1
|
Ramzy A, Abdel-Halim M, Manie T, Elemam NM, Mansour S, Youness RA, Sebak A. In-vitro immune-modulation of triple-negative breast cancer through targeting miR-30a-5p/MALAT1 axis using nano-PDT combinational approach. Transl Oncol 2025; 55:102365. [PMID: 40132387 PMCID: PMC11984585 DOI: 10.1016/j.tranon.2025.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an immunogenic tumor; however, its tumor immune microenvironment (TIME) is densely packed with immune suppressive cytokines and immune checkpoints. The immune-suppressive features of TNBC TIME represent a considerable obstacle to any immunotherapeutic approach. The objective of this study was to develop a multimodal in-vitro strategy to manipulate the TNBC TIME and enhance patients' outcomes by employing carefully tailored hybrid chitosan-lipid Nanoparticles (CLNPs), metformin and chlorin e6 (Ce-6)-mediated PDT, alone or combined. Special focus is directed towards evaluation of the role of the selected treatment agents on the non-coding RNAs (ncRNAs) involved in tuning the immuno-oncogenic profile of TNBC, for instance, the miR-30a-5p/MALAT1 network. METHODS This study enrolled 30 BC patients. CLNPs and ce-6-loaded CLNPs with different physicochemical features were synthesized and optimized using ionotropic gelation. The intracellular concentration and effects on MDA-MB-231 cellular viability were investigated. UHPLC was used to quantify ce-6. MDA-MB-231 cells were transfected with miR-30a-5p oligonucleotides and MALAT1 siRNAs using lipofection to investigate the interaction between MIF, PD-L1, TNF-α, IL-10, and the miR-30a-5p/MALAT1 ceRNA network. qRT-PCR was used to evaluate IL-10, TNF-α, and MIF expression levels, whereas flow cytometry was used for PD-L1. RESULTS Immunophenotyping of BC biopsies revealed significantly elevated levels of immunosuppressive markers, including IL-10, TNF-α, PD-L1, and MIF in BC biopsies compared to its normal counterparts. Upon patient stratification, it was shown that MIF and IL-10 are upregulated in TNBC patients compared to non-TNBC patients. Nonetheless, immune suppressive biomarkers expression investigated in the current study was generally correlated with signs of poor prognosis. CLNPs with mean particle size ranging from 50-150 nm were obtained. CLNPs exhibited different patterns of intracellular uptake, cytotoxicity and modulation of the immunosuppressive markers based on their physicochemical properties and composition. In particular, CLNP4 in-vitro effectively reduced IL-10, TNF-α, MIF, and PD-L1. Loading of Ce-6 into CLNP4 (Ce6-CLNPs) improved the in-vitro cytotoxic effects via PDT. In addition, PDT with Ce6-CLNP4 enhanced the expression of tumor-suppressive miR-30a-5p and decreased oncogenic lncRNA MALAT1 expression in MDA-MB-231 cells, suggesting a potential for modulating the TNBC immuno-oncogenic profile. CONCLUSION This study demonstrated that CLNPs and Ce-6-mediated PDT can modulate several key immunosuppressive factors and the miR-30a-5p/MALAT1 axis in TNBC cells. These findings provide a rationale for further in-vivo investigation of this multimodal therapeutic strategy.
Collapse
Affiliation(s)
- Asmaa Ramzy
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt
| | - Tamer Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Samar Mansour
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt; Faculty of Pharmaceutical Engineering, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Rana A Youness
- Department of Molecular Biology and Biochemistry, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt.
| | - Aya Sebak
- Department of Pharmaceutical Technology, Faculty of Pharmacy & Biotechnology, The German University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
2
|
Cagnetta GE, Martínez SR, Ibarra LE, Wendel A, Palacios RE, Chesta CA, Gómez ML. Photoactive broad-spectrum dressings with antimicrobial and antitumoral properties. BIOMATERIALS ADVANCES 2025; 169:214158. [PMID: 39709689 DOI: 10.1016/j.bioadv.2024.214158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
In this work the development of photoactive dressings (PAD) with dual purpose, is presented. These PAD can be used for the topical treatment of persistent infections caused by fungi and bacteria and are also applicable in light antitumor therapy for carcinoma. The synthesized PAD were designed employing conjugated polymer nanoparticles (CPN) doped with platinum porphyrin which serve as polymerization photoinitiators and photosensitizers for the production of reactive oxygen species (ROS). This approach led to the synthesis of N-vinyl-2-pyrrolidone (NVP) hydrogels co-polymerized with [2-(methacryloyloxy)ethyl] trimethylammonium chloride (METAC). NVP and METAC were selected to impart a good biocompatibility with eukaryotic cell lines and antimicrobial properties, respectively. The combination of METAC with an efficient photogeneration of ROS by doped CPN resulted in a material with outstanding antimicrobial features. These dressings are capable of producing an aseptic environment upon irradiation and demonstrates a bacteriostatic profile in dark conditions. Additionally, the dressings fulfill critical requirements for topical applications, providing protection and acting as a barrier, with appropriate mechanical and swelling properties; as well as adequate water vapor transmission rates. The synthesized PAD have been shown to be biocompatible and non-toxic to erythrocytes and HaCaT cell line. PAD demonstrated efficacy in eliminating microbes such as fungi and bacteria. The underlying light-induced killing mechanism involved protein photooxidation, which amplified the effects of METAC mechanism that disrupt cellular membranes. Furthermore, in vitro studies using carcinoma cell lines displayed a complete cell eradication using a relatively low light dose (36 J/cm2 at 395 nm). These promising results reveal also the potential of PAD in the treatment of skin cancer.
Collapse
Affiliation(s)
- Gonzalo E Cagnetta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina.
