1
|
Singh A, Maheshwari S, Yadav JP, Kumar R, Verma A, Singh S, Prajapati BG. Bioactive Compound-Fortified Nanocarriers in the Management of Neurodegenerative Disease: A Review. Chem Biodivers 2025:e202402018. [PMID: 39928755 DOI: 10.1002/cbdv.202402018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/12/2025]
Abstract
Individual around the globe faces enormous problems from illnesses of the neurological system and the cerebrum, including neurodegenerative conditions and brain tumors. There are still no demonstrated viable treatments for neurological conditions, despite advances in drug delivery technologies such as solid lipid nanoparticles, nanostructured lipid carriers, and nano-liposomes. To address this, there is growing interest in leveraging naturally occurring bioactive substances for their therapeutic potential. However, challenges such as limited bioavailability and metabolism hinder their efficacy, particularly in the brain. Although various pharmaceutical interventions exist for neurodegenerative diseases, they often come with significant side effects, and there is currently no specific treatment to cure or slow down disease progression. Challenges such as the blood-brain barrier and blood-cerebrospinal fluid barrier present significant obstacles to deliver drugs into the brain. Strategies to improve drug penetration across these barriers include targeting specific transport systems and developing innovative drug delivery approaches. Hence, the development of nanocarriers capable of targeting bioactive compounds to the brain represents a promising approach for neurodegenerative disease therapy. This review explores the potential of bioactive compound-fortified nano-delivery systems for treating neurodegenerative diseases, with various compounds offering unique avenues for investigating neurodegeneration pathways and strategies in overcoming associated challenges.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Shubhrat Maheshwari
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Jagat Pal Yadav
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Ravi Kumar
- Institute of pharmaceutical sciences, J.S. University, Shikohabad, Uttar Pradesh, India
| | - Amita Verma
- Faculty of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttrakhand, India
| | - Sudarshan Singh
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gujarat, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Naskar A, Kilari S, Baranwal G, Kane J, Misra S. Nanoparticle-Based Drug Delivery for Vascular Applications. Bioengineering (Basel) 2024; 11:1222. [PMID: 39768040 PMCID: PMC11673055 DOI: 10.3390/bioengineering11121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/05/2025] Open
Abstract
Nanoparticle (NP)-based drug delivery systems have received widespread attention due to the excellent physicochemical properties of nanomaterials. Different types of NPs such as lipid NPs, poly(lactic-co-glycolic) acid (PLGA) NPs, inorganic NPs (e.g., iron oxide and Au), carbon NPs (graphene and carbon nanodots), 2D nanomaterials, and biomimetic NPs have found favor as drug delivery vehicles. In this review, we discuss the different types of customized NPs for intravascular drug delivery, nanoparticle behaviors (margination, adhesion, and endothelium uptake) in blood vessels, and nanomaterial compatibility for successful drug delivery. Additionally, cell surface protein targets play an important role in targeted drug delivery, and various vascular drug delivery studies using nanoparticles conjugated to these proteins are reviewed. Finally, limitations, challenges, and potential solutions for translational research regarding NP-based vascular drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.N.); (S.K.); (G.B.); (J.K.)
| |
Collapse
|
3
|
Chen T, Wan L, Xiao Y, Wang K, Wu P, Li C, Huang C, Liu X, Xue W, Sun G, Ji X, Lin H, Ji Z. Curcumin/pEGCG-encapsulated nanoparticles enhance spinal cord injury recovery by regulating CD74 to alleviate oxidative stress and inflammation. J Nanobiotechnology 2024; 22:653. [PMID: 39443923 PMCID: PMC11515499 DOI: 10.1186/s12951-024-02916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Spinal cord injury (SCI) often accompanies impairment of motor function, yet there is currently no highly effective treatment method specifically for this condition. Oxidative stress and inflammation are pivotal factors contributing to severe neurological deficits after SCI. In this study, a type of curcumin (Cur) nanoparticle (HA-CurNPs) was developed to address this challenge by alleviating oxidative stress and inflammation. Through non-covalent interactions, curcumin (Cur) and poly (-)-epigallocatechin-3-gallate (pEGCG) are co-encapsulated within hyaluronic acid (HA), resulting in nanoparticles termed HA-CurNPs. These nanoparticles gradually release curcumin and pEGCG at the SCI site. The released pEGCG and curcumin not only scavenge reactive oxygen species (ROS) and prevents apoptosis, thereby improving the neuronal microenvironment, but also regulate CD74 to promote microglial polarization toward an M2 phenotype, and inhibits M1 polarization, thereby suppressing the inflammatory response and fostering neuronal regeneration. Moreover, in vivo experiments on SCI mice demonstrate that HA-CurNPs effectively protect neuronal cells and myelin, reduce glial scar formation, thereby facilitating the repair of damaged spinal cord tissues, restoring electrical signaling at the injury site, and improving motor functions. Overall, this study demonstrates that HA-CurNPs significantly reduce oxidative stress and inflammation following SCI, markedly improving motor function in SCI mice. This provides a promising therapeutic approach for the treatment of SCI.
