis Metabolism Assessed by NMR Metabolomics. Int J Mol Sci 2022; 23:13773. [PMID: 36430252 PMCID: PMC9693583 DOI: 10.3390/ijms232213773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Cisplatin (cDDP)-based chemotherapy is often limited by severe deleterious effects (nephrotoxicity, hepatotoxicity and neurotoxicity). The polynuclear palladium(II) compound Pd2Spermine (Pd2Spm) has emerged as a potential alternative drug, with favorable pharmacokinetic/pharmacodynamic properties. This paper reports on a Nuclear Magnetic Resonance metabolomics study to (i) characterize the response of mice brain and liver to Pd2Spm, compared to cDDP, and (ii) correlate brain-liver metabolic variations. Multivariate and correlation analysis of the spectra of polar and lipophilic brain and liver extracts from an MDA-MB-231 cell-derived mouse model revealed a stronger impact of Pd2Spm on brain metabolome, compared to cDDP. This was expressed by changes in amino acids, inosine, cholate, pantothenate, fatty acids, phospholipids, among other compounds. Liver was less affected than brain, with cDDP inducing more metabolite changes. Results suggest that neither drug induces neuronal damage or inflammation, and that Pd2Spm seems to lead to enhanced brain anti-inflammatory and antioxidant mechanisms, regulation of brain bioactive metabolite pools and adaptability of cell membrane characteristics. The cDDP appears to induce higher extension of liver damage and an enhanced need for liver regeneration processes. This work demonstrates the usefulness of untargeted metabolomics in evaluating drug impact on multiple organs, while confirming Pd2Spm as a promising replacement of cDDP.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Martin Vojtek
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | | | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Ana M. Gil
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Marques MPM, Santos IP, Batista de Carvalho ALM, Mamede AP, Martins CB, Figueiredo P, Sarter M, Sakai VG, Batista de Carvalho LAE. Water dynamics in human cancer and non-cancer tissues. Phys Chem Chem Phys 2022; 24:15406-15415. [PMID: 35704895 DOI: 10.1039/d2cp00621a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Normal-to-malignant transformation is a poorly understood process associated with cellular biomechanical properties. These are strongly dependent on the dynamical behaviour of water, known to play a fundamental role in normal cellular activity and in the maintenance of the three-dimensional architecture of the tissue and the functional state of biopolymers. In this study, quasi-elastic neutron scattering was used to probe the dynamical behaviour of water in human cancer specimens and their respective surrounding normal tissue from breast and tongue, as an innovative approach for identifying particular features of malignancy. This methodology has been successfully used by the authors in human cells and was the first study of human tissues by neutron scattering techniques. A larger flexibility was observed for breast versus tongue tissues. Additionally, different dynamics were found for malignant and non-malignant specimens, depending on the tissue: higher plasticity for breast invasive cancer versus the normal, and an opposite effect for tongue. The data were interpreted in the light of two different water populations within the samples: one displaying bulk-like dynamics (extracellular and intracellular/cytoplasmic) and another with constrained flexibility (extracellular/interstitial and intracellular/hydration layers).
Collapse
Affiliation(s)
- M P M Marques
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal. .,University of Coimbra, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - I P Santos
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - A L M Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - A P Mamede
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - C B Martins
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - P Figueiredo
- Oncology Institute of Coimbra Francisco Gentil, 3000-075 Coimbra, Portugal
| | - M Sarter
- ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK
| | - V García Sakai
- ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK
| | - L A E Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal.
| |
Collapse
|
7
|
Ghini V, Magherini F, Massai L, Messori L, Turano P. Comparative NMR metabolomics of the responses of A2780 human ovarian cancer cells to clinically established Pt-based drugs. Dalton Trans 2022; 51:12512-12523. [DOI: 10.1039/d2dt02068h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt-based drugs play a very important role in current cancer treatments; yet, their cellular and mechanistic aspects are not fully understood. NMR metabolomics provides a powerful tool to investigate the...
Collapse
|