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Ana Wendel
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina
| | - María Lorena Gómez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina.
| |
Collapse
|
3
|
Cesca BA, Pellicer San Martin K, Caverzan MD, Oliveda PM, Ibarra LE. State-of-the-art photodynamic therapy for malignant gliomas: innovations in photosensitizers and combined therapeutic approaches. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002303. [PMID: 40177536 PMCID: PMC11964779 DOI: 10.37349/etat.2025.1002303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025] Open
Abstract
Glioblastoma (GBM), the most aggressive and lethal primary brain tumor, poses a significant therapeutic challenge due to its highly invasive nature and resistance to conventional therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in standard treatments, patient survival remains limited, requiring the exploration of innovative strategies. Photodynamic therapy (PDT) has emerged as a promising approach, leveraging light-sensitive photosensitizers (PSs), molecular oxygen, and specific light wavelengths to generate reactive oxygen species (ROS) that selectively induce tumor cell death. Originally developed for skin cancer, PDT has evolved to target more complex malignancies, including GBM. The refinement of second- and third-generation PS, coupled with advancements in nanotechnology, has significantly improved PDT's selectivity, bioavailability, and therapeutic efficacy. Moreover, the combination of PDT with chemotherapy, targeted therapy, and immunotherapy, among other therapeutic modalities, has shown potential in enhancing therapeutic outcomes. This review provides a comprehensive analysis of the preclinical and clinical applications of PDT in GBM, detailing its mechanisms of action, the evolution of PS, and novel combinatory strategies that optimize treatment efficacy. However, several challenges remain, including overcoming GBM-associated hypoxia, enhancing PS delivery across the blood-brain barrier, and mitigating tumor resistance mechanisms. The integration of PDT with molecular and genetic insight, alongside cutting-edge nanotechnology-based delivery systems, may revolutionize GBM treatment, offering new prospects for improved patient survival and quality of life.
Collapse
Affiliation(s)
- Bruno A. Cesca
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
| | - Kali Pellicer San Martin
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
| | - Matías D. Caverzan
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
| | - Paula M. Oliveda
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| | - Luis E. Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Rio Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| |
Collapse
|
4
|
Spada A, Gerber-Lemaire S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:158. [PMID: 39940134 PMCID: PMC11820047 DOI: 10.3390/nano15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.
Collapse
Affiliation(s)
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
5
|
Li Y, Gao X, Li Y, Yan S, Zhang Y, Zheng X, Gu Q. Endocytosis: the match point of nanoparticle-based cancer therapy. J Mater Chem B 2024; 12:9435-9458. [PMID: 39192831 DOI: 10.1039/d4tb01227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Nanomedicine has inspired a ground-breaking strategy for cancer therapy. By intelligently assembling diverse moieties to form nanoparticles, numerous functionalities such as controlled release, synergistic efficiency, and in situ killing can be achieved. The emerging nanoparticles have been designed with elevated targeting efficiency as targeting cancer cells is the primary requirement for nanoparticles. However, effective targeting does not guarantee therapeutic effects as endocytosis is a prerequisite for nanoparticles to exert effects. The recent decade has witnessed the rapid development of endocytosis-oriented nanoparticles, and this review subtly analyzes, categorizes, and exemplifies these nanoparticles according to their biological internalization patterns, and the correlation between the endocytosis mechanism and the property of nanoparticles is bridged. Based on the interdisciplinary vision, the present challenges and future perspectives of nanoparticle design for successful endocytosis are discussed, highlighting the potential strategies for the future development of endocytosis-oriented nanoparticles, thus facilitating the endocytosis-oriented strategy from bench to bedside. The undeniable fact is that endocytosis-oriented nanoparticles will definitely bring new blood to the next generation of advanced cancer therapies.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yiru Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Caverzan MD, Ibarra LE. Advancing glioblastoma treatment through iron metabolism: A focus on TfR1 and Ferroptosis innovations. Int J Biol Macromol 2024; 278:134777. [PMID: 39153669 DOI: 10.1016/j.ijbiomac.2024.134777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Glioblastoma (GBM) represents a formidable challenge in oncology, characterized by aggressive proliferation and poor prognosis. Iron metabolism plays a critical player in GBM progression, with dysregulated iron uptake and utilization contributing to tumor growth and therapeutic resistance. Iron's pivotal role in DNA synthesis, oxidative stress, and angiogenesis underscores its significance in GBM pathogenesis. Elevated expression of iron transporters, such as transferrin receptor 1 (TfR1), highlights the tumor's reliance on iron for survival. Innovative treatment strategies targeting iron dysregulation hold promise for overcoming therapeutic challenges in GBM management. Approaches such as iron chelation therapies, induction of ferroptosis to nanoparticle-based drug delivery systems exploit iron-dependent vulnerabilities, offering avenues for enhance treatment efficacy and improve patient outcomes. As research advances, understanding the complexities of iron-mediated carcinogenesis provides a foundation for developing precision medicine approaches tailored to combat GBM effectively. This review explores the intricate relationship between iron metabolism and GBM, elucidating its multifaceted implications and therapeutic opportunities. By consolidating the latest insights into iron metabolism in GBM, this review underscores its potential as a therapeutic target for improving patient care in combination with the standard of care approach.
Collapse
Affiliation(s)
- Matías D Caverzan
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina; Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina
| | - Luis E Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina.
| |
Collapse
|
7
|
Ibarra LE, Camorani S, Agnello L, Pedone E, Pirone L, Chesta CA, Palacios RE, Fedele M, Cerchia L. Correction: Ibarra et al. Selective Photo-Assisted Eradication of Triple-Negative Breast Cancer Cells through Aptamer Decoration of Doped Conjugated Polymer Nanoparticles. Pharmaceutics 2022, 14, 626. Pharmaceutics 2024; 16:1281. [PMID: 39458677 PMCID: PMC11510362 DOI: 10.3390/pharmaceutics16101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 10/28/2024] Open
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto y CONICET, Río Cuarto X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy; (E.P.); (L.P.)
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy; (E.P.); (L.P.)
