1
|
Graça A, Pereira C, Martins AM, Raposo S, Ribeiro HM, Marto J. Upgrading skin barrier Protection: Addition of active ingredients to a Gelatin/Tannic Acid-Based hydrogel patch for treating skin lesions related to Personal protective Equipment. Int J Pharm 2025; 669:125110. [PMID: 39708844 DOI: 10.1016/j.ijpharm.2024.125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Prolonged use of Personal Protective Equipment, like surgical masks, can cause skin issues such as acne ("maskne") and rosacea flare-ups due to pressure and moisture. While dressings can protect the skin, they often reduce mask effectiveness and lack pharmaceuticals to treat common skin lesions. This study introduces an innovative dual-function gelatin/tannic acid-based hydrogel patch incorporating metronidazole (1% w/w) or salicylic acid (2% w/w) to offer both skin protection and treatment. The hydrogels were characterized for gelation temperature, burst strength, extensibility, adhesivity, and tribological properties to assess the effects of the active ingredients on their mechanical performance. In vitro release studies using Franz diffusion cells under occlusive conditions evaluated the drug release profile from the patches. Results showed that gelatin/tannic acid and gelatin/tannic acid-metronidazole hydrogels had similar gelation temperatures (41.65 ± 1.95 °C), while the salicylic acid formulation exhibited a lower gelation temperature (33.24 ± 0.40 °C). Adhesivity improved with the addition of active ingredients, increasing by about 0.5 N, and burst strength significantly increased with metronidazole (about 6 N). Both formulations demonstrated enhanced extensibility and were suitable for all skin types in tribological studies. The in vitro release studies showed an initial burst release followed by controlled release, unaffected by mask placement. These findings suggest that dual-function hydrogel patches could provide effective skin protection and improve skin health during prolonged mask use, offering a promising solution for conditions like "maskne" and rosacea.
Collapse
Affiliation(s)
- Angélica Graça
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Pereira
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Raposo
- Laboratório Edol - Produtos Farmacêuticos, S.A., Linda-a-Velha, Portugal
| | - Helena M Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
2
|
Odziomek K, Drabczyk AK, Kościelniak P, Konieczny P, Barczewski M, Bialik-Wąs K. The Role of Freeze-Drying as a Multifunctional Process in Improving the Properties of Hydrogels for Medical Use. Pharmaceuticals (Basel) 2024; 17:1512. [PMID: 39598423 PMCID: PMC11597604 DOI: 10.3390/ph17111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Freeze-drying is a dehydration method that extends the shelf life and stability of drugs, vaccines, and biologics. Recently, its role has expanded beyond preservation to improve novel pharmaceuticals and their carriers, such as hydrogels, which are widely studied for both drug delivery and wound healing. The main aim of this study was to explore the multifunctional role of freeze-drying in improving the physicochemical properties of sodium alginate/poly(vinyl alcohol)-based hydrogels for medical applications. Methods: The base matrix and hydrogels containing a nanocarrier-drug system, were prepared by chemical cross-linking and then freeze-dried for 24 h at -53 °C under 0.2 mBa. Key analyses included determination of gel fraction, swelling ratio, FT-IR, SEM, TG/DTG, in vitro drug release and kinetics, and cytotoxicity assessment. Results: Freeze-drying caused an increase in the gel fraction of the hydrogel with the dual drug delivery system from 55 ± 1.6% to 72 ± 0.5%. Swelling ability was pH-dependent and remained in the same range (175-282%). Thermogravimetric analysis showed that freeze-dried hydrogels exhibited higher thermal stability than their non-freeze-dried equivalents. The temperature at 10% weight loss increased from 194.0 °C to 198.9 °C for the freeze-dried drug-loaded matrix, and from 188.4 °C to 203.1 °C for the freeze-dried drug-free matrix. The average pore size of the freeze-dried hydrogels was in the range of 1.07 µm ± 0.54 to 1.74 µm ± 0.92. In vitro drug release revealed that active substances were released in a controlled and prolonged way, according to the Korsmeyer-Peppas model. The cumulative amount of salicylic acid released at pH = 9.0 after 96 h was 63%, while that of fluocinolone acetonide reached 73%. Both hydrogels were non-toxic to human fibroblast cells, maintaining over 90% cell viability after 48 h of incubation. Conclusions: The results show a high potential for commercialisation of the obtained hydrogels as medical dressings.
Collapse
Affiliation(s)
- Kacper Odziomek
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, 24 Warszawska Street, 31155 Cracow, Poland;
| | - Anna K. Drabczyk
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry and Technology, 24 Warszawska Street, 31155 Cracow, Poland;
| | - Paulina Kościelniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, 6 Uniwersytetu Poznanskiego Street, 61614 Poznan, Poland; (P.K.); (P.K.)