Collapse
Affiliation(s)
- Tianjun Chen
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Li Wan
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yongchun Xiao
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ke Wang
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ping Wu
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Can Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Caiqiang Huang
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiangge Liu
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Guodong Sun
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe Peoples Hospital), Jinan University, Heyuan, 517000, China
| | - Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Hongsheng Lin
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhisheng Ji
- Department of Orthopedics, The First Afffliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
4
|
Zhao L, Feng L, Shan R, Huang Y, Shen L, Fan M, Wang Y. Nanoparticle-based approaches for treating restenosis after vascular injury. Front Pharmacol 2024; 15:1427651. [PMID: 39512830 PMCID: PMC11540800 DOI: 10.3389/fphar.2024.1427651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Percutaneous coronary intervention (PCI) is currently the main method for treating coronary artery stenosis, but the incidence of restenosis after PCI is relatively high. Restenosis, the narrowing of blood vessels by more than 50% of the normal diameter after PCI, severely compromises the therapeutic efficacy. Therefore, preventing postinterventional restenosis is important. Vascular restenosis is mainly associated with endothelial injury, the inflammatory response, the proliferation and migration of vascular smooth muscle cells (VSMCs), excessive deposition of extracellular matrix (ECM) and intimal hyperplasia (IH) and is usually prevented by administering antiproliferative or anti-inflammatory drugs through drug-eluting stents (DESs); however, DESs can lead to uncontrolled drug release. In addition, as extracorporeal implants, they can cause inflammation and thrombosis, resulting in suboptimal treatment. Therefore, there is an urgent need for a drug carrier with controlled drug release and high biocompatibility for in vivo drug delivery to prevent restenosis. The development of nanotechnology has enabled the preparation of nanoparticle drug carriers with low toxicity, high drug loading, high biocompatibility, precise targeting, controlled drug release and excellent intracellular delivery ability. This review summarizes the advantages of nanoparticle drug carriers for treating vascular restenosis, as well as how nanoparticles have improved targeting, slowed the release of therapeutic agents, and prolonged circulation in vivo to prevent vascular restenosis more effectively. The overall purpose of this review is to present an overview of nanoparticle therapy for vascular restenosis. We expect these findings to provide insight into nanoparticle-based therapeutic approaches for vascular restenosis.
Collapse
Affiliation(s)
- Liangfeng Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liuliu Feng
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Rong Shan
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Bi S, Lin H, Zhu K, Zhu Z, Zhang W, Yang X, Chen S, Zhao J, Liu M, Pan P, Liang G. Chitosan-salvianolic acid B coating on the surface of nickel-titanium alloy inhibits proliferation of smooth muscle cells and promote endothelialization. Front Bioeng Biotechnol 2023; 11:1300336. [PMID: 38026871 PMCID: PMC10679528 DOI: 10.3389/fbioe.2023.1300336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Intracranial stents are of paramount importance in managing cerebrovascular disorders. Nevertheless, the currently employed drug-eluting stents, although effective in decreasing in-stent restenosis, might impede the re-endothelialization process within blood vessels, potentially leading to prolonged thrombosis development and restenosis over time. Methods: This study aims to construct a multifunctional bioactive coating to enhance the biocompatibility of the stents. Salvianolic acid B (SALB), a bioactive compound extracted from Salvia miltiorrhiza, exhibits potential for improving cardiovascular health. We utilized dopamine as the base and adhered chitosan-coated SALB microspheres onto nickel-titanium alloy flat plates, resulting in a multifunctional drug coating. Results: By encapsulating SALB within chitosan, the release period of SALB was effectively prolonged, as evidenced by the in vitro drug release curve showing sustained release over 28 days. The interaction between the drug coating and blood was examined through experiments on water contact angle, clotting time, and protein adsorption. Cellular experiments showed that the drug coating stimulates the proliferation, adhesion, and migration of human umbilical vein endothelial cells. Discussion: These findings indicate its potential to promote re-endothelialization. In addition, the bioactive coating effectively suppressed smooth muscle cells proliferation, adhesion, and migration, potentially reducing the occurrence of neointimal hyperplasia and restenosis. These findings emphasize the exceptional biocompatibility of the newly developed bioactive coating and demonstrate its potential clinical application as an innovative strategy to improve stent therapy efficacy. Thus, this coating holds great promise for the treatment of cerebrovascular disease.