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto y CONICET, Río Cuarto X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto y CONICET, Río Cuarto X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.C.); (L.A.); (M.F.)
| |
Collapse
|
8
|
Cesca BA, Caverzan MD, Lamberti MJ, Ibarra LE. Enhancing Therapeutic Approaches in Glioblastoma with Pro-Oxidant Treatments and Synergistic Combinations: In Vitro Experience of Doxorubicin and Photodynamic Therapy. Int J Mol Sci 2024; 25:7525. [PMID: 39062770 PMCID: PMC11277534 DOI: 10.3390/ijms25147525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive brain cancer characterized by significant molecular and cellular heterogeneity, which complicates treatment efforts. Current standard therapies, including surgical resection, radiation, and temozolomide (TMZ) chemotherapy, often fail to achieve long-term remission due to tumor recurrence and resistance. A pro-oxidant environment is involved in glioma progression, with oxidative stress contributing to the genetic instability that leads to gliomagenesis. Evaluating pro-oxidant therapies in brain tumors is crucial due to their potential to selectively target and eradicate cancer cells by exploiting the elevated oxidative stress levels inherent in these malignant cells, thereby offering a novel and effective strategy for overcoming resistance to conventional therapies. This study investigates the therapeutic potential of doxorubicin (DOX) and photodynamic therapy (PDT) with Me-ALA, focusing on their effects on redox homeostasis. Basal ROS levels and antioxidant gene expression (NFE2L2, CAT, GSR) were quantitatively assessed across GBM cell lines, revealing significant variability probably linked to genetic differences. DOX and PDT treatments, both individually and in combination, were analyzed for their efficacy in inducing oxidative stress and cytotoxicity. An in silico analysis further explored the relationship between gene mutations and oxidative stress in GBM patients, providing insights into the molecular mechanisms underlying treatment responses. Our findings suggest that pro-oxidant therapies, such as DOX and PDT in combination, could selectively target GBM cells, highlighting a promising avenue for improving therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Bruno Agustín Cesca
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; (B.A.C.); (M.J.L.)
| | - Matías Daniel Caverzan
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina;
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Rio Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| | - María Julia Lamberti
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; (B.A.C.); (M.J.L.)
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| | - Luis Exequiel Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Rio Cuarto, Rio Cuarto X5800BIA, Argentina; (B.A.C.); (M.J.L.)
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Rio Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rio Cuarto X5800BIA, Argentina
| |
Collapse
|
9
|
Yucel M, Onbas R, Arslan Yildiz A, Yildiz UH. The Soft Nanodots as Fluorescent Probes for Cell Imaging: Analysis of Cell and Spheroid Penetration Behavior of Single Chain Polymer Dots. Macromol Biosci 2024; 24:e2300402. [PMID: 38102867 DOI: 10.1002/mabi.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
This study describes the formation, size control, and penetration behavior of polymer nanodots (Pdots) consisting of single or few chain polythiophene-based conjugated polyelectrolytes (CPEs) via nanophase separation between good solvent and poor solvent of CPE. Though the chain singularity may be associated with dilution nanophase separation suggests that molecules of a good solvent create a thermodynamically driven solvation layer surrounding the CPEs and thereby separating the single chains even in their poor solvents. This statement is therefore corroborated with emission intensity/lifetime, particle size, and scattering intensity of polyelectrolyte in good and poor solvents. Regarding the augmented features, Pdots are implemented into cell imaging studies to understand the nuclear penetration and to differentiate the invasive characteristics of breast cancer cells. The python based red, green, blue (RGB) color analysis depicts that Pdots have more nuclear penetration ability in triple negative breast cancer cells due to the different nuclear morphology in shape and composition and Pdots have penetrated cell membrane as well as extracellular matrix in spheroid models. The current Pdot protocol and its utilization in cancer cell imaging are holding great promise for gene/drug delivery to target cancer cells by explicitly achieving the very first priority of nuclear intake.
Collapse
Affiliation(s)
- Muge Yucel
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Department of Bioengineering, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Rabia Onbas
- Department of Bioengineering, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Ahu Arslan Yildiz
- Department of Bioengineering, Izmir Institute of Technology, İzmir, 35430, Turkey
| | - Umit Hakan Yildiz
- Department of Chemistry, Izmir Institute of Technology, İzmir, 35430, Turkey
- Department of Polymer Science and Engineering, Izmir Institute of Technology, İzmir, 35430, Turkey
| |
Collapse
|
10
|
Martínez SR, Odella E, Ibarra LE, Sosa Lochedino A, Wendel AB, Durantini AM, Chesta CA, Palacios RE. Conjugated polymer nanoparticles as sonosensitizers in sono-inactivation of a broad spectrum of pathogens. ULTRASONICS 2024; 137:107180. [PMID: 37847942 DOI: 10.1016/j.ultras.2023.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Sonodynamic inactivation (SDI) of pathogens has an important advantage when compared to optical excitation-based protocols due to the deeper penetration of ultrasound (US) excitation in biological media or animal tissue. Sonosensitizers (SS) are compounds or systems that upon US stimulation in the therapeutic window (frequency = 0.8-3 MHz and intensity < 3 W/cm2) can induce damage to vital components of pathogenic microorganisms. Herein, we report the synthesis and application of conjugated polymer nanoparticles (CPNs) as an efficient SS in SDI of methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae and Candida tropicalis. A frequent problem in the design and testing of new SS for SDI is the lack of proper sonoreactor characterization which leads to reproducibility concerns. To address this issue, we performed dosimetry experiments in our setup. This enables the validation of our results by other researchers and facilitates meaningful comparisons with different SDI systems in future studies. On a different note, it is generally accepted that the mechanisms of action underlying SS-mediated SDI involve the production of reactive oxygen species (ROS). In an attempt to establish the nature of the cytotoxic species involved in our CPNs-based SDI protocol, we demonstrated that singlet oxygen (1O2) does not play a major role in the observed sonoinduced killing effect. SDI experiments in planktonic cultures of optimally growing pathogens using CPNs result in a germicide effect on the studied pathogenic microorganisms. The implementation of SDI protocols using CPNs was further tested in mature biofilms of a MRSA resulting in ∼40 % reduction of biomass and ∼70 % reduction of cellular viability. Overall, these results highlight the unique and unexplored capacity of CPNs to act as sonosensitizers opening new possibilities in the design and application of novel inactivation protocols against morbific microbes.
