1
|
Huang Y, Verduijn J, Coenye T, Liu P, Skirtach AG, Parakhonskiy BV. High-load, sustained-release antibacterial composite particles based on modified vaterite coated with quaternary ammonium chitosan and aldehyde hyaluronic acid for controlled drug delivery systems. Int J Biol Macromol 2025; 305:141047. [PMID: 39965699 DOI: 10.1016/j.ijbiomac.2025.141047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Porous vaterite particles exhibit good biocompatibility, degradability, and favorable physical and chemical properties, making them promising candidates for drug carriers. However, challenges such as low loading capacity, burst release effect and limited antibacterial properties hinder their practical applications. Herein, submicron vaterite particles were synthesized at low temperature and modified by stearic acid, and the resulting modified vaterite particles (Vc) possess exceptional loading capacity towards a typical anticancer drug - doxorubicin. Quaternary ammonium chitosan (QCS) with antibacterial properties was synthesized by chemically modifying chitosan and was coated onto the surface of Vc/Dox through electrostatic adsorption. Ag2CO3 nanoparticles were uniformly deposited on the surface of Vc/Dox/QCS through the reaction between Ag+ and CO32-, while a small amount of Ag nanoparticles was generated through the reduction of adsorbed Ag+, which was attributed to the reducing properties of -NH2 and aldehyde groups. Aldehyde functionalized hyaluronic acid was adsorbed on the outermost layer as a targeting polymer with the ability to induce cellular interaction. The composite (Vc/Dox/QCS/Ag/AHA) showed excellent sustained release and pH responsiveness, and the presence of QCS, Ag, and Ag2CO3 nanoparticles provided good antibacterial properties for the composite particles. In addition, cell experiments confirmed the almost no-cytotoxic properties and effective cellular interaction of the composite particles treated by low Ag+ concentration solutions. Compared with various micro-nanoparticles, this study ingeniously employed multifunctional polymers, Layer-by-Layer (LbL) technique, and modified inorganic nanoparticles to address the limitations of vaterite particles, paving the way for enhanced drug delivery applications and inspiring the development of multifunctional targeted drug capsules.
Collapse
Affiliation(s)
- Yanqi Huang
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Joost Verduijn
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Tom Coenye
- LPM Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Pengfei Liu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Andre G Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Lim JX, Yong YK, Dewi FRP, Chan SY, Lim V. Nanoscale strategies: doxorubicin resistance challenges and enhancing cancer therapy with advanced nanotechnological approaches. Drug Deliv Transl Res 2025:10.1007/s13346-025-01790-3. [PMID: 39955406 DOI: 10.1007/s13346-025-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Doxorubicin (DOX), an anthracycline, is widely used in cancer treatment by interfering RNA and DNA synthesis. Its broad antitumour spectrum makes it an effective therapy for a wide array of cancers. However, the prevailing drug-resistant cancer has proven to be a significant drawback to the success of the conventional chemotherapy regime and DOX has been identified as a major hurdle. Furthermore, the clinical application of DOX has been limited by rapid breakdown, increased toxicity, and decreased half-time life, highlighting an urgent need for more innovative delivery methods. Although advancements have been made, achieving a complete cure for cancer remains elusive. The development of nanoparticles offers a promising avenue for the precise delivery of DOX into the tumour microenvironment, aiming to increase the drug concentration at the target site while reducing side effects. Despite the good aspects of this technology, the classical nanoparticles struggle with issues such as premature drug leakage, low bioavailability, and insufficient penetration into tumours due to an inadequate enhanced permeability and retention (EPR) effect. Recent advancements have focused on creating stimuli-responsive nanoparticles and employing various chemosensitisers, including natural compounds and nucleic acids, fortifying the efficacy of DOX against resistant cancers. The efforts to refine nanoparticle targeting precision to improve DOX delivery are reviewed. This includes using receptor-mediated endocytosis systems to maximise the internalisation of drugs. The potential benefits and drawbacks of these novel techniques constitute significant areas of ongoing study, pointing to a promising path forward in addressing the challenges posed by drug-resistant cancers.
Collapse
Affiliation(s)
- Jian Xin Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Siok Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Penang, Malaysia.
| |
Collapse
|
3
|
Delgado-Pujol EJ, Martínez G, Casado-Jurado D, Vázquez J, León-Barberena J, Rodríguez-Lucena D, Torres Y, Alcudia A, Begines B. Hydrogels and Nanogels: Pioneering the Future of Advanced Drug Delivery Systems. Pharmaceutics 2025; 17:215. [PMID: 40006582 PMCID: PMC11859140 DOI: 10.3390/pharmaceutics17020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Conventional drug delivery approaches, including tablets and capsules, often suffer from reduced therapeutic effectiveness, largely attributed to inadequate bioavailability and difficulties in ensuring patient adherence. These challenges have driven the development of advanced drug delivery systems (DDS), with hydrogels and especially nanogels emerging as promising materials to overcome these limitations. Hydrogels, with their biocompatibility, high water content, and stimuli-responsive properties, provide controlled and targeted drug release. This review explores the evolution, properties, and classifications of hydrogels versus nanogels and their applications in drug delivery, detailing synthesis methods, including chemical crosslinking, physical self-assembly, and advanced techniques such as microfluidics and 3D printing. It also examines drug-loading mechanisms (e.g., physical encapsulation and electrostatic interactions) and release strategies (e.g., diffusion, stimuli-responsive, and enzyme-triggered). These gels demonstrate significant advantages in addressing the limitations of traditional DDS, offering improved drug stability, sustained release, and high specificity. Their adaptability extends to various routes of administration, including topical, oral, and injectable forms, while emerging nanogels further enhance therapeutic targeting through nanoscale precision and stimuli responsiveness. Although hydrogels and nanogels have transformative potential in personalized medicine, challenges remain in scalable manufacturing, regulatory approval, and targeted delivery. Future strategies include integrating biosensors for real-time monitoring, developing dual-stimuli-responsive systems, and optimizing surface functionalization for specificity. These advancements aim to establish hydrogels and nanogels as cornerstones of next-generation therapeutic solutions, revolutionizing drug delivery, and paving the way for innovative, patient-centered treatments.