Collapse
Affiliation(s)
- Shijun Bi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- Graduate School, Dalian Medical University, Dalian, China
| | - Hao Lin
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Kunyuan Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
- Graduate School, China Medical University, Shenyang, China
| | - Zechao Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Wenxu Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Shanshan Chen
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Jing Zhao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Meixia Liu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
6
|
Hughes KA, Misra B, Maghareh M, Bobbala S. Use of stimulatory responsive soft nanoparticles for intracellular drug delivery. NANO RESEARCH 2023; 16:6974-6990. [PMID: 36685637 PMCID: PMC9840428 DOI: 10.1007/s12274-022-5267-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
Drug delivery has made tremendous advances in the last decade. Targeted therapies are increasingly common, with intracellular delivery highly impactful and sought after. Intracellular drug delivery systems have limitations due to imprecise and non-targeted release profiles. One way this can be addressed is through using stimuli-responsive soft nanoparticles, which contain materials with an organic backbone such as lipids and polymers. The choice of biomaterial is essential for soft nanoparticles to be responsive to internal or external stimuli. The nanoparticle must retain its integrity and payload in non-targeted physiological conditions while responding to particular intracellular environments where payload release is desired. Multiple internal and external factors could stimulate the intracellular release of drugs from nanoparticles. Internal stimuli include pH, oxidation, and enzymes, while external stimuli include ultrasound, light, electricity, and magnetic fields. Stimulatory responsive soft nanoparticulate systems specifically utilized to modulate intracellular delivery of drugs are explored in this review.
Collapse
Affiliation(s)
- Krystal A. Hughes
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Bishal Misra
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Maryam Maghareh
- Department of Clinical Pharmacy, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505 USA
| |
Collapse
|
7
|
Targeted Nanoparticles for the Binding of Injured Vascular Endothelium after Percutaneous Coronary Intervention. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238144. [PMID: 36500236 PMCID: PMC9739478 DOI: 10.3390/molecules27238144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Percutaneous coronary intervention (PCI) is a common procedure for the management of coronary artery obstruction. However, it usually causes vascular wall injury leading to restenosis that limits the long-term success of the PCI endeavor. The ultimate objective of this study was to develop the targeting nanoparticles (NPs) that were destined for the injured subendothelium and attract endothelial progenitor cells (EPCs) to the damaged location for endothelium regeneration. Biodegradable poly(lactic-co-glycolic acid) (PLGA) NPs were conjugated with double targeting moieties, which are glycoprotein Ib alpha chain (GPIbα) and human single-chain antibody variable fragment (HuscFv) specific to the cluster of differentiation 34 (CD34). GPIb is a platelet receptor that interacts with the von Willebrand factor (vWF), highly deposited on the damaged subendothelial surface, while CD34 is a surface marker of EPCs. A candidate anti-CD34 HuscFv was successfully constructed using a phage display biopanning technique. The HuscFv could be purified and showed binding affinity to the CD34-positive cells. The GPIb-conjugated NPs (GPIb-NPs) could target vWF and prevent platelet adherence to vWF in vitro. Furthermore, the HuscFv-conjugated NPs (HuscFv-NPs) could capture CD34-positive cells. The bispecific NPs have high potential to locate at the damaged subendothelial surface and capture EPCs for accelerating the vessel repair.
Collapse
|
8
|
Preparation and application of pH-responsive drug delivery systems. J Control Release 2022; 348:206-238. [PMID: 35660634 DOI: 10.1016/j.jconrel.2022.05.056] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/08/2023]
Abstract
Microenvironment-responsive drug delivery systems (DDSs) can achieve targeted drug delivery, reduce drug side effects and improve drug efficacies. Among them, pH-responsive DDSs have gained popularity since the pH in the diseased tissues such as cancer, bacterial infection and inflammation differs from a physiological pH of 7.4 and this difference could be harnessed for DDSs to release encapsulated drugs specifically to these diseased tissues. A variety of synthetic approaches have been developed to prepare pH-sensitive DDSs, including introduction of a variety of pH-sensitive chemical bonds or protonated/deprotonated chemical groups. A myriad of nano DDSs have been explored to be pH-responsive, including liposomes, micelles, hydrogels, dendritic macromolecules and organic-inorganic hybrid nanoparticles, and micron level microspheres. The prodrugs from drug-loaded pH-sensitive nano DDSs have been applied in research on anticancer therapy and diagnosis of cancer, inflammation, antibacterial infection, and neurological diseases. We have systematically summarized synthesis strategies of pH-stimulating DDSs, illustrated commonly used and recently developed nanocarriers for these DDSs and covered their potential in different biomedical applications, which may spark new ideas for the development and application of pH-sensitive nano DDSs.
Collapse
|