1
|
Razavi ZS, Razavi FS, Alizadeh SS. Inorganic nanoparticles and blood-brain barrier modulation: Advancing targeted neurological therapies. Eur J Med Chem 2025; 287:117357. [PMID: 39947054 DOI: 10.1016/j.ejmech.2025.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The blood-brain barrier (BBB) is a protective barrier that complicates the treatment of neurological disorders. Pharmaceutical compounds encounter significant challenges in crossing the central nervous system (CNS). Nanoparticles (NPs) are promising candidates for treating neurological conditions as they help facilitate drug delivery. This review explores the diverse characteristics and mechanisms of inorganic NPs (INPs), including metal-based, ferric-oxide, and carbon-based nanoparticles, which facilitate their passage through the BBB. Emphasis is placed on the physicochemical properties of NPs such as size, shape, surface charge, and surface modifications and their role in enhancing drug delivery efficacy, reducing immune clearance, and improving BBB permeability. Specific synthesis approaches are demonstrated, with an emphasis on the influence of each one on NP property, biological activity and the capability of an NP for its intended application. As for the advances in the field, the review emphasizes those characterized the NP formulation and surface chemistry that conquered the BBB and tested the need for its alteration. Current findings indicate that NP therapy can in the future enable effective targeting of specific brain disorders and eventually evolve this drug delivery system, which would allow for lower doses with less side effects.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
2
|
Liu D, Zhao Y, Liu R, Qiao B, Lu X, Bei Y, Niu Y, Yang X. Traditional Chinese medicine as a viable option for managing vascular cognitive impairment: A ray of hope. Medicine (Baltimore) 2025; 104:e41694. [PMID: 40101029 PMCID: PMC11922442 DOI: 10.1097/md.0000000000041694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Vascular cognitive impairment (VCI) is a prevalent cognitive disorder resulting from cerebrovascular disease and encompasses a spectrum of cognitive deficits, ranging from mild impairment to vascular dementia (VD). VCI is responsible for a minimum of 20% to 40% of all cases of dementia, with its prevalence ranking second only to Alzheimer's disease on a global scale. The pathogenesis of VCI is complex and includes a lack of cholinergic nerve cells, inflammation, oxidative stress, alterations in the blood-brain barrier, and cell apoptosis. Current guideline-recommended drugs have unsatisfactory therapeutic effects. However, traditional Chinese medicine (TCM) has long been associated with treating dementia, and numerous studies regarding treating dementia with TCM have been conducted. The etiology and pathogenesis of VaD are linked to deficiencies in the spleen and kidney, as well as phlegm turbidity. Treatment involves benefiting the spleen and kidney, improving blood circulation, removing blood stasis, and dispelling phlegm. Moreover, TCM presents benefits such as few adverse effects, low cost, long-term use suitability, and preventive effects. This review outlines the pathogenesis of VCI in both modern medicine and TCM, examines traditional prescriptions and single-agent ingredients with their pharmacological effects, emphasizes TCM's unique features, and explores its multi-targeted approach to treating VCI.
Collapse
Affiliation(s)
- Di Liu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
- Department of Pain, Heze Municipal Hospital, Heze, China
| | - YueYu Zhao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - RunFeng Liu
- Department of Traditional Chinese Medicine, Weifang People's Hospital, Weifang, China
| | - BaoGuang Qiao
- Department of Pain, Heze Municipal Hospital, Heze, China
| | - XinRu Lu
- College of Medical, Shandong Yingcai University, Jinan, China
| | - YuanYuan Bei
- Shandong Jiaotong College Hospital, Jinan, China
| | - Yin Niu
- Department of Endocrinology, People's Hospital of Dingtao District, Heze, China
| | - XiaoNi Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
3
|
Liu L, He H, Du B, He Y. Nanoscale drug formulations for the treatment of Alzheimer's disease progression. RSC Adv 2025; 15:4031-4078. [PMID: 39926227 PMCID: PMC11803502 DOI: 10.1039/d4ra08128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no effective disease-modifying treatments. The blood-brain barrier hinders drug delivery to the brain, limiting therapeutic efficacy. Nanoparticle-based systems have emerged as promising tools to overcome these challenges. This review highlights recent advances in nanoparticle technologies for AD treatment, including liposomes, polymeric, inorganic, and biomimetic nanoparticles. These nanoparticles improve drug delivery across the blood-brain barrier, improve stability and bioavailability, and enable targeted delivery to affected brain regions. Functionalization strategies further enhance their therapeutic potential. Multifunctional nanoparticles combining therapeutic and diagnostic properties offer theranostic approaches. While progress has been made, challenges related to safety, targeting precision, and clinical translation remain. Future perspectives emphasize the need for collaborative efforts to optimize nanoparticle design, conduct rigorous studies, and accelerate the development of effective nanotherapeutics. With continued innovation, nanoparticle-based delivery systems hold great promise for revolutionizing AD treatment.
Collapse
Affiliation(s)
- Liqin Liu
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Haini He
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Bin Du
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610000 China
| | - Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| |
Collapse
|
4
|
Anitha K, Singh MK, Kohat K, Sri Varshini T, Chenchula S, Padmavathi R, Amerneni LS, Vishnu Vardhan K, Mythili Bai K, Chavan MR, Bhatt S. Recent Insights into the Neurobiology of Alzheimer's Disease and Advanced Treatment Strategies. Mol Neurobiol 2025; 62:2314-2332. [PMID: 39102108 DOI: 10.1007/s12035-024-04384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
In recent years, significant advancements have been made in understanding Alzheimer's disease from both neurobiological and clinical perspectives. Exploring the complex systems underlying AD has unveiled insights that could potentially revolutionize therapeutic approaches. Recent investigations have highlighted intricate interactions among genetic, molecular, and environmental factors in AD. Optimism arises from neurobiological advancements and diverse treatment options, potentially slowing or halting disease progression. Amyloid-beta plaques and tau protein tangles crucially influence AD onset and progression. Emerging treatments involve diverse strategies, such as approaches targeting multiple pathways involved in AD pathogenesis, such as inflammation, oxidative stress, and synaptic dysfunction pathways. Clinical trials using humanized monoclonal antibodies, focusing on immunotherapies eliminating amyloid-beta, have shown promise. Nonpharmacological interventions such as light therapy, electrical stimulation, cognitive training, physical activity, and dietary changes have drawn attention for their potential to slow cognitive aging and enhance brain health. Precision medicine, which involves tailoring therapies to individual genetic and molecular profiles, has gained traction. Ongoing research and interdisciplinary collaboration are expected to yield more effective treatments.
Collapse
Affiliation(s)
- Anitha K
- School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed to University, Shirpur, 425405, India
| | | | - Komal Kohat
- All India Institute of Medical Sciences, Madhya Pradesh, Bhopal, 462020, India
| | - Sri Varshini T
- All India Institute of Medical Sciences, Raipur, 462020, India
| | - Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, 462020, India.
| | - Padmavathi R
- SVS Medical College, Hyderabad, Telangana, India
| | | | - Vishnu Vardhan K
- All India Institute of Medical Sciences, Madhya Pradesh, Bhopal, 462020, India
| | | | - Madhav Rao Chavan
- All India Institute of Medical Sciences, Mangalagiri, Andhra Pradesh, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, MIT World Peace University, Dr. Vishwanath Karad, Pune, 411038, Maharashtra, India
| |
Collapse
|
5
|
Pei J, Kumarasamy RV, Jayaraman S, Kanniappan GV, Long Q, Palanisamy CP. Quercetin-functionalized nanomaterials: Innovative therapeutic avenues for Alzheimer's disease management. Ageing Res Rev 2025; 104:102665. [PMID: 39824363 DOI: 10.1016/j.arr.2025.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
Alzheimer's Disease (AD) is a major global health challenge, largely due to its complex pathology and the limited effectiveness of existing treatments. Quercetin, a bioactive compound belonging to the flavonoid class, its promising antioxidant, anti-inflammatory, and neuroprotective effects in addressing AD. However, its therapeutic potential is hindered by challenges such as low bioavailability, instability, and restricted permeability across the blood-brain barrier (BBB). Advances in nanotechnology have paved the way for quercetin-functionalized nanomaterials, offering solutions to these challenges. These nanostructures enhance quercetin's solubility, stability, and targeted brain delivery, thereby augmenting its therapeutic potential. In this review, nanocarriers (like liposomes, polymeric nanoparticles, and metal-based nanosystems) are explored for their potential application in optimizing quercetin delivery in AD management. It discusses the mechanisms by which these nanostructures enhance BBB penetration and exert neuroprotective effects. Furthermore, the review examines the outcomes of preclinical and in vitro studies, while addressing the challenges of scaling these approaches for clinical application. By merging the fields of nanotechnology and neurotherapeutics, the importance of quercetin-functionalized nanomaterials in advancing AD management strategies is underscored in this review.
Collapse
Affiliation(s)
- Jinjin Pei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Pro-cessing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guang-dong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Guangdong Ocean University, Zhanjiang 524088, China
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Gopalakrishnan Velliyur Kanniappan
- Department of physiology, Saveetha Medical College & Hospital (SMCH), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602105, India.
| | - Qianfa Long
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an 710003, PR China.