Collapse
Affiliation(s)
- Ernesto J. Delgado-Pujol
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Guillermo Martínez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - David Casado-Jurado
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Juan Vázquez
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Jesús León-Barberena
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - David Rodríguez-Lucena
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (E.J.D.-P.); (G.M.); (D.C.-J.); (D.R.-L.); (A.A.)
| |
Collapse
|
4
|
Ghosh D, Khan A, Bag S, Mallick AI, De P. Dual stimuli-responsive biotinylated polymer-drug conjugate for dual drug delivery. J Mater Chem B 2024; 12:11826-11840. [PMID: 39439369 DOI: 10.1039/d4tb01762e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stimuli-responsive nanoscale polymer-drug conjugates are one of the most promising alternatives in the realm of advanced therapeutics, rendering several characteristics such as spatio-temporal control over drug release, reduced off-target toxicity, enhanced bioavailability, and longer blood circulation time of the drug. Fostered by the aforementioned conceptualization, our quest to develop an ideal polymer-drug conjugate has originated the present investigation of developing a reactive oxygen species (ROS) and esterase-responsive self-assembled polymer-drug (chlorambucil, CBL) conjugate with biotin pendants (DP2) for cancer cell targeting, surrogating another antineoplastic drug, doxorubicin (DOX) via physical encapsulation (DP2@DOX). The ROS and esterase trigger not only released the covalently stitched CBL but also resulted in DOX release by dismantling the amphiphilic balance of the nanoaggregates. Biotinylation-mediated enhancement of cellular uptake of DP2@DOX was reflected in the synergistic anticancer activity of both the drugs (CBL and DOX) in HeLa cells (biotin receptor-positive cells) compared to HEK 293T cells (biotin receptor-negative cells). Furthermore, the selective internalization of the fluorophore-tagged DOX-loaded polymer (DP4@DOX) in HeLa cells compared to HEK 293T cells was confirmed by confocal microscopy and flow cytometry. In summary, the present investigation demonstrates a state-of-the-art self-assembled polymer-drug conjugate as a next-generation dual stimuli-responsive drug delivery vehicle.
Collapse
Affiliation(s)
- Desoshree Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Sagar Bag
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.
| |
Collapse
|
5
|
Zhang X, Zhang H, Liu X, Wang J, Li S, Gao P. Review and Future Perspectives of Stimuli-Responsive Bridged Polysilsesquioxanes in Controlled Release Applications. Polymers (Basel) 2024; 16:3163. [PMID: 39599255 PMCID: PMC11598018 DOI: 10.3390/polym16223163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Bridged polysilsesquioxanes (BPSs) are emerging biomaterials composed of synergistic inorganic and organic components. These materials have been investigated as ideal carriers for therapeutic and diagnostic systems for their favorable properties, including excellent biocompatibility, physiological inertia, tunable size and morphology, and their extensive design flexibility of functional organic groups to satisfy diverse application requirements. Stimuli-responsive BPSs can be activated by both endogenous and exogenous stimuli, offering a precise, safe, and effective platform for the controlled release of various targeted therapeutics. This review aims to provide a comprehensive overview of stimuli-responsive BPSs, focusing on their synthetic strategies, biocompatibility, and biodegradability, while critically assessing their capabilities for controlled release in response to specific stimuli. Furthermore, practical suggestions and future perspectives for the design and development of BPSs are presented. This review highlights the significant role of stimuli-responsive BPSs in advancing biomedical research.
Collapse
Affiliation(s)
- Xin Zhang
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Han Zhang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Xiaonan Liu
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Jiao Wang
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Shifeng Li
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (H.Z.); (J.W.); (S.L.)
