1
|
Martínez-Jiménez JE, Sathisaran I, Reyes Figueroa F, Reyes S, López-Nieves M, Vlaar CP, Monbaliu JCM, Romañach R, Ruaño G, Stelzer T, Duconge J. A review of precision medicine in developing pharmaceutical products: Perspectives and opportunities. Int J Pharm 2025; 670:125070. [PMID: 39689830 PMCID: PMC11781955 DOI: 10.1016/j.ijpharm.2024.125070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Over the next decade, Precision Medicine (PM) is poised to become the standard of care in pharmaceutical therapy, necessitating a fundamental transformation in the design and development of innovative custom-made drug products. To date, a comprehensive review linking PM with practical personalized drug formulations is missing. This review attempts to provide an overview of state-of-the-art formulation approaches capable of translating PM evaluation and resulting recommendations (clinical research) into tailored drug products (non-clinical research) for real-world patients. Comprehensive literature searches in four scientific databases (Scopus, SciFinder, Web of Science, and PubMed) were performed. Current approaches to point-of-care PM formulations and needs-based locally distributed manufacturing presently under research & development (R&D) as alternatives to conventional large-scale manufacturing of one-size-fits-all drug products are discussed. The following methods were identified as the most promising PM formulation strategies: tablet splitting, liquid dispensing, compounding pharmacies, additive manufacturing, drug impregnation, drug extrusion, and orodispersible films (ODFs). The challenges and opportunities of current state-of-the-art formulation technologies that can enable making PM routinely accessible in practice settings will be discussed. Additionally, light will be shed on point-of-use manufacturing (Pharmacy on Demand) as an uncharted territory for PM and its pathway towards practical implementation.
Collapse
Affiliation(s)
- Jorge E Martínez-Jiménez
- Pharmacogenomics (PGx) Laboratory, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00936, United States
| | - Indumathi Sathisaran
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, 00926, United States
| | - Francheska Reyes Figueroa
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, 00926, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Stephanie Reyes
- Pharmacogenomics (PGx) Laboratory, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00936, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Marisol López-Nieves
- Department of Pharmacy Practice, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Cornelis P Vlaar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Liège (Sart Tilman), Belgium
| | - Rodolfo Romañach
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, United States
| | - Gualberto Ruaño
- Hartford Hospital Institute of Living, Hartford, CT 06102, United States
| | - Torsten Stelzer
- Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, 00926, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States.
| | - Jorge Duconge
- Pharmacogenomics (PGx) Laboratory, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00936, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico - Medical Sciences Campus, San Juan, PR 00936, United States.
| |
Collapse
|
2
|
Jadach B, Kowalczyk M, Froelich A. Assessment of Alginate Gel Films as the Orodispersible Dosage Form for Meloxicam. Gels 2024; 10:379. [PMID: 38920926 PMCID: PMC11202906 DOI: 10.3390/gels10060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
The aim of this study was to obtain films based on sodium alginate (SA) for disintegration in the oral cavity. The films were prepared with a solvent-casting method, and meloxicam (MLX) as the active ingredient was suspended in a 3% sodium alginate solution. Two different solid-dosage-form additives containing different disintegrating agents, i.e., VIVAPUR 112® (MCC; JRS Pharma, Rosenberg, Germany) and Prosolve EASYtabs SP® (MIX; JRS Pharma, Rosenberg, Germany), were used, and four different combinations of drying time and temperature were tested. The influence of the used disintegrant on the properties of the ODFs (orodispersible films) was investigated. The obtained films were studied for their appearance, elasticity, mass uniformity, water content, meloxicam content and, finally, disintegration time, which was studied using two different methods. The films obtained with the solvent-casting method were flexible and homogeneous in terms of MLX content. Elasticity was slightly better when MIX was used as a disintegrating agent. However, these samples also revealed worse uniformity and mechanical durability. It was concluded that the best properties of the films were achieved using the mildest drying conditions. The type of the disintegrating agent had no effect on the amount of water remaining in the film after drying. The water content depended on the drying conditions. The disintegration time was not affected by the disintegrant type, but some differences were observed when various drying conditions were applied. However, regardless of the formulation type and manufacturing conditions, the analyzed films could not be classified as fast disintegrating films, as the disintegration time exceeded 30 s in all of the tested formulations.