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
6
|
Marvi F, Chen YH, Sawan M. Alzheimer's Disease Diagnosis in the Preclinical Stage: Normal Aging or Dementia. IEEE Rev Biomed Eng 2025; 18:74-92. [PMID: 38478432 DOI: 10.1109/rbme.2024.3376835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alzheimer's disease (AD) progressively impairs the memory and thinking skills of patients, resulting in a significant global economic and social burden each year. However, diagnosis of this neurodegenerative disorder can be challenging, particularly in the early stages of developing cognitive decline. Current clinical techniques are expensive, laborious, and invasive, which hinders comprehensive studies on Alzheimer's biomarkers and the development of efficient devices for Point-of-Care testing (POCT) applications. To address these limitations, researchers have been investigating various biosensing techniques. Unfortunately, these methods have not been commercialized due to several drawbacks, such as low efficiency, reproducibility, and the lack of accurate identification of AD markers. In this review, we present diverse promising hallmarks of Alzheimer's disease identified in various biofluids and body behaviors. Additionally, we thoroughly discuss different biosensing mechanisms and the associated challenges in disease diagnosis. In each context, we highlight the potential of realizing new biosensors to study various features of the disease, facilitating its early diagnosis in POCT. This comprehensive study, focusing on recent efforts for different aspects of the disease and representing promising opportunities, aims to conduct the future trend toward developing a new generation of compact multipurpose devices that can address the challenges in the early detection of AD.
Collapse
|
7
|
Yang H, Tan H, Wen H, Xin P, Liu Y, Deng Z, Xu Y, Gao F, Zhang L, Ye Z, Zhang Z, Chen Y, Wang Y, Sun J, Lam JWY, Zhao Z, Kwok RTK, Qiu Z, Tang BZ. Recent Progress in Nanomedicine for the Diagnosis and Treatment of Alzheimer's Diseases. ACS NANO 2024; 18:33792-33826. [PMID: 39625718 DOI: 10.1021/acsnano.4c11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory loss and progressive and permanent deterioration of cognitive function. The most challenging issue in combating AD is its complicated pathogenesis, which includes the deposition of amyloid β (Aβ) plaques, intracellular hyperphosphorylated tau protein, neurofibrillary tangles (NFT), etc. Despite rapid advancements in mechanistic research and drug development for AD, the currently developed drugs only improve cognitive ability and temporarily relieve symptoms but cannot prevent the development of AD. Moreover, the blood-brain barrier (BBB) creates a huge barrier to drug delivery in the brain. Therefore, effective diagnostic tools and treatments are urgently needed. In recent years, nanomedicine has provided opportunities to overcome the challenges and limitations associated with traditional diagnostics or treatments. Various types of nanoparticles (NPs) play an essential role in nanomedicine for the diagnosis and treatment of AD, acting as drug carriers to improve targeting and bioavailability across/bypass the BBB or acting as drugs directly on AD lesions. This review categorizes different types of NPs and summarizes their applications in nanomedicine for the diagnosis and treatment of AD. It also discusses the challenges associated with clinical applications and explores the latest developments and prospects of nanomedicine for AD.
Collapse
Affiliation(s)
- Han Yang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Haozhe Tan
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Haifei Wen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Peikun Xin
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanling Liu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziwei Deng
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yanning Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Liping Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Zicong Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yunhao Chen
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Yueze Wang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ryan T K Kwok
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P.R. China
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong China
| |
Collapse
|
8
|
Maisuradze N, Kekutia S, Markhulia J, Tsertsvadze T, Mikelashvili V, Saneblidze L, Chkhaidze N, Horváth ZE, Almásy L, Mitskevichi N. Characteristics and Antitumor Activity of Doxorubicin-Loaded Multifunctional Iron Oxide Nanoparticles in MEC1 and RM1 Cell Lines. J Funct Biomater 2024; 15:364. [PMID: 39728164 DOI: 10.3390/jfb15120364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
The rapid progress in nanotechnology has introduced multifunctional iron oxide nanoparticles as promising agents in cancer treatment. This research focused on the synthesis and assessment of citric-acid-coated, folic-acid-conjugated nanoparticles loaded with doxorubicin, evaluating their therapeutic potential in tumor models. An advanced automated continuous technology line (CTL) utilizing a controlled co-precipitation method was employed to produce highly dispersive, multifunctional nanofluids with a narrow size distribution. Various techniques, including dynamic light scattering (DLS), electrophoretic light scattering (ELS), X-ray diffraction (XRD), and transmission electron microscopy (TEM), were employed to examine the particle size, zeta potential, structure, and morphology. Magnetic properties were analyzed through vibrating sample magnetometry (VSM), and surface modifications were confirmed via UV-visible (UV-Vis) and Fourier-Transform Infrared (FTIR) spectroscopy. Cytotoxicity and drug delivery efficiency were evaluated in vitro using RM1 (prostate cancer) and MEC1 (chronic lymphocytic leukemia) cell lines. Fluorescence microscopy demonstrated the successful intracellular delivery of doxorubicin, showcasing the nanoparticles' potential for targeted cancer therapy. However, folic-acid-conjugated nanoparticles exhibited diminished effectiveness over time. This study highlights the importance of nanoparticle optimization for enhancing therapeutic performance. Further research should aim to improve nanoparticle formulations and explore their long-term impacts for the development of safe, targeted cancer treatments.
Collapse
Affiliation(s)
- Nino Maisuradze
- Division of Immunology and Microbiology, Iv. Javakhishvili Tbilisi State University, 1, Ilia Tchavchavadze Ave., 0179 Tbilisi, Georgia
| | - Shalva Kekutia
- Nanocomposites Laboratory, Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University, Z. Anjafaridze Str. 5, 0186 Tbilisi, Georgia
| | - Jano Markhulia
- Nanocomposites Laboratory, Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University, Z. Anjafaridze Str. 5, 0186 Tbilisi, Georgia
| | - Tamar Tsertsvadze
- Division of Immunology and Microbiology, Iv. Javakhishvili Tbilisi State University, 1, Ilia Tchavchavadze Ave., 0179 Tbilisi, Georgia
| | - Vladimer Mikelashvili
- Nanocomposites Laboratory, Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University, Z. Anjafaridze Str. 5, 0186 Tbilisi, Georgia
| | - Liana Saneblidze
- Nanocomposites Laboratory, Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University, Z. Anjafaridze Str. 5, 0186 Tbilisi, Georgia
| | - Nikoloz Chkhaidze
- Nanocomposites Laboratory, Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University, Z. Anjafaridze Str. 5, 0186 Tbilisi, Georgia
| | - Zsolt Endre Horváth
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary
| | - László Almásy
- Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary
| | - Nunu Mitskevichi
- Division of Immunology and Microbiology, Iv. Javakhishvili Tbilisi State University, 1, Ilia Tchavchavadze Ave., 0179 Tbilisi, Georgia
| |
Collapse
|
9
|
Negi M, Amulya E, Phatale V, Abraham N, Hedaoo A, Srinivasarao DA, Srivastava S. Surface engineered nano architectonics: An evolving paradigm for tackling Alzheimer's disease. Life Sci 2024; 358:123155. [PMID: 39433085 DOI: 10.1016/j.lfs.2024.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/21/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As per the World Health Organization (WHO) estimation, Alzheimer's disease (AD) will affect 100 million population across the globe by 2050. AD is an incurable neurodegenerative disease that remains a mystery for neurologists owing to its complex pathophysiology. Currently, available therapeutic regimens will only cause symptomatic relief by improving the cognitive and behavioral functions of AD. However, the major pitfalls in managing AD include tight junctions in the endothelial cells of the blood-brain barrier (BBB), diminished neuronal bioavailability, enzymatic degradation and reduced stability of the therapeutic moiety. In an effort to surmount the drawbacks mentioned above, researchers shifted their focus toward nanocarriers (NCs). Nevertheless, non-specific targeting of NCs imparts toxicity to the peripheral organs, thereby reducing the bioavailability of therapeutic moiety at the target site. To unravel this unmet clinical need, scientists came up with the idea of a novel intriguing strategy of surface engineering by targeting ligands. Surface-decorated NCs provide targeted drug delivery, controlled drug release, enhanced penetration and bioavailability. In this state-of-the-art review, we have highlighted in detail various molecular signalling pathways involved in AD pathogenesis. The significance of surface functionalization and its application in AD management have been deliberated. We have elaborated on the regulatory bottlenecks and clinical hurdles faced during lab-to-industrial scale translation along with possible solutions.