| | - Peng Gao
- Shandong Key Laboratory of Digital Traditional Chinese Medicine, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| |
Collapse
|
6
|
Zhang Y, Lei F, Qian W, Zhang C, Wang Q, Liu C, Ji H, Liu Z, Wang F. Designing intelligent bioorthogonal nanozymes: Recent advances of stimuli-responsive catalytic systems for biomedical applications. J Control Release 2024; 373:929-951. [PMID: 39097195 DOI: 10.1016/j.jconrel.2024.07.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Bioorthogonal nanozymes have emerged as a potent tool in biomedicine due to their unique ability to perform enzymatic reactions that do not interfere with native biochemical processes. The integration of stimuli-responsive mechanisms into these nanozymes has further expanded their potential, allowing for controlled activation and targeted delivery. As such, intelligent bioorthogonal nanozymes have received more and more attention in developing therapeutic approaches. This review provides a comprehensive overview of the recent advances in the development and application of stimuli-responsive bioorthogonal nanozymes. By summarizing the design outlines for anchoring bioorthogonal nanozymes with stimuli-responsive capability, this review seeks to offer valuable insights and guidance for the rational design of these remarkable materials. This review highlights the significant progress made in this exciting field with different types of stimuli and the various applications. Additionally, it also examines the current challenges and limitations in the design, synthesis, and application of these systems, and proposes potential solutions and research directions. This review aims to stimulate further research toward the development of more efficient and versatile stimuli-responsive bioorthogonal nanozymes for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fang Lei
- School of Public Health, Nantong University, Nantong 226019, China
| | - Wanlong Qian
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Chengfeng Zhang
- Institute of Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chaoqun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong 226019, China
| | - Zhengwei Liu
- Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York 10029, USA.
| | - Faming Wang
- School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
7
|
Balcerak-Woźniak A, Dzwonkowska-Zarzycka M, Kabatc-Borcz J. A Comprehensive Review of Stimuli-Responsive Smart Polymer Materials-Recent Advances and Future Perspectives. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4255. [PMID: 39274645 PMCID: PMC11396725 DOI: 10.3390/ma17174255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
Today, smart materials are commonly used in various fields of science and technology, such as medicine, electronics, soft robotics, the chemical industry, the automotive field, and many others. Smart polymeric materials hold good promise for the future due to their endless possibilities. This group of advanced materials can be sensitive to changes or the presence of various chemical, physical, and biological stimuli, e.g., light, temperature, pH, magnetic/electric field, pressure, microorganisms, bacteria, viruses, toxic substances, and many others. This review concerns the newest achievements in the area of smart polymeric materials. The recent advances in the designing of stimuli-responsive polymers are described in this paper.
Collapse
Affiliation(s)
- Alicja Balcerak-Woźniak
- Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Monika Dzwonkowska-Zarzycka
- Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Janina Kabatc-Borcz
- Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
8
|
Wang D, Lu K, Zou G, Wu D, Cheng Y, Sun Y. Attenuating intervertebral disc degeneration through spermidine-delivery nanoplatform based on polydopamine for persistent regulation of oxidative stress. Int J Biol Macromol 2024; 274:132881. [PMID: 38838900 DOI: 10.1016/j.ijbiomac.2024.132881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
As one of the most widespread musculoskeletal diseases worldwide, intervertebral disc degeneration (IVDD) remains an intractable clinical problem. Currently, oxidative stress has been widely considered as a significant risk factor in the IVDD pathological changes, and targeting oxidative stress injury to improve the harsh microenvironment may provide a novel and promising strategy for disc repair. It is evident that spermidine (SPD) has the ability to attenuate oxidative stress across several disease models. However, limited research exists regarding its impact on oxidative stress within the intervertebral disc. Moreover, enhancing the local utilization rate of SPD holds great significance in IVDD management. This study aimed to develop an intelligent biodegradable mesoporous polydopamine (PDA) nanoplatform for sustained release of SPD. The obtained PDA nanoparticles with spherical morphology and mesoporous structure released loaded-therapeutic molecules under low pH and H2O2. Combined treatment with SPD loaded into PDA nanoparticles (SPD/PDA) resulted in better therapeutic potential than those with SPD alone on oxidative stress injury. Furthermore, both SPD and SPD/PDA could induce anti-inflammatory M2 macrophage polarization. Upon injection into degenerative IVDs, the SPD/PDA group achieved a good repair efficacy with a long-term therapeutic effect. These findings indicated that the synergized use of SPD with responsive drug delivery nanocarriers may steadily scavenge reactive oxygen species and provide an effective approach toward the treatment of IVDD.
Collapse
Affiliation(s)
- Dongliang Wang
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Yancheng First People's Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| | - Kun Lu
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, Yancheng First People's Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| | - Guoyou Zou
- Department of Orthopedics, Yancheng First People's Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| | - Duanrong Wu
- Department of Orthopedics, Yancheng First People's Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| | - Yi Cheng
- Department of Orthopedics, Yancheng First People's Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| | - Yongming Sun
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Khademi R, Kharaziha M. Antibacterial and Osteogenic Doxycycline Imprinted Bioglass Microspheres to Combat Bone Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31966-31982. [PMID: 38829697 DOI: 10.1021/acsami.4c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Currently, postoperative infection is a significant challenge in bone and dental surgical procedures, demanding the exploration of innovative approaches due to the prevalence of antibiotic-resistant bacteria. This study aims to develop a strategy for controlled and smart antibiotic release while accelerating osteogenesis to expedite bone healing. In this regard, temperature-responsive doxycycline (DOX) imprinted bioglass microspheres (BGMs) were synthesized. Following the formation of chitosan-modified BGMs, poly N-isopropylacrylamide (pNIPAm) was used for surface imprinting of DOX. The temperature-responsive molecularly imprinted polymers (MIPs) exhibited pH and temperature dual-responsive adsorption and controlled-release properties for DOX. The temperature-responsive MIP was optimized by investigating the molar ratio of N,N'-methylene bis(acrylamide) (MBA, the cross-linker) to NIPAm. Our results demonstrated that the MIPs showed superior adsorption capacity (96.85 mg/g at 35 °C, pH = 7) than nonimprinted polymers (NIPs) and manifested a favorable selectivity toward DOX. The adsorption behavior of DOX on the MIPs fit well with the Langmuir model and the pseudo-second-order kinetic model. Drug release studies demonstrated a controlled release of DOX due to imprinted cavities, which were fitted with the Korsmeyer-Peppas kinetic model. DOX-imprinted BGMs also revealed comparable antibacterial effects against Staphylococcus aureus and Escherichia coli to the DOX (control). In addition, MIPs promoted viability and osteogenic differentiation of MG63 osteoblast-like cells. Overall, the findings demonstrate the significant potential of DOX-imprinted BGMs for use in bone defects. Nonetheless, further in vitro investigations and subsequent in vivo experiments are warranted to advance this research.