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, 6 Uniwersytetu Poznanskiego Street, 61614 Poznan, Poland; (P.K.); (P.K.)
| | - Mateusz Barczewski
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, 3 Piotrowo Street, 61138 Poznan, Poland;
| | - Katarzyna Bialik-Wąs
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Chemistry and Technology of Polymers, 24 Warszawska Street, 31155 Cracow, Poland
| |
Collapse
|
3
|
Zhou S, Liu Z, Jin Y, Huang Y, Fang Y, Tian H, Wu H. Poly (lactic acid) electrospun nanofiber membranes: Advanced characterization for biomedical applications with drug loading performance studies. Int J Biol Macromol 2024; 281:136188. [PMID: 39368570 DOI: 10.1016/j.ijbiomac.2024.136188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Traditional dressings have shortcomings such as poor moisture absorption and easy to adhere, making the development of new dressings crucial. In this work, a PLA/PVP crosslinked drug-loaded nanofiber membrane was prepared through electrospinning and ultraviolet crosslinking, with poly (lactic acid) (PLA), polyvinylpyrrolidone (PVP), and salicylic acid (SA) as starting materials. The results demonstrated that the inclusion of PVP notably boosted the viscosity and conductivity of the blend spinning solution. The roughness of the fabricated fiber was elevated, and the diameter of the fibers was more uniform. Additionally, the incorporation of PVP not only enhanced the porosity of the fiber membrane but also effectively decreased its contact angle. Notably, when the PVP content reached 40 %, the contact angle underwent a substantial reduction, decreasing significantly from 125.4° to 82.2°. The SA drug-loaded fiber membrane exhibited a notable bacteriostatic effect against Escherichia coli and Staphylococcus aureus, with its release behavior adhering to Fick's diffusion law. In the cell viability experiment, the cell proliferation rate increased from 94 % to 129 % after 3 days. This shows that the prepared membrane has good antibacterial effect and cell compatibility, which provides a theoretical basis for the construction of a new medical dressing.
Collapse
Affiliation(s)
- Sudan Zhou
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zixuan Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yujuan Jin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yansong Huang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yiqi Fang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Huafeng Tian
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Hua Wu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
4
|
Bialik-Wąs K, Kulawik-Pióro A, Sienkiewicz A, Łętocha A, Osińska J, Malarz K, Mrozek-Wilczkiewicz A, Barczewski M, Lanoue A, Giglioli-Guivarc'h N, Miastkowska M. Design and development of multibiocomponent hybrid alginate hydrogels and lipid nanodispersion as new materials for medical and cosmetic applications. Int J Biol Macromol 2024; 278:134405. [PMID: 39116986 DOI: 10.1016/j.ijbiomac.2024.134405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
The multibiocomponent hybrid alginate hydrogels based on brown and sea algae, containing 100 % ingredients of natural origin were prepared by ionic crosslinking reaction of a polymeric matrix with lipid nanodispersion. To the best of the Authors' knowledge such multicomponent biobased hydrogel of promising medical and cosmetical applications for the first time was obtained in the environment of flower water, received earlier as a waste by-product from various chemical processes. An innovative hybrid alginate hydrogel that is completely biodegradable and eco-friendly was obtained following waterless and upcycling trends that are in line with the principles of sustainable development. The optimal composition of the lipid nanodispersion and the polymeric matrix was selected using the statistical method of design of the experiment. Based on obtained results, multibiocomponent hybrid alginate hydrogels with various ratios of lipid nanodispersion were obtained. Subsequently, the porous structure and elasticity of the hybrid hydrogels were analyzed. Moreover, to confirm the safety of the multibiocomponent alginate hybrid hydrogels the cytotoxic tests were carried out using human fibroblasts and keratinocytes cell lines. As the final product hybrid of hydrolate-swollen alginate hydrogel and lipid nanodispersion containing several active ingredients (silymarin, bakuchiol, spirulina) was obtained.
Collapse
Affiliation(s)
- Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland.