Collapse
Affiliation(s)
- Mansi Negi
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Aachal Hedaoo
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
10
|
Teodoro ALS, Ramada MHS, Paciencia MLB, Dohms S, Câmara PEAS, Varella AD, Frana SA, Silva JS, Suffredini IB. Antarctic bryophyte Sanionia uncinata (HEDW.) Loeske, Amblystegiaceae, antimicrobial, antioxidant, cytotoxic, and acetylcholinesterase activities. AN ACAD BRAS CIENC 2024; 96:e20240678. [PMID: 39607104 DOI: 10.1590/0001-3765202420240678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/20/2024] [Indexed: 11/29/2024] Open
Abstract
Sanionia uncinata, or Sickle-leaved-Hook-moss, is a cosmopolitan pleurocarpous moss composing the Antarctic Peninsulae biodiversity, primordially forming dense mats over rocks. The species was collected in 24 different spots located at King George Island and was processed to obtain 24 ethanolic extracts (ADS#) by a serial-24h-maceration, which were prospected for antimicrobial, cytotoxic, antioxidant, and acetylcholinesterase (AChE) inhibition activities by using in vitro tests. Alien material was removed from the non-sterilized plant samples before being submitted for extraction. It was observed that extracts collected in different spots showed different biological activities. Extracts ADS04(10.66±0,17mm) and ADS14(11.37±0,11mm) were active against Staphylococcus aureus, according to the diffusion in bioautography assay. They showed significant antioxidant activity and inhibited AChE; the cytotoxicity observed to the human breast cancer cells MCF-7 and MDA-MB-231 were higher than in normal cell line MCF-10A. ADS04 was 7.62 times more cytotoxic to MCF-7, and ADS14 was 2.03 times more cytotoxic to MDA-MB-231 than to MCF-10A. The extracts showed similar cytotoxicity between PC-3, a human prostate cancer cell line, and MCF-10A. Sanionia uncinata extracts are a vital potential source of biologically active compounds, particularly ADS04 and ADS14, including further prospection on eventual bryophyte's endophytic fungi.
Collapse
Affiliation(s)
- Amanda L S Teodoro
- Paulista University, Graduate Program in Environmental and Experimental Pathology, R. Dr. Bacelar, 1212, 04026-002 São Paulo, SP, Brazil
| | - Marcelo Henrique S Ramada
- Brasília Catholic University, BRIOTECH and Graduate Program in Genomic Sciences and Biotechnology, QS 07, Lote 01, Taguatinga do Sul, Taguatinga, 71966-700 Brasília, DF, Brazil
| | - Mateus Luís B Paciencia
- Paulista University - UNIP, Center for Research in Biodiversity - NPBio, Av. Paulista, 900, 01310-100 São Paulo, SP, Brazil
| | - Stephan Dohms
- Brasília Catholic University, BRIOTECH and Graduate Program in Genomic Sciences and Biotechnology, QS 07, Lote 01, Taguatinga do Sul, Taguatinga, 71966-700 Brasília, DF, Brazil
| | | | - Antonio D Varella
- Paulista University - UNIP, Center for Research in Biodiversity - NPBio, Av. Paulista, 900, 01310-100 São Paulo, SP, Brazil
| | - Sergio Alexandre Frana
- Paulista University, Graduate Program in Environmental and Experimental Pathology, R. Dr. Bacelar, 1212, 04026-002 São Paulo, SP, Brazil
- Paulista University - UNIP, Center for Research in Biodiversity - NPBio, Av. Paulista, 900, 01310-100 São Paulo, SP, Brazil
| | - Jefferson S Silva
- Amazônia University, Av. Ville Roy, 1544, 69307-725 Boa Vista, RR, Brazil
| | - Ivana B Suffredini
- Paulista University, Graduate Program in Environmental and Experimental Pathology, R. Dr. Bacelar, 1212, 04026-002 São Paulo, SP, Brazil
- Paulista University - UNIP, Center for Research in Biodiversity - NPBio, Av. Paulista, 900, 01310-100 São Paulo, SP, Brazil
| |
Collapse
|
11
|
Yu Z, Luo F. The Role of Reactive Oxygen Species in Alzheimer's Disease: From Mechanism to Biomaterials Therapy. Adv Healthc Mater 2024; 13:e2304373. [PMID: 38508583 DOI: 10.1002/adhm.202304373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Alzheimer's disease (AD) is a chronic, insidious, and progressive neurodegenerative disease that remains a clinical challenge for society. The fully approved drug lecanemab exhibits the prospect of therapy against the pathological processes, while debatable adverse events conflict with the drug concentration required for the anticipated therapeutic effects. Reactive oxygen species (ROS) are involved in the pathological progression of AD, as has been demonstrated in much research regarding oxidative stress (OS). The contradiction between anticipated dosage and adverse event may be resolved through targeted transport by biomaterials and get therapeutic effects through pathological progression via regulation of ROS. Besides, biomaterials fix delivery issues by promoting the penetration of drugs across the blood-brain barrier (BBB), protecting the drug from peripheral degradation, and elevating bioavailability. The goal is to comprehensively understand the mechanisms of ROS in the progression of AD disease and the potential of ROS-related biomaterials in the treatment of AD. This review focuses on OS and its connection with AD and novel biomaterials in recent years against AD via OS to inspire novel biomaterial development. Revisiting these biomaterials and mechanisms associated with OS in AD via thorough investigations presents a considerable potential and bright future for improving effective interventions for AD.
Collapse
Affiliation(s)
- Zhuohang Yu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
12
|
Soni AG, Verma A, Joshi R, Shah K, Soni D, Kaur CD, Saraf S, Chauhan NS. Phytoactive drugs used in the treatment of Alzheimer's disease and dementia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8633-8649. [PMID: 38940847 DOI: 10.1007/s00210-024-03243-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
The prevalence of Alzheimer's disease and other forms of dementia is increasing worldwide, and finding effective treatments for these conditions is a major public health challenge. Natural bioactive drugs have been identified as a promising source of potential treatments, due to their ability to target multiple pathways and their low toxicity. This paper reviews the current state of research on natural bioactive drugs used in the treatment of Alzheimer's disease and other dementias. The paper summarizes the findings of studies on various natural compounds, including curcumin, resveratrol, caffeine, genistein, quercetin, GinkoBiloba, Withaniasomnifera, Ginseng Brahmi, Giloy, and huperzine, and their effects on cognitive function, neuroinflammation, and amyloid-beta accumulation. In this review, we discuss the mechanism of action involved in the treatment of Alzheimer's disease. The paper also discusses the challenges associated with developing natural bioactive drugs for dementia treatment, including issues related to bioavailability and standardization. Finally, the paper suggests directions for future research in this area, including the need for more rigorous clinical trials and the development of novel delivery systems to improve the efficacy of natural bioactive drugs. Overall, this review highlights the potential of natural bioactive drugs as a promising avenue for the development of safe and effective treatments for Alzheimer's disease and other dementias.
Collapse
Affiliation(s)
- Anshita Gupta Soni
- Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India
| | - Astha Verma
- ShriRawatpuraSarkar Institute of Pharmacy, Durg, Chhattisgarh, India
| | - Renjil Joshi
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, (U.P.), India
| | - Deependra Soni
- Faculty of Pharmacy, MATS University Campus, Aarang, Raipur, Chhattisgarh, India
| | - Chanchal Deep Kaur
- Rungta College of Pharmaceutical Sciences and Research, Raipur, Chhattisgarh, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | | |
Collapse
|
13
|
Agarwal U, Verma S, Tonk RK. Chromenone: An emerging scaffold in anti-Alzheimer drug discovery. Bioorg Med Chem Lett 2024; 111:129912. [PMID: 39089526 DOI: 10.1016/j.bmcl.2024.129912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Alzheimer's disease (AD) presents a growing global health concern. In recent decades, natural and synthetic chromenone have emerged as promising drug candidates due to their multi-target potential. Natural chromenone, quercetin, scopoletin, esculetin, coumestrol, umbelliferone, bergapten, and methoxsalen (xanthotoxin), and synthetic chromenone hybrids comprising structures like acridine, 4-aminophenyl, 3-arylcoumarins, quinoline, 1,3,4-oxadiazole, 1,2,3-triazole, and tacrine, have been explored for their potential to combat AD. Key reactions used for synthesis of chromenone hybrids include Perkin and Pechmann condensation. The activity of chromenone hybrids has been reported against several drug targets, including AChE, BuChE, BACE-1, and MAO-A/B. This review comprehensively explores natural, semisynthetic, and synthetic chromenone, elucidating their synthetic routes, possible mode of action/drug targets and structure-activity relationships (SAR). The acquired knowledge provides valuable insights for the development of new chromenone hybrids against AD.
Collapse
Affiliation(s)
- Uma Agarwal
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India
| | - Saroj Verma
- Pharmaceutical Chemistry Division, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India.
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences & Research University, Delhi 110017, India.
| |
Collapse
|
14
|
Rouhi N, Chakeri Z, Ghorbani Nejad B, Rahimzadegan M, Rafi Khezri M, Kamali H, Nosrati R. A comprehensive review of advanced focused ultrasound (FUS) microbubbles-mediated treatment of Alzheimer's disease. Heliyon 2024; 10:e37533. [PMID: 39309880 PMCID: PMC11416559 DOI: 10.1016/j.heliyon.2024.e37533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, memory loss, and cognitive impairment leading to dementia and death. The blood-brain barrier (BBB) prevents the delivery of drugs into the brain, which can limit their therapeutic potential in the treatment of AD. Therefore, there is a need to develop new approaches to bypass the BBB for appropriate treatment of AD. Recently, focused ultrasound (FUS) has been shown to disrupt the BBB, allowing therapeutic agents to penetrate the brain. In addition, microbubbles (MBs) as lipophilic carriers can penetrate across the BBB and deliver the active drug into the brain tissue. Therefore, combined with FUS, the drug-encapsulated MBs can pass through the ultrasound-disrupted zone of the BBB and diffuse into the brain tissue. This review provides clear and concise statements on the recent advances of the various FUS-mediated MBs-based carriers developed for delivering AD-related drugs. In addition, the sonogenetics-based FUS/MBs approaches for the treatment of AD are highlighted. The future perspectives and challenges of ultrasound-based MBs drug delivery in AD are then discussed.