Collapse
Affiliation(s)
- Reihaneh Khademi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
10
|
Bahavarnia F, Hasanzadeh M, Bahavarnia P, Shadjou N. Advancements in application of chitosan and cyclodextrins in biomedicine and pharmaceutics: recent progress and future trends. RSC Adv 2024; 14:13384-13412. [PMID: 38660530 PMCID: PMC11041621 DOI: 10.1039/d4ra01370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
The global community is faced with numerous health concerns such as cancer, cardiovascular and neurological diseases, diabetes, joint pain, osteoporosis, among others. With the advancement of research in the fields of materials chemistry and medicine, pharmaceutical technology and biomedical analysis have entered a new stage of development. The utilization of natural oligosaccharides and polysaccharides in pharmaceutical/biomedical studies has gained significant attention. Over the past decade, several studies have shown that chitosan and cyclodextrin have promising biomedical implications in background analysis, ongoing development, and critical applications in biomedical and pharmaceutical research fields. This review introduces different types of saccharides/natural biopolymers such as chitosan and cyclodextrin and discusses their wide-ranging applications in the biomedical/pharmaceutical research area. Recent research advances in pharmaceutics and drug delivery based on cyclodextrin, and their response to smart stimuli, as well as the biological functions of cyclodextrin and chitosan, such as the immunomodulatory effects, antioxidant, and antibacterial properties, have also been discussed, along with their applications in tissue engineering, wound dressing, and drug delivery systems. Finally, the innovative applications of chitosan and cyclodextrin in the pharmaceutical/biomedicine were reviewed, and current challenges, research/technological gaps, and future development opportunities were surveyed.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Parinaz Bahavarnia
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
11
|
Lahmadi S, Alamery S, Beagan A, Alotaibi K, Alswieleh A. Advanced hybrid silica nanoparticles with pH-responsive diblock copolymer brushes: optimized design for controlled doxorubicin loading and release in cancer therapy. RSC Adv 2024; 14:8819-8828. [PMID: 38495996 PMCID: PMC10941263 DOI: 10.1039/d4ra00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
This study delves into the development, characterization, and application of modified mesoporous silica nanoparticles (MSNs) for targeted drug delivery in cancer therapy. MSNs were functionalized with poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) and poly(glycidyl methacrylate) (PGMA), and further modified with cross-linkers DAE and Ornithine. Characterization using FT-IR, SEM, TEM, DLS, and XPS confirmed the successful surface modifications, revealing particle sizes primarily within the 63-94 nm range. The MSNs demonstrated a pH-responsive behavior, crucial for smart drug delivery. Loading and release studies using Doxorubicin (DOX) showed a controlled release, with an 8 μg mg-1 loading capacity. Cytotoxicity assays on Caco2 colon cancer cells revealed that unloaded nano-systems, at concentrations above 45 μM, resulted in approximately 60% cell death, indicating inherent anti-cancer properties. However, variations in cytotoxic effects were observed in drug-loaded MSNs, with some modifications showing reduced anti-cancer activity. These findings highlight the potential of MSNs in drug delivery and cancer treatment, emphasizing the importance of nanoparticle design in therapeutic efficacy.
Collapse
Affiliation(s)
- Shatha Lahmadi
- Department of Chemistry, College of Science, King Saud University Riyadh Kingdom of Saudi Arabia
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University Riyadh Kingdom of Saudi Arabia
| | - Abeer Beagan
- Department of Chemistry, College of Science, King Saud University Riyadh Kingdom of Saudi Arabia
| | - Khalid Alotaibi
- Department of Chemistry, College of Science, King Saud University Riyadh Kingdom of Saudi Arabia
| | - Abdullah Alswieleh
- Department of Chemistry, College of Science, King Saud University Riyadh Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Guo Y, George Joy J, Kim JC. ThermOxshield ion pair self assembly unleashing suppressed release. J Biomater Appl 2024; 38:890-904. [PMID: 38282509 DOI: 10.1177/08853282241230483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Poly (acrylic acid) (PAA), an anionic polymer was used to prepare ion pair self-assembly (IPSAM) with 4-(methylthio)aniline (MTA), a hydrophobic counter ion, which is responsive to temperature and oxidation. The IPSAM was formed when the carboxylic to amino group molar ratio was 7/3-5/5. The structure of the IPSAM nanoparticle was spherical whose diameter was 30-40 nm on the TEM images. The PAA/MTA ion pair showed the upper critical solution temperature (UCST) that hiked with increasing MTA content. When the MTA of the ion pair was oxidized by H2O2, the UCST was also increased. The amphiphilic property of the ion pair was responsible for interface activity which declined upon the oxidation of the MTA. The surface tension was low for the ratio of PAA/MTA (5/5), which made the 5/5 ratio suitable for further studies. The interaction between PAA and MTA, which was ionic, and the oxidation of MTA was confirmed by FT-IR spectroscopy. The release of payload (i.e. Nile red) in IPSAM was restrained below the UCST but it was triggered above the phase transition temperature possibly due to the disintegration of the IPSAM whereas on MTA oxidation the release was shielded due to more hydrophobicity. The release was found to be higher in tumor environment temperature which could be controlled with the input concentration of H2O2 giving a stable IPSAM. The cell viability results showed that IPSAM has no significant cytotoxicity and can serve as a drug carrier for stimulus-response.