Collapse
Affiliation(s)
- Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Emmanuel Odella
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Arianna Sosa Lochedino
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Ana B Wendel
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Física, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Andrés M Durantini
- Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
11
|
Amiri H, Mokhtari-Dizaji M, Mozdarani H. Optimizing the administrated light dose during 5-ALA-mediated photodynamic therapy: Murine 4T1 breast cancer model. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12925. [PMID: 37968826 DOI: 10.1111/phpp.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/26/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Photodynamic therapy (PDT) is already used to treat many cancers, including breast cancer, the most common cancer in women worldwide. The destruction basis of this method is on produced singlet oxygen which is extremely reactive and is a major agent of tumor cell killing. The measurement of singlet oxygen produced within PDT is essential in predicting treatment outcomes and their optimization. This study aims to determine the optimal total light dose administered during PDT by calculating the singlet oxygen to facilitate the prediction of the treatment outcome in mice bearing 4T1 cell breast cancer. Monitoring the changes in photosensitizer fluorescence signals during PDT due to photobleaching can be one of the methods of determination of singlet oxygen generation in the PDT process. This study determined the oxygen singlet as a photodynamic dose from the three-dimensional Monte Carlo method and the photobleaching empirical dose constant. The photobleaching dose constant was established non-invasively by monitoring the in vivo protoporphyrin IX (PpIX) fluorescence and photobleaching during PDT. The photobleaching dose constant (β) in J/cm2 was calculated using empirical fluorescence data. The in vivo photobleaching dose constant of aminolevulinic acid was found to be 11.6 J/cm2 and based on this value, the optimal treatment light dose was estimated at 120 J/cm2 in mice bearing 4T1 breast cancer. It is concluded that information can be obtained regarding optimal treatment parameters by monitoring the in vivo PpIX fluorescence and photobleaching during PDT.
Collapse
Affiliation(s)
- Hossein Amiri
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Manijhe Mokhtari-Dizaji
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Kotelnikova PA, Shipunova VO, Deyev SM. Targeted PLGA-Chitosan Nanoparticles for NIR-Triggered Phototherapy and Imaging of HER2-Positive Tumors. Pharmaceutics 2023; 16:9. [PMID: 38276487 PMCID: PMC10819332 DOI: 10.3390/pharmaceutics16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 01/27/2024] Open
Abstract
Targeted medicine uses the distinctive features of cancer cells to find and destroy tumors. We present human epidermal growth factor receptor 2 (HER2)-targeted PLGA-chitosan nanoparticles for cancer therapy and visualization. Loading with two near-infrared (NIR) dyes provides imaging in the NIR transparency window and phototherapy triggered by 808 nm light. Nile Blue (NB) is a biocompatible solvatochromic NIR dye that serves as an imaging agent. Laser irradiation of IR-780 dye leads to a temperature rise and the generation of reactive oxygen species (ROS). Resonance energy transfer between two dyes allows visualization of tumors in a wide range of visible and IR wavelengths. The combination of two NIR dyes enables the use of nanoparticles for diagnostics only or theranostics. Modification of poly(lactic-co-glycolic acid) (PLGA)-chitosan nanoparticles with trastuzumab provides an efficient nanoparticle uptake by tumor cells and promotes more than sixfold specificity towards HER2-positive cells, leading to a synergistic anticancer effect. We demonstrate optical imaging of the HER2-positive mouse mammary tumor and tumor-specific accumulation of PLGA-IR-780-NB nanoparticles in vivo after intravenous administration. We managed to achieve almost complete suppression of the proliferative activity of cells in vitro by irradiation with an 808 nm laser with a power of 0.27 W for 1 min at a concentration at which nanoparticles are nontoxic to cells in the dark.