Collapse
Affiliation(s)
- Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Zahra Chakeri
- Cardiothoracic Imaging Section, Department of Radiology, University of Washington, Seattle, WA, USA
| | - Behnam Ghorbani Nejad
- Department of Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
15
|
Niazi SK. Bioavailability as Proof to Authorize the Clinical Testing of Neurodegenerative Drugs-Protocols and Advice for the FDA to Meet the ALS Act Vision. Int J Mol Sci 2024; 25:10211. [PMID: 39337696 PMCID: PMC11432374 DOI: 10.3390/ijms251810211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Although decades of intensive drug discovery efforts to treat neurodegenerative disorders (NDs) have failed, around half a million patients in more than 2000 studies continue being tested, costing over USD 100 billion, despite the conclusion that even those drugs which have been approved have no better effect than a placebo. The US Food and Drug Administration (FDA) has established multiple programs to innovate the treatment of rare diseases, particularly NDs, providing millions of USD in funding primarily by encouraging novel clinical trials to account for issues related to study sizes and adopting multi-arm studies to account for patient dropouts. Instead, the FDA should focus on the primary reason for failure: the poor bioavailability of drugs reaching the brain (generally 0.1% at most) due to the blood-brain barrier (BBB). There are several solutions to enhance entry into the brain, and the FDA must require proof of significant entry into the brain as the prerequisite to approving Investigational New Drug (IND) applications. The FDA should also rely on factors other than biomarkers to confirm efficacy, as these are rarely relevant to clinical use. This study summarizes how the drugs used to treat NDs can be made effective and how the FDA should change its guidelines for IND approval of these drugs.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Dey A, Ghosh S, Rajendran RL, Bhuniya T, Das P, Bhattacharjee B, Das S, Mahajan AA, Samant A, Krishnan A, Ahn BC, Gangadaran P. Alzheimer's Disease Pathology and Assistive Nanotheranostic Approaches for Its Therapeutic Interventions. Int J Mol Sci 2024; 25:9690. [PMID: 39273645 PMCID: PMC11395116 DOI: 10.3390/ijms25179690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Alzheimer's disease (AD) still prevails and continues to increase indiscriminately throughout the 21st century, and is thus responsible for the depreciating quality of health and associated sectors. AD is a progressive neurodegenerative disorder marked by a significant amassment of beta-amyloid plaques and neurofibrillary tangles near the hippocampus, leading to the consequent loss of cognitive abilities. Conventionally, amyloid and tau hypotheses have been established as the most prominent in providing detailed insight into the disease pathogenesis and revealing the associative biomarkers intricately involved in AD progression. Nanotheranostic deliberates rational thought toward designing efficacious nanosystems and strategic endeavors for AD diagnosis and therapeutic implications. The exceeding advancements in this field enable the scientific community to envisage and conceptualize pharmacokinetic monitoring of the drug, sustained and targeted drug delivery responses, fabrication of anti-amyloid therapeutics, and enhanced accumulation of the targeted drug across the blood-brain barrier (BBB), thus giving an optimistic approach towards personalized and precision medicine. Current methods idealized on the design and bioengineering of an array of nanoparticulate systems offer higher affinity towards neurocapillary endothelial cells and the BBB. They have recently attracted intriguing attention to the early diagnostic and therapeutic measures taken to manage the progression of the disease. In this article, we tend to furnish a comprehensive outlook, the detailed mechanism of conventional AD pathogenesis, and new findings. We also summarize the shortcomings in diagnostic, prognostic, and therapeutic approaches undertaken to alleviate AD, thus providing a unique window towards nanotheranostic advancements without disregarding potential drawbacks, side effects, and safety concerns.
Collapse
Affiliation(s)
- Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India;
| | - Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India;
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| | - Tiyasa Bhuniya
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India;
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India;
| | - Bidyabati Bhattacharjee
- Department of Life Sciences, Jain (Deemed-to-be) University, Bangalore 560078, Karnataka, India;
| | - Sagnik Das
- Department of Microbiology, St Xavier’s College (Autonomous), Kolkata 700016, West Bengal, India;
| | - Atharva Anand Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai 410210, Maharashtra, India
| | - Anushka Samant
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Rourkela 769008, Orissa, India;
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa;
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
17
|
Shekho D, Mishra R, Kamal R, Bhatia R, Awasthi A. Breaking Barriers in Alzheimer's Disease: the Role of Advanced Drug Delivery Systems. AAPS PharmSciTech 2024; 25:207. [PMID: 39237748 DOI: 10.1208/s12249-024-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive impairment, brain plaques, and tangles, is a global health concern affecting millions. It involves the build-up of amyloid-β (Aβ) and tau proteins, the formation of neuritic plaques and neurofibrillary tangles, cholinergic system dysfunction, genetic variations, and mitochondrial dysfunction. Various signaling pathways and metabolic processes are implicated in AD, along with numerous biomarkers used for diagnosis, risk assessment, and research. Despite these, there is no cure or effective treatment for AD. It is critically important to address this immediately to develop novel drug delivery systems (NDDS) capable of targeting the brain and delivering therapeutic agents to modulate the pathological processes of AD. This review summarizes AD, its pathogenesis, related signaling pathways, biomarkers, conventional treatments, the need for NDDS, and their application in AD treatment. It also covers preclinical, clinical, and ongoing trials, patents, and marketed AD formulations.
Collapse
Affiliation(s)
- Devank Shekho
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ritika Mishra
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
18
|
Far BF, Safaei M, Pourmolaei A, Adibamini S, Shirdel S, Shirdel S, Emadi R, Kaushik AK. Exploring Curcumin-Loaded Lipid-Based Nanomedicine as Efficient Targeted Therapy for Alzheimer's Diseases. ACS APPLIED BIO MATERIALS 2024; 7:3535-3555. [PMID: 38768054 DOI: 10.1021/acsabm.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a neurological condition currently with 47 million people suffering from it globally. AD might have many reasons such as genetic issues, environmental factors, and Aβ accumulation, which is the biomarker of the disease. Since the primary reason is unknown, there is no targeted treatment at the moment, but ongoing research aims to slow its progression by managing amyloid-beta peptide production rather than symptomatic improvement. Since phytochemicals have been demonstrated to possess antioxidant, anti-inflammatory, and neuroprotective properties, they may target multiple pathological factors and can reduce the risk of the disease. Curcumin, as a phytochemical found in turmeric known for its antioxidant, free radical scavenging properties, and as an antiamyloid in treating AD, has come under investigation. Although its low bioavailability limits its efficacy, a prominent drug delivery system (DDS) is desired to overcome it. Hence, the potency of lipid-based nanoparticles encapsulating curcumin (LNPs-CUR) is considered in this study as a promising DDS. In vivo studies in animal models indicate LNPs-CUR effectively slow amyloid plaque formation, leading to cognitive enhancement and reduced toxicity compared to free CUR. However, a deeper understanding of CUR's pharmacokinetics and safety profile is crucial before LNPs-CUR can be considered as a medicine. Future investigations may explore the combination of NPs with other therapeutic agents to increase their efficacy in AD cases. This review provides the current position of CUR in the AD therapy paradigm, the DDS suggestions for CUR, and the previous research from the point of analytical view focused on the advantages and challenges.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, 99628 Famagusta, Turkey
| | - Ali Pourmolaei
- Babol Noshirvani University of Technology, Shariati Avenue, Babol 4714871167, Mazandaran, Iran
| | - Shaghyegh Adibamini
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shiva Shirdel
- Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz 5166616471, Iran
| | - Shabnam Shirdel
- Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz 5166616471, Iran
| | - Reza Emadi
- Department of Biochemistry, Institute of Biochemistry & Biophysics (IBB), University of Tehran, Tehran 1417935840, Iran
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
- School of Technology, Woxsen University, Telangana 502345, India
| |
Collapse
|
19
|
Ahmed T. Lipid nanoparticle mediated small interfering RNA delivery as a potential therapy for Alzheimer's disease. Eur J Neurosci 2024; 59:2915-2954. [PMID: 38622050 DOI: 10.1111/ejn.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aβ) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
20
|
Gu X, Qi L, Qi Q, Zhou J, Chen S, Wang L. Monoclonal antibody therapy for Alzheimer's disease focusing on intracerebral targets. Biosci Trends 2024; 18:49-65. [PMID: 38382942 DOI: 10.5582/bst.2023.01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Due to the complexity of the disorder and the presence of the blood-brain barrier (BBB), its drug discovery and development are facing enormous challenges, especially after several failures of monoclonal antibody (mAb) trials. Nevertheless, the Food and Drug Administration's approval of the mAb aducanumab has ushered in a new day. As we better understand the disease's pathogenesis and identify novel intracerebral therapeutic targets, antibody-based therapies have advanced over the past few years. The mAb drugs targeting β-amyloid or hyperphosphorylated tau protein are the focus of the current research. Massive neuronal loss and glial cell-mediated inflammation are also the vital pathological hallmarks of AD, signaling a new direction for research on mAb drugs. We have elucidated the mechanisms by which AD-specific mAbs cross the BBB to bind to targets. In order to investigate therapeutic approaches to treat AD, this review focuses on the promising mAbs targeting intracerebral dysfunction and related strategies to cross the BBB.