Collapse
Affiliation(s)
- Yuyuan Guo
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jomon George Joy
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
13
|
Rodrigues LC, Ribeiro AP, Silva SS, Reis RL. Chitosan/Virgin Coconut Oil-Based Emulsions Doped with Photosensitive Curcumin Loaded Capsules: A Functional Carrier to Topical Treatment. Polymers (Basel) 2024; 16:641. [PMID: 38475324 DOI: 10.3390/polym16050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
In recent years, there has been a growing interest in developing smart drug delivery systems based on natural resources combined with stimulus-sensitive elements. This trend aims to formulate innovative and sustainable delivery platforms tailored for topical applications. This work proposed the use of layer-by-layer (LbL) methodology to fabricate biocompatible photo-responsive multilayer systems. These systems are composed of a polyoxometalate inorganic salt (POM) ([NaP5W30O110]14-) and a natural origin polymer, chitosan (CHT). Curcumin (CUR), a natural bioactive compound, was incorporated to enhance the functionality of these systems during the formation of hollow capsules. The capsules produced, with sizes between 2-5µm (SEM), were further dispersed into CHT/VCO (virgin coconut oil) emulsion solutions that were casted into molds and dried at 37 °C for 48 h. The system presented a higher water uptake in PBS than in acidic conditions, still significantly lower than that earlier reported to other CHT/VCO-based systems. The drug release profile is not significantly influenced by the medium pH reaching a maximum of 37% ± 1% after 48 h. The antioxidant performance of the designed structures was further studied, suggesting a synergistic beneficial effect resulting from CUR, POM, and VCO individual bioactivities. The increased amount of those excipients released to the media over time promoted an increase in the antioxidant activity of the system, reaching a maximum of 38.1% ± 0.1% after 48 h. This work represents a promising step towards developing advanced, sustainable drug delivery systems for topical applications.
Collapse
Affiliation(s)
- Luísa C Rodrigues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Adriana P Ribeiro
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Simone S Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
14
|
Ru J, Chen Y, Tao S, Du S, Liang C, Teng Z, Gao Y. Exploring Hollow Mesoporous Silica Nanoparticles as a Nanocarrier in the Delivery of Foot-And-Mouth Disease Virus-like Particle Vaccines. ACS APPLIED BIO MATERIALS 2024; 7:1064-1072. [PMID: 38286026 DOI: 10.1021/acsabm.3c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Virus-like particle (VLP) vaccine is considered to be the most promising candidate alternative to the traditional inactivated vaccine for foot-and-mouth disease (FMD). To elicit a desired immune response, hollow mesoporous silica nanoparticles (HMSNs) have been synthesized and utilized as a nanocarrier for FMD VLP vaccine delivery. The as-prepared HMSNs displayed a relatively small particle size (∼260 nm), large cavity (∼150 nm), and thin wall (∼55 nm). The inherent structural superiorities make them ideal nanocarriers for the FMD VLP vaccine, which exhibited good biocompatibility, great protein-loading capacity, high antibody-response level, and protective efficiency, even comparable to commercial adjuvant ISA 206. All the results suggested that HMSNs may be a valid nanocarrier in VLP-based vaccines.
Collapse
Affiliation(s)
- Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China
| | - Yu Chen
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Siyi Tao
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Shaobo Du
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, P. R. China
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Zhidong Teng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, P. R. China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, P. R. China
| |
Collapse
|
15
|
Zhu S, Zhang T, Gao H, Jin G, Yang J, He X, Guo H, Xu F. Combination Therapy of Lox Inhibitor and Stimuli-Responsive Drug for Mechanochemically Synergistic Breast Cancer Treatment. Adv Healthc Mater 2023; 12:e2300103. [PMID: 37099721 DOI: 10.1002/adhm.202300103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/21/2023] [Indexed: 04/28/2023]
Abstract
Chemotherapy based on small molecule drugs, hormones, cycline kinase inhibitors, and monoclonal antibodies has been widely used for breast cancer treatment in the clinic but with limited efficacy, due to the poor specificity and tumor microenvironment (TME)-caused diffusion barrier. Although monotherapies targeting biochemical cues or physical cues in the TME have been developed, none of them can cope with the complex TME, while mechanochemical combination therapy remains largely to be explored. Herein, a combination therapy strategy based on an extracellular matrix (ECM) modulator and TME-responsive drug for the first attempt of mechanochemically synergistic treatment of breast cancer is developed. Specifically, based on overexpressed NAD(P)H quinone oxidoreductase 1 (NQO1) in breast cancer, a TME-responsive drug (NQO1-SN38) is designed and it is combined with the inhibitor (i.e., β-Aminopropionitrile, BAPN) for Lysyl oxidases (Lox) that contributes to the tumor stiffness, for mechanochemical therapy. It is demonstrated that NQO1 can trigger the degradation of NQO1-SN38 and release SN38, showing nearly twice tumor inhibition efficiency compared with SN38 treatment in vitro. Lox inhibition with BAPN significantly reduces collagen deposition and enhances drug penetration in tumor heterospheroids in vitro. It is further demonstrated that the mechanochemical therapy showed outstanding therapeutic efficacy in vivo, providing a promising approach for breast cancer therapy.