| | - Agnieszka Kulawik-Pióro
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Anna Sienkiewicz
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Anna Łętocha
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Julia Osińska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Malarz
- Department of Systems Biology and Engineering, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland; Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty St., 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- Department of Systems Biology and Engineering, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland; Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty St., 41-500 Chorzow, Poland
| | - Mateusz Barczewski
- Institute of Materials Technology, Faculty of Mechanical Engineering and Management, Poznan University of Technology, 24 Jana Pawła II St., 60-965 Poznan, Poland
| | - Arnaud Lanoue
- Université de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, 31 av. Monge, F-37200 Tours, France
| | - Nathalie Giglioli-Guivarc'h
- Université de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, 31 av. Monge, F-37200 Tours, France
| | - Małgorzata Miastkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| |
Collapse
|
5
|
Zuo RN, Gong JH, Gao XG, Huang JH, Zhang JR, Jiang SX, Guo DW. Using halofuginone-silver thermosensitive nanohydrogels with antibacterial and anti-inflammatory properties for healing wounds infected with Staphylococcus aureus. Life Sci 2024; 339:122414. [PMID: 38216121 DOI: 10.1016/j.lfs.2024.122414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Contamination by pathogens, such as bacteria, can irritate a wound and prevent its healing, which may affect the physical fitness of the infected person. As such, the development of more novel nano-biomaterials able to cope with the inflammatory reaction to bacterial infection during the wound healing process to accelerate wound healing is required. Herein, a halofuginone‑silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. HTPM&AgNPs-gel was characterized based on thermogravimetric analysis, differential scanning calorimetry, morphology, injectability, and rheological mechanics that reflected its exemplary nature. Moreover, HTPM&AgNPs-gel was further tested for its ability to facilitate healing of skin fibroblasts and exert antibacterial activity. Finally, HTPM&AgNPs-gel was tested for its capacity to accelerate general wound healing and treat bacterially induced wound damage. HTPM&AgNPs-gel appeared spherical under a transmission electron microscope and showed a grid structure under a scanning electron microscope. Additionally, HTPM&AgNPs-gel demonstrated excellent properties, including injectability, temperature-dependent swelling behavior, low loss at high temperatures, and appropriate rheological properties. Further, HTPM&AgNPs-gel was found to effectively promote healing of skin fibroblasts and inhibit the proliferation of Escherichia coli and Staphylococcus aureus. An evaluation of the wound healing efficacy demonstrated that HTPM&AgNPs-gel had a more pronounced ability to facilitate wound repair and antibacterial effects than HTPM-gel or AgNPs-gel alone, and exhibited ideal biocompatibility. Notably, HTPM&AgNPs-gel also inhibited inflammatory responses in the healing process. HTPM&AgNPs-gel exhibited antibacterial, anti-inflammatory, and scar repair features, which remarkably promoted wound healing. These findings indicated that HTPM&AgNPs-gel holds great clinical potential as a promising and valuable wound healing treatment.
Collapse
Affiliation(s)
- Ru-Nan Zuo
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui 230036, PR China; Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Jia-Hao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Xiu-Ge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Jin-Hu Huang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Jun-Ren Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Shan-Xiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China
| | - Da-Wei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, PR China.
| |
Collapse
|
6
|
Chelu M, Popa M, Ozon EA, Pandele Cusu J, Anastasescu M, Surdu VA, Calderon Moreno J, Musuc AM. High-Content Aloe vera Based Hydrogels: Physicochemical and Pharmaceutical Properties. Polymers (Basel) 2023; 15:polym15051312. [PMID: 36904552 PMCID: PMC10007233 DOI: 10.3390/polym15051312] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The present research focuses on the physicochemical and pharmacotechnical properties of new hydrogels obtained using allantoin, xanthan gum, salicylic acid and different concentrations of Aloe vera (5, 10, 20% w/v in solution; 38, 56, 71 wt% in dry gels). The thermal behavior of Aloe vera composite hydrogels was studied using DSC and TG/DTG analyses. The chemical structure was investigated using different characterization methods (XRD, FTIR and Raman spectroscopies) and the morphology of the hydrogels was studied SEM and AFM microscopy. Pharmacotechnical evaluation on tensile strength and elongation, moisture content, swelling and spreadability was also completed. Physical evaluation confirmed that the appearance of the prepared Aloe vera based hydrogels was homogeneous and the color varied from pale beige to deep opaque beige with increasing Aloe vera concentration. All other evaluation parameters, e.g., pH, viscosity, spreadability and consistency were found to be adequate in all hydrogel formulations. SEM and AFM images show that the structure of the hydrogels condensed into homogeneous polymeric solids with the addition of Aloe vera, in accordance with the decrease in peak intensities observed via XRD analysis. These results suggest interactions between the hydrogel matrix and Aloe vera as observed via FTIR and TG/DTG and DSC analyses. Considering that Aloe vera content higher than 10% (w/v) did not stimulate further interactions, this formulation (FA-10) can be used for further biomedical applications.
Collapse
Affiliation(s)
- Mariana Chelu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Monica Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Jeanina Pandele Cusu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Vasile Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Correspondence: (M.P.); (J.C.M.); (A.M.M.)
| |
Collapse
|
7
|
Baldino L, Reverchon E. Salicylic Acid Co-Precipitation with Alginate via Supercritical Atomization for Cosmetic Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7634. [PMID: 36363226 PMCID: PMC9654882 DOI: 10.3390/ma15217634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Alginate-based microparticles were produced via supercritical assisted atomization (SAA) with the aim of obtaining a biocompatible and low-cost carrier for the delivery of active compounds in cosmetic applications. Salicylic acid was selected as an active model compound, and it was co-precipitated with alginate via SAA, operating at 82 bar and 80 °C. In particular, the drug-to-polymer weight ratio was fixed at 1/4, whereas polymer concentration was varied from 5 to 20 mg/mL in the starting aqueous solution. Operating in this way, alginate-salicylic acid microparticles were characterized by a mean diameter of 0.72 ± 0.25 µm, and the active compound became amorphous after processing. A salicylic acid encapsulation efficiency close to 100% was reached, and the drug release time from the biopolymeric microparticles was prolonged up to nine times with respect to untreated salicylic acid powder.
Collapse
|