Collapse
Affiliation(s)
- Barbara Jadach
- Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Martyna Kowalczyk
- Division of Industrial Pharmacy, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland;
| | - Anna Froelich
- 3D Printing Division, Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland
| |
Collapse
|
3
|
Jacob S, Boddu SHS, Bhandare R, Ahmad SS, Nair AB. Orodispersible Films: Current Innovations and Emerging Trends. Pharmaceutics 2023; 15:2753. [PMID: 38140094 PMCID: PMC10747242 DOI: 10.3390/pharmaceutics15122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Orodispersible films (ODFs) are thin, mechanically strong, and flexible polymeric films that are designed to dissolve or disintegrate rapidly in the oral cavity for local and/or systemic drug delivery. This review examines various aspects of ODFs and their potential as a drug delivery system. Recent advancements, including the detailed exploration of formulation components, such as polymers and plasticizers, are briefed. The review highlights the versatility of preparation methods, particularly the solvent-casting production process, and novel 3D printing techniques that bring inherent flexibility. Three-dimensional printing technology not only diversifies active compounds but also enables a multilayer approach, effectively segregating incompatible drugs. The integration of nanoparticles into ODF formulations marks a significant breakthrough, thus enhancing the efficiency of oral drug delivery and broadening the scope of the drugs amenable to this route. This review also sheds light on the diverse in vitro evaluation methods utilized to characterize ODFs, ongoing clinical trials, approved marketed products, and recent patents, providing a comprehensive outlook of the evolving landscape of orodispersible drug delivery. Current patient-centric approaches involve developing ODFs with patient-friendly attributes, such as improved taste masking, ease of administration, and enhanced patient compliance, along with the personalization of ODF formulations to meet individual patient needs. Investigating novel functional excipients with the potential to enhance the permeation of high-molecular-weight polar drugs, fragile proteins, and oligonucleotides is crucial for rapid progress in the advancing domain of orodispersible drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Richie Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Samiullah Shabbir Ahmad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
4
|
Mu Y, Zhao L, Shen L. Medication adherence and pharmaceutical design strategies for pediatric patients: An overview. Drug Discov Today 2023; 28:103766. [PMID: 37708932 DOI: 10.1016/j.drudis.2023.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Medication adherence in pediatric patients is a key factor in drug development and dosage form design. High medication adherence is not only important to achieve the expected treatment effects but can also effectively reduce medical costs. It is an ongoing task to accurately identify differences in medication adherence between children and adults and analyze the factors related to pediatric medication adherence. This is necessary to guide the development of pediatric drugs. This review focuses on factors that influence pediatric medication adherence as well as pharmaceutical design strategies to improve adherence. Current new dosage forms, new technologies, and new devices are comprehensively summarized in terms of their advantages and limitations.
Collapse
Affiliation(s)
- Yingying Mu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China.
| |
Collapse
|
5
|
Bogdan C, Hales D, Cornilă A, Casian T, Iovanov R, Tomuță I, Iurian S. Texture analysis – a versatile tool for pharmaceutical evaluation of solid oral dosage forms. Int J Pharm 2023; 638:122916. [PMID: 37019322 DOI: 10.1016/j.ijpharm.2023.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In the past few decades, texture analysis (TA) has gained importance as a valuable method for the characterization of solid oral dosage forms. As a result, an increasing number of scientific publications describe the textural methods that evaluate the extremely diverse category of solid pharmaceutical products. Within the current work, the use of texture analysis in the characterization of solid oral dosage forms is summarised with a focus on the evaluation of intermediate and finished oral pharmaceutical products. Several texture methods are reviewed regarding the applications in mechanical characterization, and mucoadhesion testing, but also in estimating the disintegration time and in vivo specific features of oral dosage forms. As there are no pharmacopoeial standards for pharmaceutical products tested through texture analysis, and there are important differences between reported results due to different experimental conditions, the choice of testing protocol and parameters is challenging. Thereby, this work aims to guide the research scientists and quality assurance professionals involved in different stages of drug development into the selection of optimal texture methodologies depending on the product characteristics and quality control needs.
Collapse
Affiliation(s)
- Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania
| | - Dana Hales
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Cornilă
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Rareș Iovanov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Cornilă A, Iurian S, Tomuță I, Porfire A. Orally Dispersible Dosage Forms for Paediatric Use: Current Knowledge and Development of Nanostructure-Based Formulations. Pharmaceutics 2022; 14:pharmaceutics14081621. [PMID: 36015247 PMCID: PMC9414456 DOI: 10.3390/pharmaceutics14081621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
The paediatric population has always suffered from a lack of medicines tailored to their needs, especially in terms of accurate dosage, stability and acceptability. Orodispersible dosage forms have gone through a resurrection as an alternative to liquid formulations or fractioned solid formulations, although they are still subject to several inconveniences, among which the unpleasant taste and the low oral bioavailability of the API are the most significant hurdles in the way of achieving an optimal drug product. Nanostructures can address these inconveniences through their size and variety, owing to the plethora of materials that can be used in their manufacturing. Through the formation and functionalisation of nanostructures, followed by their inclusion in orodispersible dosage forms, safe, stable and acceptable medicines intended for paediatric use can be developed.
Collapse
|