Collapse
Affiliation(s)
- Shanshan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tian Zhang
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Huan Gao
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering & Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
16
|
Huang YC, Zeng YJ, Lin YW, Tai HC, Don TM. In Situ Encapsulation of Camptothecin by Self-Assembly of Poly(acrylic acid)- b-Poly( N-Isopropylacrylamide) and Chitosan for Controlled Drug Delivery. Polymers (Basel) 2023; 15:polym15112463. [PMID: 37299263 DOI: 10.3390/polym15112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Camptothecin (CPT) has been shown to exhibit anticancer activity against several cancers. Nevertheless, CPT is very hydrophobic with poor stability, and thus its medical application is limited. Therefore, various drug carriers have been exploited for effectively delivering CPT to the targeted cancer site. In this study, a dual pH/thermo-responsive block copolymer of poly(acrylic acid-b-N-isopropylacrylamide) (PAA-b-PNP) was synthesized and applied to encapsulate CPT. At temperatures above its cloud point, the block copolymer self-assembled to form nanoparticles (NPs) and in situ encapsulate CPT, owing to their hydrophobic interaction as evidenced by fluorescence spectrometry. Chitosan (CS) was further applied on the surface through the formation of a polyelectrolyte complex with PAA for improving biocompatibility. The average particle size and zeta potential of the developed PAA-b-PNP/CPT/CS NPs in a buffer solution were 168 nm and -30.6 mV, respectively. These NPs were still stable at least for 1 month. The PAA-b-PNP/CS NPs exhibited good biocompatibility toward NIH 3T3 cells. Moreover, they could protect the CPT at pH 2.0 with a very slow-release rate. At pH 6.0, these NPs could be internalized by Caco-2 cells, followed by intracellular release of the CPT. They became highly swollen at pH 7.4, and the released CPT was able to diffuse into the cells at higher intensity. Among several cancer cell lines, the highest cytotoxicity was observed for H460 cells. As a result, these environmentally-responsive NPs have the potential to be applied in oral administration.
Collapse
Affiliation(s)
- Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Yang-Jie Zeng
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Yu-Wei Lin
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| | - Hung-Chih Tai
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung City 202301, Taiwan
| | - Trong-Ming Don
- Department of Chemical and Materials Engineering, Tamkang University, No. 151 Yingzhuan Rd., Tamsui Dist., New Taipei City 251301, Taiwan
| |
Collapse
|
17
|
Lukáš Petrova S, Vragović M, Pavlova E, Černochová Z, Jäger A, Jäger E, Konefał R. Smart Poly(lactide)- b-poly(triethylene glycol methyl ether methacrylate) (PLA- b-PTEGMA) Block Copolymers: One-Pot Synthesis, Temperature Behavior, and Controlled Release of Paclitaxel. Pharmaceutics 2023; 15:pharmaceutics15041191. [PMID: 37111676 PMCID: PMC10143907 DOI: 10.3390/pharmaceutics15041191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
This paper introduces a new class of amphiphilic block copolymers created by combining two polymers: polylactic acid (PLA), a biocompatible and biodegradable hydrophobic polyester used for cargo encapsulation, and a hydrophilic polymer composed of oligo ethylene glycol chains (triethylene glycol methyl ether methacrylate, TEGMA), which provides stability and repellent properties with added thermo-responsiveness. The PLA-b-PTEGMA block copolymers were synthesized using ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization (ROP-RAFT), resulting in varying ratios between the hydrophobic and hydrophilic blocks. Standard techniques, such as size exclusion chromatography (SEC) and 1H NMR spectroscopy, were used to characterize the block copolymers, while 1H NMR spectroscopy, 2D nuclear Overhauser effect spectroscopy (NOESY), and dynamic light scattering (DLS) were used to analyze the effect of the hydrophobic PLA block on the LCST of the PTEGMA block in aqueous solutions. The results show that the LCST values for the block copolymers decreased with increasing PLA content in the copolymer. The selected block copolymer presented LCST transitions at physiologically relevant temperatures, making it suitable for manufacturing nanoparticles (NPs) and drug encapsulation-release of the chemotherapeutic paclitaxel (PTX) via temperature-triggered drug release mechanism. The drug release profile was found to be temperature-dependent, with PTX release being sustained at all tested conditions, but substantially accelerated at 37 and 40 °C compared to 25 °C. The NPs were stable under simulated physiological conditions. These findings demonstrate that the addition of hydrophobic monomers, such as PLA, can tune the LCST temperatures of thermo-responsive polymers, and that PLA-b-PTEGMA copolymers have great potential for use in drug and gene delivery systems via temperature-triggered drug release mechanisms in biomedicine applications.