Collapse
Affiliation(s)
- Polina A. Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Victoria O. Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
- Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Bionanophotonics Laboratory, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
13
|
Kumari L, Mishra L, Patel P, Sharma N, Gupta GD, Kurmi BD. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer. J Drug Target 2023; 31:889-907. [PMID: 37539789 DOI: 10.1080/1061186x.2023.2245579] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Triple-negative breast cancer (TNBC), a subtype of breast cancer that lacks expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2), has clinical features including a high degree of invasiveness, an elevated risk of metastasis, tendency to relapse, and poor prognosis. It constitutes around 10-15% of all breast cancer, and having heredity of BRCA1 mutated breast cancer could be a reason for the occurrence of TNBC in women. Overexpression of cellular and molecular targets, i.e. CD44 receptor, EGFR receptor, Folate receptor, Transferrin receptor, VEGF receptor, and Androgen receptor, have emerged as promising targets for treating TNBC. Signalling pathways such as Notch signalling and PI3K/AKT/mTOR also play a significant role in carrying out and managing crucial pro-survival and pro-growth cellular processes that can be utilised for targeted therapy against triple-negative breast cancer. This review sheds light on various targeting strategies, including cellular and molecular targets, signalling pathways, poly (ADP-ribose) polymerase inhibitors, antibody-drug conjugates, and immune checkpoint inhibitors PARP, immunotherapy, ADCs have all found a place in the current TNBC therapeutic paradigm. The role of photothermal therapy (PTT) and photodynamic therapy (PDT) has also been explored briefly.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | - Lopamudra Mishra
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College Pharmacy, Moga, Punjab, India
| | - Nitin Sharma
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| | | | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College Pharmacy, Moga, Punjab, India
| |
Collapse
|
14
|
Agnello L, d’Argenio A, Caliendo A, Nilo R, Zannetti A, Fedele M, Camorani S, Cerchia L. Tissue Inhibitor of Metalloproteinases-1 Overexpression Mediates Chemoresistance in Triple-Negative Breast Cancer Cells. Cells 2023; 12:1809. [PMID: 37443843 PMCID: PMC10340747 DOI: 10.3390/cells12131809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is among the most aggressive breast cancer subtypes. Despite being initially responsive to chemotherapy, patients develop drug-resistant and metastatic tumors. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a secreted protein with a tumor suppressor function due to its anti-proteolytic activity. Nevertheless, evidence indicates that TIMP-1 binds to the CD63 receptor and activates noncanonical oncogenic signaling in several cancers, but its role in mediating TNBC chemoresistance is still largely unexplored. Here, we show that mesenchymal-like TNBC cells express TIMP-1, whose levels are further increased in cells generated to be resistant to cisplatin (Cis-Pt-R) and doxorubicin (Dox-R). Moreover, public dataset analyses indicate that high TIMP-1 levels are associated with a worse prognosis in TNBC subjected to chemotherapy. Knock-down of TIMP-1 in both Cis-Pt-R and Dox-R cells reverses their resistance by inhibiting AKT activation. Consistently, TNBC cells exposed to recombinant TIMP-1 or TIMP-1-enriched media from chemoresistant cells, acquire resistance to both cisplatin and doxorubicin. Importantly, released TIMP-1 reassociates with plasma membrane by binding to CD63 and, in the absence of CD63 expression, TIMP-1-mediated chemoresistance is blocked. Thus, our results identify TIMP-1 as a new biomarker of TNBC chemoresistance and lay the groundwork for evaluating whether blockade of TIMP-1 signal is a viable treatment strategy.
Collapse
Affiliation(s)
- Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Annachiara d’Argenio
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Alessandra Caliendo
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Roberto Nilo
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy;
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy; (L.A.); (A.d.); (A.C.); (R.N.); (M.F.); (S.C.)
| |
Collapse
|
15
|
Caverzán MD, Oliveda PM, Beaugé L, Palacios RE, Chesta CA, Ibarra LE. Metronomic Photodynamic Therapy with Conjugated Polymer Nanoparticles in Glioblastoma Tumor Microenvironment. Cells 2023; 12:1541. [PMID: 37296661 PMCID: PMC10252555 DOI: 10.3390/cells12111541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Alternative therapies such as photodynamic therapy (PDT) that combine light, oxygen and photosensitizers (PSs) have been proposed for glioblastoma (GBM) management to overcome conventional treatment issues. An important disadvantage of PDT using a high light irradiance (fluence rate) (cPDT) is the abrupt oxygen consumption that leads to resistance to the treatment. PDT metronomic regimens (mPDT) involving administering light at a low irradiation intensity over a relatively long period of time could be an alternative to circumvent the limitations of conventional PDT protocols. The main objective of the present work was to compare the effectiveness of PDT with an advanced PS based on conjugated polymer nanoparticles (CPN) developed by our group in two irradiation modalities: cPDT and mPDT. The in vitro evaluation was carried out based on cell viability, the impact on the macrophage population of the tumor microenvironment in co-culture conditions and the modulation of HIF-1α as an indirect indicator of oxygen consumption. mPDT regimens with CPNs resulted in more effective cell death, a lower activation of molecular pathways of therapeutic resistance and macrophage polarization towards an antitumoral phenotype. Additionally, mPDT was tested in a GBM heterotopic mouse model, confirming its good performance with promising tumor growth inhibition and apoptotic cell death induction.
Collapse
Affiliation(s)
- Matías Daniel Caverzán
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Patología Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Río Cuarto X5800BIA, Argentina
| | - Paula Martina Oliveda
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
| | - Lucía Beaugé
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
| | - Luis Exequiel Ibarra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5800BIA, Argentina
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Río Cuarto X5800BIA, Argentina
| |
Collapse
|
16
|
Agnello L, d’Argenio A, Nilo R, Fedele M, Camorani S, Cerchia L. Aptamer-Based Strategies to Boost Immunotherapy in TNBC. Cancers (Basel) 2023; 15:cancers15072010. [PMID: 37046670 PMCID: PMC10093095 DOI: 10.3390/cancers15072010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The immune system (IS) may play a crucial role in preventing tumor development and progression, leading, over the last years, to the development of effective cancer immunotherapies. Nevertheless, immune evasion, the capability of tumors to circumvent destructive host immunity, remains one of the main obstacles to overcome for maximizing treatment success. In this context, promising strategies aimed at reshaping the tumor immune microenvironment and promoting antitumor immunity are rapidly emerging. Triple-negative breast cancer (TNBC), an aggressive breast cancer subtype with poor outcomes, is highly immunogenic, suggesting immunotherapy is a viable strategy. As evidence of this, already, two immunotherapies have recently become the standard of care for patients with PD-L1 expressing tumors, which, however, represent a low percentage of patients, making more active immunotherapeutic approaches necessary. Aptamers are short, highly structured, single-stranded oligonucleotides that bind to their protein targets at high affinity and specificity. They are used for therapeutic purposes in the same way as monoclonal antibodies; thus, various aptamer-based strategies are being actively explored to stimulate the IS’s response against cancer cells. The aim of this review is to discuss the potential of the recently reported aptamer-based approaches to boost the IS to fight TNBC.