Collapse
Affiliation(s)
- Xiaolei Gu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Long Qi
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Qing Qi
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Song Chen
- Postdoctoral Station of Xiamen University, Fujian, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
21
|
Junsai T, Tangpanithandee S, Srimangkornkaew P, Suknuntha K, Vivithanaporn P, Khemawoot P. Sub-chronic oral toxicity of a water-soluble extract of Centella asiatica (Centell-S) in Wistar rats. Food Chem Toxicol 2024; 185:114509. [PMID: 38336016 DOI: 10.1016/j.fct.2024.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Centell-S, a water-soluble extract from Centella asiatica, is predominantly composed of madecassoside and asiaticoside, exceeding 80% w/w. Pursuing its development as an herbal medicinal product, Centell-S underwent sub-chronic toxicity assessment adhering to OECD GLP 408 standards. METHODS In a study involving 100 Wistar rats, varying doses of Centell-S (50, 200, or 800 mg/kg/day) or a vehicle control were administered orally over 90 days. To evaluate Centell-S's safety profile, assessments included clinical observations, health examinations, clinical biochemistry analyses, and detailed anatomical pathology evaluations were conducted. RESULTS Over the 90 days of treatment, the administration of Centell-S did not lead to any fatalities in the test animals. Clinical observations did not reveal any signs indicative of toxic effects. Notably, an increase in total white blood cell and lymphocyte counts was observed in both sexes, yet these levels returned to normal following a two-week discontinuation period post-treatment. CONCLUSIONS Under the specific conditions of the OECD GLP 408, Repeated Dose 90-day Oral Toxicity Study in Rodents, the no observed adverse effect level (NOAEL) of Centell-S was 800 mg/kg/day. These findings are promising for the continued development of Centell-S as a phytopharmaceutical for clinical applications.
Collapse
Affiliation(s)
- Thammaporn Junsai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Supawit Tangpanithandee
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | | | - Kran Suknuntha
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Pornpun Vivithanaporn
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn, Thailand.
| |
Collapse
|
22
|
Cooper CG, Kafetzis KN, Patabendige A, Tagalakis AD. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. Eur J Neurosci 2024; 59:1359-1385. [PMID: 38154805 DOI: 10.1111/ejn.16229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.
Collapse
Affiliation(s)
| | | | - Adjanie Patabendige
- Department of Biology, Edge Hill University, Ormskirk, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Aristides D Tagalakis
- Department of Biology, Edge Hill University, Ormskirk, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
23
|
Li FR, Yu Y, Du YM, Kong L, Liu Y, Wang JH, Chen MH, Liu M, Zhang ZX, Li XT, Ju RJ. Borneol-Modified Schisandrin B Micelles Cross the Blood-Brain Barrier To Treat Alzheimer's Disease in Aged Mice. ACS Chem Neurosci 2024; 15:593-607. [PMID: 38214579 DOI: 10.1021/acschemneuro.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Objective: Schisandrin B (Sch B) is a bioactive dibenzocyclooctadiene derizative that is prevalent in the fruit of Schisandra chinensis. Numerous studies have demonstrated that Sch B has a neuroprotective action by reducing oxidative stress and effectively preventing inflammation. It follows that Sch B is a potential treatment for Alzheimer's disease (AD). However, the drug's solubility, bioavailability, and lower permeability of the blood-brain barrier (BBB) can all reduce its efficacy during the therapy process. Therefore, this study constructed borneol-modified schisandrin B micelles (Bor-Sch B-Ms), which increase brain targeting by accurately delivering medications to the brain, effectively improving bioavailability. High therapeutic efficacy has been achieved at the pathological site. Methods: Bor-Sch B-Ms were prepared using the thin film dispersion approach in this article. On the one hand, to observe the targeting effect of borneol, we constructed a blood-brain barrier (BBB) model in vitro and studied the ability of micelles to cross the BBB. On the other hand, the distribution of micelle drugs and their related pharmacological effects on neuroinflammation, oxidative stress, and neuronal damage were studied through in vivo administration in mice. Results: In vitro studies have demonstrated that the drug uptake of bEnd.3 cells was increased by the borneol alteration on the surface of the nano micelles, implying that Bor-Sch B-Ms can promote the therapeutic effect of N2a cells. This could result in more medicines entering the BBB. In addition, in vivo studies revealed that the distribution and circulation time of medications in the brain tissue were significantly higher than those in other groups, making it more suitable for the treatment of central nervous system diseases. Conclusion: As a novel nanodrug delivery system, borneol modified schisandrin B micelles have promising research prospects in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Feng-Rui Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yang Yu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yu-Meng Du
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Qingyuan Road 19, Beijing 102617, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Yang Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jia-Hua Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Mu-Han Chen
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Mo Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zi-Xu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Rui-Jun Ju
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Qingyuan Road 19, Beijing 102617, China
| |
Collapse
|
24
|
Uttarkar A, Rao V, Bhat D, Niranjan V. Disaggregation of amyloid-beta fibrils via natural metabolites using long timescale replica exchange molecular dynamics simulation studies. J Mol Model 2024; 30:61. [PMID: 38321243 DOI: 10.1007/s00894-024-05860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
CONTEXT Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with several presently incurable diseases such as Alzheimer's. disease that is characterized by the accumulation of amyloid fibrils in the brain, which leads to the formation of plaques and the death of brain cells. Disaggregation of amyloid fibrils is considered a promising approach to cure Alzheimer's disease. The mechanism of amyloid fibril formation is complex and not fully understood, making it difficult to develop drugs that can target the process. Diacetonamine and cystathionine are potential lead compounds to induce disaggregation of amyloid fibrils. METHODS In the current research, we have used long timescale molecular simulation studies and replica exchange molecular dynamics (REMD) for 1000 ns (1 μs) to examine the mechanisms by which natural metabolites can disaggregate amyloid-beta fibrils. Molecular docking was carried out using Glide and with prior protein minimization and ligand preparation. We focused on a screening a database of natural metabolites, as potential candidates for disaggregating amyloid fibrils. We used Desmond with OPLS 3e as a force field. MM-GBSA calculations were performed. Blood-brain barrier permeability, SASA, and radius of gyration parameters were calculated.
Collapse
Affiliation(s)
- Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vibha Rao
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Dhrithi Bhat
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India.
| |
Collapse
|
25
|
Sachdeva P, Narayanan KB, Sinha JK, Gupta S, Ghosh S, Singh KK, Bhaskar R, Almutary AG, Zothantluanga JH, Kotta KK, Nelson VK, Paiva-Santos AC, Abomughaid MM, Kamal M, Iqbal D, ALHarbi MH, ALMutairi AA, Dewanjee S, Nuli MV, Vippamakula S, Jha SK, Ojha S, Jha NK. Recent Advances in Drug Delivery Systems Targeting Insulin Signalling for the Treatment of Alzheimer's Disease. J Alzheimers Dis 2024; 98:1169-1179. [PMID: 38607755 DOI: 10.3233/jad-231181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the accumulation of neurofibrillary tangles and amyloid-β plaques. Recent research has unveiled the pivotal role of insulin signaling dysfunction in the pathogenesis of AD. Insulin, once thought to be unrelated to brain function, has emerged as a crucial factor in neuronal survival, synaptic plasticity, and cognitive processes. Insulin and the downstream insulin signaling molecules are found mainly in the hippocampus and cortex. Some molecules responsible for dysfunction in insulin signaling are GSK-3β, Akt, PI3K, and IRS. Irregularities in insulin signaling or insulin resistance may arise from changes in the phosphorylation levels of key molecules, which can be influenced by both stimulation and inactivity. This, in turn, is believed to be a crucial factor contributing to the development of AD, which is characterized by oxidative stress, neuroinflammation, and other pathological hallmarks. Furthermore, this route is known to be indirectly influenced by Nrf2, NF-κB, and the caspases. This mini-review delves into the intricate relationship between insulin signaling and AD, exploring how disruptions in this pathway contribute to disease progression. Moreover, we examine recent advances in drug delivery systems designed to target insulin signaling for AD treatment. From oral insulin delivery to innovative nanoparticle approaches and intranasal administration, these strategies hold promise in mitigating the impact of insulin resistance on AD. This review consolidates current knowledge to shed light on the potential of these interventions as targeted therapeutic options for AD.