Collapse
Affiliation(s)
- Svetlana Lukáš Petrova
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Martina Vragović
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zulfiya Černochová
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Alessandro Jäger
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| |
Collapse
|
18
|
Chaiyasat A, Kamlangmak N, Rattanawongwiboon T, Chaiyasat P. Gamma irradiation-induced pH-responsive poly(methyl methacrylate- acrylic acid-divinyl benzene) hybrid polymer particles for dye treatment. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Amorn Chaiyasat
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
- Advanced Materials Design Development (AMDD) Research Unit, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Netnapha Kamlangmak
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Thitirat Rattanawongwiboon
- Materials Science Technology Section, Nuclear Technology Research and Development Center, Thailand Institute of Nuclear Technology (Public Organization), Nakhon Nayok, Thailand
| | - Preeyaporn Chaiyasat
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
- Advanced Materials Design Development (AMDD) Research Unit, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand
| |
Collapse
|
19
|
Khan RU, Shao J, Liao JY, Qian L. pH-triggered cancer-targeting polymers: From extracellular accumulation to intracellular release. NANO RESEARCH 2023; 16:5155-5168. [PMID: 36618069 PMCID: PMC9807988 DOI: 10.1007/s12274-022-5252-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 05/25/2023]
Abstract
Stimuli-responsive polymers are promising to achieve targeted delivery, improved stability during circulation, and controlled release of therapeutic and diagnostic agents. Among them, pH-responsive polymeric nanocarriers have attracted significant attention as pH varies in different body fluids (e.g., stomach, intestine, and colon) and intracellular organelles (e.g., endosome, lysosome, and mitochondria) to maintain homeostasis, while distinctive pH changes are also found in certain pathological states. For example, the extracellular environment of the tumor is acidic, which can be employed to drive selective delivery. During the internalization process, since most nanocarriers enter cells upon endocytosis where a drop of pH from 6.5 to 5.0 can occur from endosome to lysosome, pH-sensitive groups have been developed for enhanced cargo release. In this review, both non-covalent and covalent interactions responsive to pH changes are introduced, with a focus on the structure-property relationship and their applications in cancer targeting and endosomal escape.
Collapse
Affiliation(s)
- Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Jinning Shao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
20
|
Bonelli J, Velasco-de Andrés M, Isidro N, Bayó C, Chumillas S, Carrillo-Serradell L, Casadó-Llombart S, Mok C, Benítez-Ribas D, Lozano F, Rocas J, Marchán V. Novel Tumor-Targeted Self-Nanostructured and Compartmentalized Water-in-Oil-in-Water Polyurethane-Polyurea Nanocapsules for Cancer Theragnosis. Pharmaceutics 2022; 15:pharmaceutics15010058. [PMID: 36678687 PMCID: PMC9862617 DOI: 10.3390/pharmaceutics15010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Encapsulation of water-soluble bioactive compounds for enabling specific accumulation in tumor locations, while avoiding premature clearance and/or degradation in the bloodstream, is one of the main hallmarks in nanomedicine, especially that of NIR fluorescent probes for cancer theragnosis. The herein reported technology furnishes water-dispersible double-walled polyurethane-polyurea hybrid nanocapsules (NCs) loaded with indocyanine green (ICG-NCs), using a versatile and highly efficient one-pot and industrially scalable synthetic process based on the use of two different prepolymers to set up the NCs walls. Flow cytometry and confocal microscopy confirmed that both ICG-loaded NCs internalized in monocyte-derived dendritic cells (moDCs). The in vivo analysis of xenograft A375 mouse melanoma model revealed that amphoteric functionalization of NCs' surface promotes the selective accumulation of ICG-NCs in tumor tissues, making them promising agents for a less-invasive theragnosis of cancer.
Collapse
Affiliation(s)
- Joaquín Bonelli
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Neus Isidro
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - Cristina Bayó
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Sergi Chumillas
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Laura Carrillo-Serradell
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
| | - Cheryl Mok
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Daniel Benítez-Ribas
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-151, E-08036 Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Villarroel 170, E-08036 Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona (UB), Villarroel 170, E-08036 Barcelona, Spain
| | - Josep Rocas
- Nanobiotechnological Polymers Division Ecopol Tech, S.L., El Foix Business Park, Indústria 7, L'Arboç del Penedès, E-43720 Tarragona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona (UB), Martí i Franquès 1-11, E-08028 Barcelona, Spain
| |
Collapse
|
21
|
Electrochemically Enhanced Delivery of Pemetrexed from Electroactive Hydrogels. Polymers (Basel) 2022; 14:polym14224953. [PMID: 36433079 PMCID: PMC9692448 DOI: 10.3390/polym14224953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Electroactive hydrogels based on derivatives of polyethyleneglycol (PEG), chitosan and polypyrrole were prepared via a combination of photopolymerization and oxidative chemical polymerization, and optionally doped with anions (e.g., lignin, drugs, etc.). The products were analyzed with a variety of techniques, including: FT-IR, UV-Vis, 1H NMR (solution state), 13C NMR (solid state), XRD, TGA, SEM, swelling ratios and rheology. The conductive gels swell ca. 8 times less than the non-conductive gels due to the presence of the interpenetrating network (IPN) of polypyrrole and lignin. A rheological study showed that the non-conductive gels are soft (G' 0.35 kPa, G″ 0.02 kPa) with properties analogous to brain tissue, whereas the conductive gels are significantly stronger (G' 30 kPa, G″ 19 kPa) analogous to breast tissue due to the presence of the IPN of polypyrrole and lignin. The potential of these biomaterials to be used for biomedical applications was validated in vitro by cell culture studies (assessing adhesion and proliferation of fibroblasts) and drug delivery studies (electrochemically loading the FDA-approved chemotherapeutic pemetrexed and measuring passive and stimulated release); indeed, the application of electrical stimulus enhanced the release of PEM from gels by ca. 10-15% relative to the passive release control experiment for each application of electrical stimulation over a short period analogous to the duration of stimulation applied for electrochemotherapy. It is foreseeable that such materials could be integrated in electrochemotherapeutic medical devices, e.g., electrode arrays or plates currently used in the clinic.