Collapse
|
17
|
Fan R, Tao X, Zhai X, Zhu Y, Li Y, Chen Y, Dong D, Yang S, Lv L. Application of aptamer-drug delivery system in the therapy of breast cancer. Biomed Pharmacother 2023; 161:114444. [PMID: 36857912 DOI: 10.1016/j.biopha.2023.114444] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Despite significant treatment advances, breast cancer remains the leading cause of cancer death in women. From the current treatment situation, in addition to developing chemoresistant tumours, distant organ metastasis, and recurrences, patients with breast cancer often have a poor prognosis. Aptamers as "chemical antibodies" may be a way to resolve this dilemma. Aptamers are single-stranded, non-coding oligonucleotides (DNA or RNA), resulting their many advantages, including stability for long-term storage, simplicity of synthesis and function, and low immunogenicity, a high degree of specificity and antidote. Aptamers have gained popularity as a method for diagnosing and treating specific tumors in recent years. This article introduces the application of ten different aptamer delivery systems in the treatment and diagnosis of breast cancer, and systematically reviews their latest research progress in breast cancer treatment and diagnosis. It provides a new direction for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Rui Fan
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yunming Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
18
|
Torres-Ruiz S, Tormo E, Garrido-Cano I, Lameirinhas A, Rojo F, Madoz-Gúrpide J, Burgués O, Hernando C, Bermejo B, Martínez MT, Lluch A, Cejalvo JM, Eroles P. High VEGFR3 Expression Reduces Doxorubicin Efficacy in Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24043601. [PMID: 36835014 PMCID: PMC9966352 DOI: 10.3390/ijms24043601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Due to the lack of specific targets, cytotoxic chemotherapy still represents the common standard treatment for triple-negative breast patients. Despite the harmful effect of chemotherapy on tumor cells, there is evidence that treatment could modulate the tumor microenvironment in a way favoring the propagation of the tumor. In addition, the lymphangiogenesis process and its factors could be involved in this counter-therapeutic event. In our study, we have evaluated the expression of the main lymphangiogenic receptor VEGFR3 in two triple-negative breast cancer in vitro models, resistant or not to doxorubicin treatment. The expression of the receptor, at mRNA and protein levels, was higher in doxorubicin-resistant cells than in parental cells. In addition, we confirmed the upregulation of VEGFR3 levels after a short treatment with doxorubicin. Furthermore, VEGFR3 silencing reduced cell proliferation and migration capacities in both cell lines. Interestingly, high VEGFR3 expression was significantly positively correlated with worse survival in patients treated with chemotherapy. Furthermore, we have found that patients with high expression of VEGFR3 present shorter relapse-free survival than patients with low levels of the receptor. In conclusion, elevated VEGFR3 levels correlate with poor survival in patients and with reduced doxorubicin treatment efficacy in vitro. Our results suggest that the levels of this receptor could be a potential marker of meager doxorubicin response. Consequently, our results suggest that the combination of chemotherapy and VEGFR3 blockage could be a potentially useful therapeutic strategy for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
| | - Eduardo Tormo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
| | | | - Ana Lameirinhas
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Federico Rojo
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Pathology, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Juan Madoz-Gúrpide
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Pathology, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Octavio Burgués
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Pathology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Ana Lluch
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Department of Medicine, Universidad de Valencia, 46010 Valencia, Spain
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Physiology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Biotechnology, Universidad Politécnica de Valencia, 46022 Valencia, Spain
- Correspondence:
| |
Collapse
|
19
|
Triphenylphosphonium conjugated gold nanotriangles impact Pi3K/AKT pathway in breast cancer cells: a photodynamic therapy approach. Sci Rep 2023; 13:2230. [PMID: 36754981 PMCID: PMC9908940 DOI: 10.1038/s41598-023-28678-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Although gold nanoparticles based photodynamic therapy (PDT) were reported to improve efficacy and specificity, the impact of surface charge in targeting cancer is still a challenge. Herein, we report gold nanotriangles (AuNTs) tuned with anionic and cationic surface charge conjugating triphenylphosphonium (TPP) targeting breast cancer cells with 5-aminoleuvinic acid (5-ALA) based PDT, in vitro. Optimized surface charge of AuNTs with and without TPP kill breast cancer cells. By combining, 5-ALA and PDT, the surface charge augmented AuNTs deliver improved cellular toxicity as revealed by MTT, fluorescent probes and flow cytometry. Further, the 5-ALA and PDT treatment in the presence of AuNTs impairs cell survival Pi3K/AKT signaling pathway causing mitochondrial dependent apoptosis. The cumulative findings demonstrate that, cationic AuNTs with TPP excel selective targeting of breast cancer cells in the presence of 5-ALA and PDT.
Collapse
|
20
|
Yi M, Xiong B, Li Y, Guo W, Huang Y, Lu B. Manipulate tumor hypoxia for improved photodynamic therapy using nanomaterials. Eur J Med Chem 2023; 247:115084. [PMID: 36599230 DOI: 10.1016/j.ejmech.2022.115084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Due to its low adverse effects, minimal invasiveness, and outstanding patient compliance, photodynamic therapy (PDT) has drawn a great deal of interest, which is achieved through incomplete reduction of O2 by a photosensitizer under light illumination that produces amounts of reactive oxygen species (ROS). However, tumor hypoxia significantly hinders the therapeutic effect of PDT so that tumor cells cannot be eliminated, which results in tumor cells proliferating, invading, and metastasizing. Additionally, O2 consumption during PDT exacerbates hypoxia in tumors, leading to several adverse events after PDT treatment. In recent years, various investigations have focused on conquering or using tumor hypoxia by nanomaterials to amplify PDT efficacy, which is summarized in this review. This comprehensive review's objective is to present novel viewpoints on the advancement of oxygenation nanomaterials in this promising field, which is motivated by hypoxia-associated anti-tumor therapy.