Collapse
Affiliation(s)
- Punya Sachdeva
- GloNeuro, Noida, Uttar Pradesh, India
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | | | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Kranthi Kumar Kotta
- College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, Karnataka, India
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy of the University of Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, Coimbra, Portugal
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Mohammed Hamoud ALHarbi
- Department of Infection Control, Senior Consultant of Public Health, King Khalid Hospital, Al Majmaah, Ministry of Health, Saudi Arabia
| | - Awadh Aedh ALMutairi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Saikat Dewanjee
- Department of Pharmaceutical Technology, Advanced Pharmacognosy Research Laboratory, Jadavpur University, Kolkata, India
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Shanmugam Vippamakula
- MB School of Pharmaceutical Sciences, Mohan Babu University, A. Rangampet, Tirupati, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, India
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| |
Collapse
|
26
|
Cáceres C, Heusser B, Garnham A, Moczko E. The Major Hypotheses of Alzheimer's Disease: Related Nanotechnology-Based Approaches for Its Diagnosis and Treatment. Cells 2023; 12:2669. [PMID: 38067098 PMCID: PMC10705786 DOI: 10.3390/cells12232669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Ewa Moczko
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile; (C.C.)
| |
Collapse
|
27
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
28
|
Mancuso R, Citterio LA, Agostini S, Marventano I, La Rosa F, Re F, Seneci P, Saresella M, Clerici M. Glibenclamide-Loaded Nanoparticles Reduce NLRP3 Inflammasome Activation and Modulate miR-223-3p/miR-7-1-5p Expression in THP-1 Cells. Pharmaceuticals (Basel) 2023; 16:1590. [PMID: 38004455 PMCID: PMC10675475 DOI: 10.3390/ph16111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The anti-hyperglycemic drug glibenclamide (Glb) might represent an interesting therapeutic option in human neurodegenerative diseases because of its anti-inflammatory activity and its ability to downregulate activation of the NLRP3 inflammasome. Bi-functionalized liposomes that can cross the blood-brain barrier (BBB) may be used to release Glb into the central nervous system (CNS), overcoming its poor solubility and bioavailability. Here, we analyzed in vitro the effect of Glb-loaded nanovectors (GNVs) and Glb itself on NLRP3 inflammasome activation using a lipopolysaccharide- and nigericine-activated THP-1 cell model. Apoptosis-associated speck-like protein containing a CARD (ASC) aggregation and NLRP3-related cytokine (IL-1β, caspase 1, and IL-18) production and gene expression, as well as the concentration of miR-223-3p and miR-7-1-5p, known to modulate the NLRP3 inflammasome, were evaluated in all conditions. Results showed that both GNVs and Glb reduced significantly ASC-speck oligomerization, transcription and translation of NLRP3, as well as the secretion of caspase 1 and IL-1β (p < 0.05 for all). Unexpectedly, GNVs/Glb significantly suppressed miR-223-3p and upregulated miR-7-1-5p expression (p < 0.01). These preliminary results thus suggest that GNVs, similarly to Glb, are able to dampen NLRP3 inflammasome activation, inflammatory cytokine release, and modulate miR-223-3p/miR-7-1-5p. Although the mechanisms underlying the complex relation among these elements remain to be further investigated, these results can open new roads to the use of GNVs as a novel strategy to reduce inflammasome activation in disease and rehabilitation.
Collapse
Affiliation(s)
- Roberta Mancuso
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Lorenzo Agostino Citterio
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Simone Agostini
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Ivana Marventano
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Francesca La Rosa
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Milan, Italy;
| | | | - Marina Saresella
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
| | - Mario Clerici
- IRCCS Fondazione Don Gnocchi—ONLUS, 20148 Milan, Italy; (R.M.); (L.A.C.); (I.M.); (F.L.R.); (M.S.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
29
|
Chaparro CIP, Simões BT, Borges JP, Castanho MARB, Soares PIP, Neves V. A Promising Approach: Magnetic Nanosystems for Alzheimer's Disease Theranostics. Pharmaceutics 2023; 15:2316. [PMID: 37765284 PMCID: PMC10536416 DOI: 10.3390/pharmaceutics15092316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Among central nervous system (CNS) disorders, Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and a major cause of dementia worldwide. The yet unclear etiology of AD and the high impenetrability of the blood-brain barrier (BBB) limit most therapeutic compounds from reaching the brain. Although many efforts have been made to effectively deliver drugs to the CNS, both invasive and noninvasive strategies employed often come with associated side effects. Nanotechnology-based approaches such as nanoparticles (NPs), which can act as multifunctional platforms in a single system, emerged as a potential solution for current AD theranostics. Among these, magnetic nanoparticles (MNPs) are an appealing strategy since they can act as contrast agents for magnetic resonance imaging (MRI) and as drug delivery systems. The nanocarrier functionalization with specific moieties, such as peptides, proteins, and antibodies, influences the particles' interaction with brain endothelial cell constituents, facilitating transport across the BBB and possibly increasing brain penetration. In this review, we introduce MNP-based systems, combining surface modifications with the particles' physical properties for molecular imaging, as a novel neuro-targeted strategy for AD theranostics. The main goal is to highlight the potential of multifunctional MNPs and their advances as a dual nanotechnological diagnosis and treatment platform for neurodegenerative disorders.
Collapse
Affiliation(s)
- Catarina I. P. Chaparro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Beatriz T. Simões
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| | - João P. Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| | - Paula I. P. Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University of Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (C.I.P.C.); (B.T.S.); (M.A.R.B.C.)
| |
Collapse
|
30
|
Puranik N, Yadav D, Song M. Advancements in the Application of Nanomedicine in Alzheimer's Disease: A Therapeutic Perspective. Int J Mol Sci 2023; 24:14044. [PMID: 37762346 PMCID: PMC10530821 DOI: 10.3390/ijms241814044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects most people worldwide. AD is a complex central nervous system disorder. Several drugs have been designed to cure AD, but with low success rates. Because the blood-brain and blood-cerebrospinal fluid barriers are two barriers that protect the central nervous system, their presence has severely restricted the efficacy of many treatments that have been studied for AD diagnosis and/or therapy. The use of nanoparticles for the diagnosis and treatment of AD is the focus of an established and rapidly developing field of nanomedicine. Recent developments in nanomedicine have made it possible to effectively transport drugs to the brain. However, numerous obstacles remain to the successful use of nanomedicines in clinical settings for AD treatment. Furthermore, given the rapid advancement in nanomedicine therapeutics, better outcomes for patients with AD can be anticipated. This article provides an overview of recent developments in nanomedicine using different types of nanoparticles for the management and treatment of AD.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (D.Y.)
| |
Collapse
|
31
|
van Vliet EF, Knol MJ, Schiffelers RM, Caiazzo M, Fens MHAM. Levodopa-loaded nanoparticles for the treatment of Parkinson's disease. J Control Release 2023; 360:212-224. [PMID: 37343725 DOI: 10.1016/j.jconrel.2023.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) resulting in dopamine (DA) deficiency, which manifests itself in motor symptoms including tremors, rigidity and bradykinesia. Current PD treatments aim at symptom reduction through oral delivery of levodopa (L-DOPA), a precursor of DA. However, L-DOPA delivery to the brain is inefficient and increased dosages are required as the disease progresses, resulting in serious side effects like dyskinesias. To improve PD treatment efficacy and to reduce side effects, recent research focuses on the encapsulation of L-DOPA into polymeric- and lipid-based nanoparticles (NPs). These formulations can protect L-DOPA from systemic decarboxylation into DA and improve L-DOPA delivery to the central nervous system. Additionally, NPs can be modified with proteins, peptides and antibodies specifically targeting the blood-brain barrier (BBB), thereby reducing required dosages and free systemic DA. Alternative delivery approaches for NP-encapsulated L-DOPA include intravenous (IV) administration, transdermal delivery using adhesive patches and direct intranasal administration, facilitating increased therapeutic DA concentrations in the brain. This review provides an overview of the recent advances for NP-mediated L-DOPA delivery to the brain, and debates challenges and future perspectives on the field.
Collapse
Affiliation(s)
- Emile F van Vliet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Maarten J Knol
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands
| | | | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands; Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
32
|
Jeyaraman M, Rajendran RL, Muthu S, Jeyaraman N, Sharma S, Jha SK, Muthukanagaraj P, Hong CM, Furtado da Fonseca L, Santos Duarte Lana JF, Ahn BC, Gangadaran P. An update on stem cell and stem cell-derived extracellular vesicle-based therapy in the management of Alzheimer's disease. Heliyon 2023; 9:e17808. [PMID: 37449130 PMCID: PMC10336689 DOI: 10.1016/j.heliyon.2023.e17808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Globally, neurological diseases pose a major burden to healthcare professionals in terms of the management and prevention of the disorder. Among neurological diseases, Alzheimer's disease (AD) accounts for 50%-70% of dementia and is the fifth leading cause of mortality worldwide. AD is a progressive, degenerative neurological disease, with the loss of neurons and synapses in the cerebral cortex and subcortical regions. The management of AD remains a debate among physicians as no standard and specific "disease-modifying" modality is available. The concept of 'Regenerative Medicine' is aimed at regenerating the degenerated neural tissues to reverse the pathology in AD. Genetically modified engineered stem cells modify the course of AD after transplantation into the brain. Extracellular vesicles (EVs) are an emerging new approach in cell communication that involves the transfer of cellular materials from parental cells to recipient cells, resulting in changes at the molecular and signaling levels in the recipient cells. EVs are a type of vesicle that can be transported between cells. Many have proposed that EVs produced from mesenchymal stem cells (MSCs) may have therapeutic promise in the treatment of AD. The biology of AD, as well as the potential applications of stem cells and their derived EVs-based therapy, were explored in this paper.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu, 600056, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Government Dindigul Medical College and Hospital, Dindigul, Tamil Nadu, 624001, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Orthopedics, Shri Sathya Sai Medical College and Research Institute, Sri Balaji Vidyapeeth, Chengalpet, Tamil Nadu, 603108, India
| | - Shilpa Sharma
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow, Uttar Pradesh, 226010, India
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Purushothaman Muthukanagaraj
- Department of Internal Medicine & Psychiatry, SUNY-Upstate Binghamton Clinical Campus, Binghamton, NY, 13904, USA
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Lucas Furtado da Fonseca
- Department of Orthopedics, The Federal University of São Paulo, São Paulo, 04023-062, SP, Brazil
| | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| |
Collapse
|
33
|
Kuo YC, De S. Development of carbon dots to manage Alzheimer's disease and Parkinson's disease. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
34
|
Role of Tau in Various Tauopathies, Treatment Approaches, and Emerging Role of Nanotechnology in Neurodegenerative Disorders. Mol Neurobiol 2023; 60:1690-1720. [PMID: 36562884 DOI: 10.1007/s12035-022-03164-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
A few protein kinases and phosphatases regulate tau protein phosphorylation and an imbalance in their enzyme activity results in tau hyper-phosphorylation. Aberrant tau phosphorylation causes tau to dissociate from the microtubules and clump together in the cytosol to form neurofibrillary tangles (NFTs), which lead to the progression of neurodegenerative disorders including Alzheimer's disease (AD) and other tauopathies. Hence, targeting hyperphosphorylated tau protein is a restorative approach for treating neurodegenerative tauopathies. The cyclin-dependent kinase (Cdk5) and the glycogen synthase kinase (GSK3β) have both been implicated in aberrant tau hyperphosphorylation. The limited transport of drugs through the blood-brain barrier (BBB) for reaching the central nervous system (CNS) thus represents a significant problem in the development of drugs. Drug delivery systems based on nanocarriers help solve this problem. In this review, we discuss the tau protein, regulation of tau phosphorylation and abnormal hyperphosphorylation, drugs in use or under clinical trials, and treatment strategies for tauopathies based on the critical role of tau hyperphosphorylation in the pathogenesis of the disease. Pathology of neurodegenerative disease due to hyperphosphorylation and various therapeutic approaches including nanotechnology for its treatment.