Collapse
|
22
|
Chapla R, Huynh KT, Schutt CE. Microbubble–Nanoparticle Complexes for Ultrasound-Enhanced Cargo Delivery. Pharmaceutics 2022; 14:pharmaceutics14112396. [PMID: 36365214 PMCID: PMC9698658 DOI: 10.3390/pharmaceutics14112396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted delivery of therapeutics to specific tissues is critically important for reducing systemic toxicity and optimizing therapeutic efficacy, especially in the case of cytotoxic drugs. Many strategies currently exist for targeting systemically administered drugs, and ultrasound-controlled targeting is a rapidly advancing strategy for externally-stimulated drug delivery. In this non-invasive method, ultrasound waves penetrate through tissue and stimulate gas-filled microbubbles, resulting in bubble rupture and biophysical effects that power delivery of attached cargo to surrounding cells. Drug delivery capabilities from ultrasound-sensitive microbubbles are greatly expanded when nanocarrier particles are attached to the bubble surface, and cargo loading is determined by the physicochemical properties of the nanoparticles. This review serves to highlight and discuss current microbubble–nanoparticle complex component materials and designs for ultrasound-mediated drug delivery. Nanocarriers that have been complexed with microbubbles for drug delivery include lipid-based, polymeric, lipid–polymer hybrid, protein, and inorganic nanoparticles. Several schemes exist for linking nanoparticles to microbubbles for efficient nanoparticle delivery, including biotin–avidin bridging, electrostatic bonding, and covalent linkages. When compared to unstimulated delivery, ultrasound-mediated cargo delivery enables enhanced cell uptake and accumulation of cargo in target organs and can result in improved therapeutic outcomes. These ultrasound-responsive delivery complexes can also be designed to facilitate other methods of targeting, including bioactive targeting ligands and responsivity to light or magnetic fields, and multi-level targeting can enhance therapeutic efficacy. Microbubble–nanoparticle complexes present a versatile platform for controlled drug delivery via ultrasound, allowing for enhanced tissue penetration and minimally invasive therapy. Future perspectives for application of this platform are also discussed in this review.
Collapse
Affiliation(s)
- Rachel Chapla
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
| | - Katherine T. Huynh
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carolyn E. Schutt
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
- Correspondence:
| |
Collapse
|
23
|
Animated organic-inorganic hybrid materials and their use as catalyst scaffolds. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
25
|
Iravani S, Varma RS. Advanced Drug Delivery Micro- and Nanosystems for Cardiovascular Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185843. [PMID: 36144581 PMCID: PMC9506137 DOI: 10.3390/molecules27185843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022]
Abstract
Advanced drug delivery micro- and nanosystems have been widely explored due to their appealing specificity/selectivity, biodegradability, biocompatibility, and low toxicity. They can be applied for the targeted delivery of pharmaceuticals, with the benefits of good biocompatibility/stability, non-immunogenicity, large surface area, high drug loading capacity, and low leakage of drugs. Cardiovascular diseases, as one of the primary mortalities cause worldwide with significant impacts on the quality of patients’ life, comprise a variety of heart and circulatory system pathologies, such as peripheral vascular diseases, myocardial infarction, heart failure, and coronary artery diseases. Designing novel micro- and nanosystems with suitable targeting properties and smart release behaviors can help circumvent crucial challenges of the tolerability, low stability, high toxicity, and possible side- and off-target effects of conventional drug delivery routes. To overcome different challenging issues, namely physiological barriers, low efficiency of drugs, and possible adverse side effects, various biomaterials-mediated drug delivery systems have been formulated with reduced toxicity, improved pharmacokinetics, high bioavailability, sustained release behavior, and enhanced therapeutic efficacy for targeted therapy of cardiovascular diseases. Despite the existing drug delivery systems encompassing a variety of biomaterials for treating cardiovascular diseases, the number of formulations currently approved for clinical use is limited due to the regulatory and experimental obstacles. Herein, the most recent advancements in drug delivery micro- and nanosystems designed from different biomaterials for the treatment of cardiovascular diseases are deliberated, with a focus on the important challenges and future perspectives.
Collapse
Affiliation(s)
- Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Correspondence: (S.I.); (R.S.V.)
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, Olomouc 78371, Czech Republic
- Correspondence: (S.I.); (R.S.V.)
| |
Collapse
|