Collapse
Affiliation(s)
- Mengqi Yi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bei Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuyang Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Guo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yunhan Huang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
21
|
Shi Y, Zhao Y, Kang W, Lu W, Chen D, Tao J, Li J, Yu R, Zhao J, Tang R, Teng Z, Weng L. Flexible Hollow Human Serum Albumin-Catalase Nanocapsules with High Accumulation and Uptake Ability for Enhanced Photodynamic Therapy. Int J Nanomedicine 2023; 18:527-539. [PMID: 36742990 PMCID: PMC9894082 DOI: 10.2147/ijn.s393194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023] Open
Abstract
Introduction Photodynamic therapy (PDT) has attracted increasing attention for tumor treatment because of its minimal invasiveness and specific spatiotemporal selectivity. However, insufficient tumor accumulation and low cellular uptake of photosensitizers limit its therapeutic efficacy. Methods In this study, flexible hollow human serum albumin/catalase nanocapsules (HSA/CATs) were created using a core-assisted protein-coating method and combined with the photosensitizer chlorin e6 (HSA/CAT@Ce6) for PDT. Results and Discussion Transmission electron microscopy (TEM) images demonstrate that HSA/CAT nanocapsules are flexible, with a uniform diameter (310 nm) and a well-defined hollow structure. Thanks to their flexibility, HSA/CAT@Ce6 nanocapsules show a higher cellular uptake than rigid nanoparticles. The nanocapsules effectively generate reactive oxygen species (ROS) in 4T1 cells because of their high cellular uptake and catalytic capacity, remarkably enhancing their in vitro PDT efficacy. In addition, the in vivo tumor accumulation of HSA/CAT@Ce6 nanocapsules is significantly larger than that of rigid nanoparticles and Ce6, meaning they are highly effective in tumor cell ablation. This demonstrates that our flexible nanoplatform holds great promise for enhancing PDT of tumor.
Collapse
Affiliation(s)
- Yuyuan Shi
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, People’s Republic of China
| | - Ying Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wen Kang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Wei Lu
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, People’s Republic of China
| | - Dong Chen
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, People’s Republic of China
| | - Jun Tao
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, People’s Republic of China
| | - Jing Li
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, People’s Republic of China
| | - Ruifa Yu
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, People’s Republic of China
| | - Jiajia Zhao
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, People’s Republic of China
| | - Rui Tang
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, People’s Republic of China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics & Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, People’s Republic of China,Correspondence: Zhaogang Teng; Lixing Weng, Email ;
| | - Lixing Weng
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, People’s Republic of China
| |
Collapse
|
22
|
Chen Q, Huang X, Zhang G, Li J, Liu Y, Yan X. Novel targeted pH-responsive drug delivery systems based on PEGMA-modified bimetallic Prussian blue analogs for breast cancer chemotherapy. RSC Adv 2023; 13:1684-1700. [PMID: 36712642 PMCID: PMC9828049 DOI: 10.1039/d2ra06631a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
The development of novel nanoparticle-based drug delivery systems (nano-DDSs) with high loading capacity, low toxicity, precise targeting, and excellent biocompatibility remains urgent and important for the treatment of breast cancer (BC). Herein, novel BC-targeted nano-DDSs based on bimetallic Prussian blue analogs (PBA-DDSs) for intracellular doxorubicin (DOX) delivery and pH-responsive release were developed. Two kinds of bimetallic PBA, namely CuFe (copper-iron) PBA and CoFe (cobalt-iron) PBA, were synthesized by a coprecipitation method, followed by modification with polyethyleneglycol methacrylate (PEGMA) via surface-initiated atom transfer radical polymerization and immobilization with the AS1411 aptamer to obtain two kinds of novel BC-targeted nano-DDS. CuFePBA@PEGMA@AS1411 and CoFePBA@PEGMA@AS1411 showed high drug loading efficiency of 80% and 84%, respectively, for DOX, while 56.0% and 75.9% DOX release could be achieved under acidic pH conditions. In vitro cell viability and in vivo experiments proved the good biocompatibility of both PBA-DDSs. Cellular uptake and in vivo distribution suggested that both PBA-DDSs had efficient nucleolin-targeting capability, indicating the targeted delivery of DOX in tumor tissues. In vivo evaluation of anti-BC efficacy further confirmed that the obtained PBA-DDSs exhibited excellent therapeutic efficacy with limited side-effects. Therefore, the proposed novel PBA-DDSs can be used as secure and effective drug nano-DDSs for BC chemotherapy.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Xiaoyu Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Geyi Zhang
- Department of Orthopedics, Yellow River Sanmenxia Affiliated Hospital of Henan University of Science and Technology No. 2, Heping West Road Sanmenxia 472000 P. R. China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| | - Xu Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University No. 1, Jianshe East Road Zhengzhou 450052 P. R. China
| |
Collapse
|
23
|
Development and classification of RNA aptamers for therapeutic purposes: an updated review with emphasis on cancer. Mol Cell Biochem 2022; 478:1573-1598. [DOI: 10.1007/s11010-022-04614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022]
|
24
|
Gholikhani T, Kumar S, Valizadeh H, Mahdinloo S, Adibkia K, Zakeri-Milani P, Barzegar-Jalali M, Jimenez B. Advances in Aptamers-Based Applications in Breast Cancer: Drug Delivery, Therapeutics, and Diagnostics. Int J Mol Sci 2022; 23:ijms232214475. [PMID: 36430951 PMCID: PMC9695968 DOI: 10.3390/ijms232214475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Aptamers are synthetic single-stranded oligonucleotides (such as RNA and DNA) evolved in vitro using Systematic Evolution of Ligands through Exponential enrichment (SELEX) techniques. Aptamers are evolved to have high affinity and specificity to targets; hence, they have a great potential for use in therapeutics as delivery agents and/or in treatment strategies. Aptamers can be chemically synthesized and modified in a cost-effective manner and are easy to hybridize to a variety of nano-particles and other agents which has paved a way for targeted therapy and diagnostics applications such as in breast tumors. In this review, we systematically explain different aptamer adoption approaches to therapeutic or diagnostic uses when addressing breast tumors. We summarize the current therapeutic techniques to address breast tumors including aptamer-base approaches. We discuss the next aptamer-based therapeutic and diagnostic approaches targeting breast tumors. Finally, we provide a perspective on the future of aptamer-based sensors for breast therapeutics and diagnostics. In this section, the therapeutic applications of aptamers will be discussed for the targeting therapy of breast cancer.