Collapse
|
35
|
Intrathecal Pseudodelivery of Drugs in the Therapy of Neurodegenerative Diseases: Rationale, Basis and Potential Applications. Pharmaceutics 2023; 15:pharmaceutics15030768. [PMID: 36986629 PMCID: PMC10059785 DOI: 10.3390/pharmaceutics15030768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Intrathecal pseudodelivery of drugs is a novel route to administer medications to treat neurodegenerative diseases based on the CSF-sink therapeutic strategy by means of implantable devices. While the development of this therapy is still in the preclinical stage, it offers promising advantages over traditional routes of drug delivery. In this paper, we describe the rationale of this system and provide a technical report on the mechanism of action, that relies on the use of nanoporous membranes enabling selective molecular permeability. On one side, the membranes do not permit the crossing of certain drugs; whereas, on the other side, they permit the crossing of target molecules present in the CSF. Target molecules, by binding drugs inside the system, are retained or cleaved and subsequently eliminated from the central nervous system. Finally, we provide a list of potential indications, the respective molecular targets, and the proposed therapeutic agents.
Collapse
|
36
|
Wang M, Yang X, Gao Y, Han W. Computer-Aided Screening and Revealing Action Mechanism of Green Tea Polyphenols Intervention in Alzheimer's Disease. Foods 2023; 12:foods12030635. [PMID: 36766162 PMCID: PMC9914464 DOI: 10.3390/foods12030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The accumulation of cross-β-sheet amyloid fibrils is a hallmark of the neurodegenerative process of Alzheimer's disease (AD). Although it has been reported that green tea substances such as epicatechin (EC), epicatechin-3-gallate (ECG), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) could alleviate the symptoms of AD and other neurodegenerative diseases, the pharmacological mechanism remains largely unexplored. This study aimed to reveal the underlying mechanism of EC, ECG, EGC and EGCG in AD using a computer-aided screening strategy. Our results showed that the four tea polyphenols interfered with the signaling pathways of AD via calcium signaling channels, neurodegeneration-multiple disease signal pathways and others. We also identified the key residues of the interaction between VEGFA and the four active components, which included Glu64 and Phe36. Overall, we have provided valuable insights into the molecular mechanism of tea polyphenols, which could be used as a reference to improve therapeutic strategies against AD.
Collapse
|
37
|
Boccardi V, Poli G, Cecchetti R, Bastiani P, Scamosci M, Febo M, Mazzon E, Bruscoli S, Brancorsini S, Mecocci P. miRNAs and Alzheimer's Disease: Exploring the Role of Inflammation and Vitamin E in an Old-Age Population. Nutrients 2023; 15:nu15030634. [PMID: 36771341 PMCID: PMC9919026 DOI: 10.3390/nu15030634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia worldwide and represents one of the leading factors for severe disability in older persons. Although its etiology is not fully known yet, AD may develop due to multiple factors, including inflammation and oxidative stress, conditions where microRNAs (miRNAs) seem to play a pivotal role as a molecular switch. All these aspects may be modulated by nutritional factors. Among them, vitamin E has been widely studied in AD, given the plausibility of its various biological functions in influencing neurodegeneration. From a cohort of old-aged people, we measured eight vitamin E forms (tocopherols and tocotrienols), thirty cytokines/chemokines, and thirteen exosome-extracted miRNAs in plasma of subjects suffering from subjects affected by AD and age-matched healthy controls (HC). The sample population included 80 subjects (40 AD and 40 HC) with a mean age of 77.6 ± 3.8 years, mostly women (45; 56.2%). Of the vitamin E forms, only α-tocopherol differed between groups, with significantly lower levels in AD. Regarding the examined inflammatory molecules, G-CSF, GM-CSF, INF-α2, IL-3, and IL-8 were significantly higher and IL-17 lower in AD than HC. Among all miRNAs examined, AD showed downregulation of miR-9, miR-21, miR29-b, miR-122, and miR-132 compared to controls. MiR-122 positively and significantly correlated with some inflammatory molecules (GM-CSF, INF-α2, IL-1α, IL-8, and MIP-1β) as well as with α-tocopherol even after correction for age and gender. A final binary logistic regression analysis showed that α-tocopherol serum levels were associated with a higher AD probability and partially mediated by miR-122. Our results suggest an interplay between α-tocopherol, inflammatory molecules, and microRNAs in AD, where miR-122 may be a good candidate as modulating factor.
Collapse
Affiliation(s)
- Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
- Correspondence: ; Tel.: +39-0755783524
| | - Giulia Poli
- Department of Medicine and Surgery, University of Perugia, 05100 Terni, Italy
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Patrizia Bastiani
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Michela Scamosci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Marta Febo
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 05100 Terni, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Stefano Bruscoli
- Department of Medicine and Surgery, Section of Pharmacology, University of Perugia, 05100 Terni, Italy
| | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, 05100 Terni, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet Stockholm, 17177 Stockholm, Sweden
| |
Collapse
|
38
|
Dobrynina LA, Makarova AG, Shabalina AA, Burmak AG, Shlapakova PS, Shamtieva KV, Tsypushtanova MM, Trubitsyna VV, Gnedovskaya EV. [A role of altered inflammation-related gene expression in cerebral small vessel disease with cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:58-68. [PMID: 37796069 DOI: 10.17116/jnevro202312309158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
OBJECTIVE To identify the role of changes in the expression of inflammation-related genes in cerebral microangiopathy/cerebral small vessel disease (cSVD). MATERIAL AND METHODS Forty-four cSVD patients (mean age 61.4±9.2) and 11 controls (mean age 57.3±9.7) were studied. Gene expression was assessed on an individual NanoString nCounter panel of 58 inflammation-related genes and 4 reference genes. A set of genes was generated based on converging results of complete genome-wide association studies (GWAS) in cSVD and Alzheimer's disease (AD) and circulating markers associated with vascular wall and Brain lesions in cSVD. RNA was isolated from blood leukocytes and analyzed with the nCounter Analysis System, followed by analysis in nSolver 4.0. Results were verified by real-time PCR. RESULTS CSVD patients had a significant decrease in BIN1 (log2FC=-1.272; p=0.039) and VEGFA (log2FC=-1.441; p=0.038) expression compared to controls, which showed predictive ability for cSVD. The cut-off for BIN1 expression was 5.76 a.u. (sensitivity 73%; specificity 75%) and the cut-off for VEGFA expression was 9.27 a.u. (sensitivity 64%; specificity 86%). Reduced expression of VEGFA (p=0.011), VEGFC (p=0.017), CD2AP (p=0.044) was associated with cognitive impairment (CI). There was a significant direct correlation between VEGFC expression and the scores on the Montreal Cognitive Assessment test and between BIN1 and VEGFC expression and delayed memory. CONCLUSION The possible prediction of cSVD by reduced expression levels of BIN1, VEGFA and the association of clinically significant CI with reduced VEGFA and VEGFC expression indicate their importance in the development and progression of the disease. The established importance of these genes in the pathogenesis of AD suggests that similar changes in their expression profile in cSVD may be one of the conditions for the comorbidity of the two pathologies.
Collapse
Affiliation(s)
| | | | | | - A G Burmak
- Research Center of Neurology, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
39
|
Arnst N, Redolfi N, Lia A, Bedetta M, Greotti E, Pizzo P. Mitochondrial Ca 2+ Signaling and Bioenergetics in Alzheimer's Disease. Biomedicines 2022; 10:3025. [PMID: 36551781 PMCID: PMC9775979 DOI: 10.3390/biomedicines10123025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is a hereditary and sporadic neurodegenerative illness defined by the gradual and cumulative loss of neurons in specific brain areas. The processes that cause AD are still under investigation and there are no available therapies to halt it. Current progress puts at the forefront the "calcium (Ca2+) hypothesis" as a key AD pathogenic pathway, impacting neuronal, astrocyte and microglial function. In this review, we focused on mitochondrial Ca2+ alterations in AD, their causes and bioenergetic consequences in neuronal and glial cells, summarizing the possible mechanisms linking detrimental mitochondrial Ca2+ signals to neuronal death in different experimental AD models.