Collapse
Affiliation(s)
- Tooba Gholikhani
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- NanoRa Pharmaceuticals Ltd., Tabriz 5166-15731, Iran
| | - Shalen Kumar
- IQ Science Limited, Wellington 5010, New Zealand
| | - Hadi Valizadeh
- Drug Applied Research Centre, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Somayeh Mahdinloo
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Mohammad Barzegar-Jalali
- Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Balam Jimenez
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Correspondence:
| |
Collapse
|
25
|
A phthalocyanine-based photosensitizer for effectively combating triple negative breast cancer with enhanced photodynamic anticancer activity and immune response. Eur J Med Chem 2022; 241:114644. [PMID: 35939997 DOI: 10.1016/j.ejmech.2022.114644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/01/2023]
Abstract
Although photodynamic therapy (PDT) has attracted great interest, the photosensitizers in clinical had weak inhibition on metastasis and invasion of cancers. Additionally the immune response induced by PDT was insufficient to eradicate cancer. Herein, indoximod, an inhibitor of indoleamine 2,3-dioxygenase (IDO), is introduced to concatenate with zinc phthalocyanines (ZnPc) for effectively overcoming above inadequacy. Due to indoximod moiety, photosensitizer 1-MT-Pc can obtain enhanced intracellular uptake and high reactive oxygen species (ROS) generation. More impressively, 1-MT-Pc can achieve remarkable photocytotoxicity towards TNBC cells and negligible damage to normal cells. Meanwhile, 1-MT-Pc effectively inhibits metastasis and invasion of TNBC cells. Importantly, 1-MT-Pc exhibit elevated inhibitory effect on 4T1 tumor by enhanced PDT and immunotherapy.
Collapse
|
26
|
Aptamer-Functionalized Nanoparticles Mediate PD-L1 siRNA Delivery for Effective Gene Silencing in Triple-Negative Breast Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14102225. [PMID: 36297659 PMCID: PMC9609037 DOI: 10.3390/pharmaceutics14102225] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/21/2022] Open
Abstract
Small interfering RNA (siRNA) therapies require effective delivery vehicles capable of carrying the siRNA cargo into target cells. To achieve tumor-targeting, a drug delivery system would have to incorporate ligands that specifically bind to receptors expressed on cancer cells to function as portals via receptor-mediated endocytosis. Cell-targeting and internalizing aptamers are the most suitable ligands for functionalization of drug-loaded nanocarriers. Here, we designed a novel aptamer-based platform for the active delivery of siRNA targeting programmed cell death-ligand 1 (PD-L1) to triple-negative breast cancer (TNBC) cells. The generated nanovectors consist of PLGA-based polymeric nanoparticles, which were loaded with PD-L1 siRNA and conjugated on their surface with a new RNA aptamer, specific for TNBC and resistant to nucleases. In vitro results demonstrated that these aptamer-conjugated nanoparticles promote siRNA uptake specifically into TNBC MDA-MB-231 and BT-549 target cells, along with its endosomal release, without recognizing non-TNBC BT-474 breast cancer cells. Their efficiency resulted in an almost complete suppression of PD-L1 expression as early as 90 min of cell treatment. This research provides a rational strategy for optimizing siRNA delivery systems for TNBC treatments.
Collapse
|
27
|
Camorani S, d’Argenio A, Agnello L, Nilo R, Zannetti A, Ibarra LE, Fedele M, Cerchia L. Optimization of Short RNA Aptamers for TNBC Cell Targeting. Int J Mol Sci 2022; 23:3511. [PMID: 35408872 PMCID: PMC8998535 DOI: 10.3390/ijms23073511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer with limited targeted therapies. RNA aptamers, suitably chemically modified, work for therapeutic purposes in the same way as antibodies. We recently generated 2'Fluoro-pyrimidines RNA-aptamers that act as effective recognition elements for functional surface signatures of TNBC cells. Here, we optimized three of them by shortening and proved the truncated aptamers as optimal candidates to enable active targeting to TNBC. By using prediction of secondary structure to guide truncation, we identified structural regions that account for the binding motifs of the full-length aptamers. Their chemical synthesis led to short aptamers with superb nuclease resistance, which specifically bind to TNBC target cells and rapidly internalize into acidic compartments. They interfere with the growth of TNBC cells as mammospheres, thus confirming their potential as anti-tumor agents. We propose sTN145, sTN58 and sTN29 aptamers as valuable tools for selective TNBC targeting and promising candidates for effective treatments, including therapeutic agents and targeted delivery nanovectors.
Collapse
Affiliation(s)
- Simona Camorani
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Annachiara d’Argenio
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Lisa Agnello
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Roberto Nilo
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Antonella Zannetti
- National Research Council (CNR), Institute of Biostructures and Bioimaging (IBB), 80145 Naples, Italy;
| | - Luis Exequiel Ibarra
- Institute of Environmental Biotechnology and Health (INBIAS), National University of Rio Cuarto (UNRC), National Council for Scientific and Technological Research (CONICET), Río Cuarto X5800BIA, Argentina;
| | - Monica Fedele
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| | - Laura Cerchia
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), 80131 Naples, Italy; (A.d.); (L.A.); (R.N.); (M.F.)
| |
Collapse
|
28
|
Spanu C, Camorani S, Tortorella S, Agnello L, Maturi M, Comes Franchini M, Cerchia L, Locatelli E. Synthesis and functionalization of casein nanoparticles with aptamers for triple-negative breast cancer targeting. NEW J CHEM 2022. [DOI: 10.1039/d2nj03367d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This work shows the synthesis of a drug delivery system made of casein nanoparticles able to host hydrophobic molecules and be functionalized with aptamers targeting the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Chiara Spanu
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Silvia Tortorella
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore”, CNR, Via S. Pansini 5, 80131 Naples, Italy
| | - Erica Locatelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|