Collapse
Affiliation(s)
- Nikita Arnst
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Annamaria Lia
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Martina Bedetta
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, 35131 Padua, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
- Study Centre for Neurodegeneration (CESNE), University of Padova, 35131 Padua, Italy
| |
Collapse
|
40
|
Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci 2022; 23:ijms232213954. [PMID: 36430432 PMCID: PMC9697769 DOI: 10.3390/ijms232213954] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent case of neurodegenerative disease and is becoming a major public health problem all over the world. Many therapeutic strategies have been explored for several decades; however, there is still no curative treatment, and the priority remains prevention. In this review, we present an update on the clinical and physiological phase of the AD spectrum, modifiable and non-modifiable risk factors for AD treatment with a focus on prevention strategies, then research models used in AD, followed by a discussion of treatment limitations. The prevention methods can significantly slow AD evolution and are currently the best strategy possible before the advanced stages of the disease. Indeed, current drug treatments have only symptomatic effects, and disease-modifying treatments are not yet available. Drug delivery to the central nervous system remains a complex process and represents a challenge for developing therapeutic and preventive strategies. Studies are underway to test new techniques to facilitate the bioavailability of molecules to the brain. After a deep study of the literature, we find the use of soft nanoparticles, in particular nanoliposomes and exosomes, as an innovative approach for preventive and therapeutic strategies in reducing the risk of AD and solving problems of brain bioavailability. Studies show the promising role of nanoliposomes and exosomes as smart drug delivery systems able to penetrate the blood-brain barrier and target brain tissues. Finally, the different drug administration techniques for neurological disorders are discussed. One of the promising therapeutic methods is the intranasal administration strategy which should be used for preclinical and clinical studies of neurodegenerative diseases.
Collapse
|
41
|
Nunes D, Loureiro JA, Pereira MC. Drug Delivery Systems as a Strategy to Improve the Efficacy of FDA-Approved Alzheimer's Drugs. Pharmaceutics 2022; 14:2296. [PMID: 36365114 PMCID: PMC9694621 DOI: 10.3390/pharmaceutics14112296] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 08/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, with a high impact worldwide, accounting for more than 46 million cases. The continuous increase of AD demands the fast development of preventive and curative therapeutic strategies that are truly effective. The drugs approved for AD treatment are classified into acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists. The therapeutic effectiveness of those drugs is hindered by their restricted access to the brain due to the blood-brain barrier, low bioavailability, and poor pharmacokinetic properties. In addition, the drugs are reported to have undesirable side effects. Several drug delivery systems (DDSs) have been widely exploited to address these issues. DDSs serve as drug carriers, combining the ability to deliver drugs locally and in a targeted manner with the ability to release them in a controlled and sustained manner. As a result, the pharmacological therapeutic effectiveness is raised, while the unwanted side effects induced by the unspecific distribution decrease. This article reviews the recently developed DDSs to increase the efficacy of Food and Drug Administration-approved AD drugs.
Collapse
Affiliation(s)
- Débora Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
42
|
Wang Y, Zhu J, Jia W, Xiong H, Qiu W, Xu R, Lin Y. BACE1 Aptamer-Modified Tetrahedral Framework Nucleic Acid to Treat Alzheimer's Disease in an APP-PS1 Animal Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44228-44238. [PMID: 36149663 DOI: 10.1021/acsami.2c14626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease is a neurodegenerative disease caused by excessive amyloid β protein-induced neurotoxicity. However, drugs targeting amyloid β protein production face many problems, such as the low utilization rate of drugs by cells and the difficulty of drugs in penetrating the blood-brain barrier. A tetrahedral framework nucleic acid is a new type of nanonucleic acid structure that functions as a therapy and drug carrier. Here, we synthesized a BACE1 aptamer-modified tetrahedral framework nucleic acid and tested its therapeutic effect on Alzheimer's disease in vitro and in vivo. Our results demonstrated that the tetrahedral framework nucleic acid could be used as a carrier to deliver the BACE1 aptamer to the brain to reduce the production of amyloid β proteins. It also played an antiapoptotic role by reducing the production of reactive oxygen species. Thus, this nanomaterial is a potential drug for Alzheimer's disease.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianwei Zhu
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weiqiang Jia
- Department of neurosurgery, The First People's Hospital in Shuangliu District/West China Airport Hospital, Sichuan University, Chengdu 610041, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenqiao Qiu
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
43
|
Kuznetsova DA, Gaynanova GA, Vasilieva EA, Pavlov RV, Zueva IV, Babaev VM, Kuznetsov DM, Voloshina AD, Petrov KA, Zakharova LY, Sinyashin OG. Oxime Therapy for Brain AChE Reactivation and Neuroprotection after Organophosphate Poisoning. Pharmaceutics 2022; 14:pharmaceutics14091950. [PMID: 36145698 PMCID: PMC9506492 DOI: 10.3390/pharmaceutics14091950] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
One of the main problems in the treatment of poisoning with organophosphorus (OPs) inhibitors of acetylcholinesterase (AChE) is low ability of existing reactivators of AChE that are used as antidotes to cross the blood-brain barrier (BBB). In this work, modified cationic liposomes were developed that can penetrate through the BBB and deliver the reactivator of AChE pralidoxime chloride (2-PAM) into the brain. Liposomes were obtained on the basis of phosphatidylcholine and imidazolium surfactants. To obtain the composition optimized in terms of charge, stability, and toxicity, the molar ratio of surfactant/lipid was varied. For the systems, physicochemical parameters, release profiles of the substrates (rhodamine B, 2-PAM), hemolytic activity and ability to cause hemagglutination were evaluated. Screening of liposome penetration through the BBB, analysis of 2-PAM pharmacokinetics, and in vivo AChE reactivation showed that modified liposomes readily pass into the brain and reactivate brain AChE in rats poisoned with paraoxon (POX) by 25%. For the first time, an assessment was made of the ability of imidazolium liposomes loaded with 2-PAM to reduce the death of neurons in the brains of mice. It was shown that intravenous administration of liposomal 2-PAM can significantly reduce POX-induced neuronal death in the hippocampus.
Collapse
|
44
|
Quantum dots: The cutting-edge nanotheranostics in brain cancer management. J Control Release 2022; 350:698-715. [PMID: 36057397 DOI: 10.1016/j.jconrel.2022.08.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals possessing unique optoelectrical properties in that they can emit light energy of specific tunable wavelengths when excited by photons. They are gaining attention nowadays owing to their all-around ability to allow high-quality bio-imaging along with targeted drug delivery. The most lethal central nervous system (CNS) disorders are brain cancers or malignant brain tumors. CNS is guarded by the blood-brain barrier which poses a selective blockade toward drug delivery into the brain. QDs have displayed strong potential to deliver therapeutic agents into the brain successfully. Their bio-imaging capability due to photoluminescence and specific targeting ability through the attachment of ligand biomolecules make them preferable clinical tools for coming times. Biocompatible QDs are emerging as nanotheranostic tools to identify/diagnose and selectively kill cancer cells. The current review focuses on QDs and associated nanoformulations as potential futuristic clinical aids in the continuous battle against brain cancer.
Collapse
|
45
|
Weng S, Lai QL, Wang J, Zhuang L, Cheng L, Mo Y, Liu L, Zhao Z, Zhang Y, Qiao S. The Role of Exosomes as Mediators of Neuroinflammation in the Pathogenesis and Treatment of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:899944. [PMID: 35837481 PMCID: PMC9273880 DOI: 10.3389/fnagi.2022.899944] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a common neurodegenerative disease characterized by progressive dementia. Accumulation of β–amyloid peptide 1–42 and phosphorylation of tau protein in the brain are the two main pathological features of AD. However, comprehensive studies have shown that neuroinflammation also plays a crucial role in the pathogenesis of AD. Neuroinflammation is associated with neuronal death and abnormal protein aggregation and promotes the pathological process of β-amyloid peptide 1–42 and tau protein. The inflammatory components associated with AD include glial cells, complement system, cytokines and chemokines. In recent years, some researchers have focused on exosomes, a type of membrane nano vesicles. Exosomes can transport proteins, lipids, microRNAs and other signaling molecules to participate in a variety of signaling pathways for signal transmission or immune response, affecting the activity of target cells and participating in important pathophysiological processes. Therefore, exosomes play an essential role in intercellular communication and may mediate neuroinflammation to promote the development of AD. This paper reviews the occurrence and development of neuroinflammation and exosomes in AD, providing a deeper understanding of the pathogenesis of AD. Furthermore, the role of exosomes in the pathogenesis and treatment of AD is further described, demonstrating their potential as therapeutic targets for neuroinflammation and AD in the future.
Collapse
Affiliation(s)
- Shiting Weng
- The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Qi-Lun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Junjun Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Liying Zhuang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Lin Cheng
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Yejia Mo
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Lu Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Zexian Zhao
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Ying Zhang
- Department of Neurology, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
- *Correspondence: Song Qiao,
| |
Collapse
|