1
|
Li L, Huang W, Ren X, Wang Z, Ding K, Zhao L, Zhang J. Unlocking the potential: advancements and future horizons in ROR1-targeted cancer therapies. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2603-2616. [PMID: 39145866 DOI: 10.1007/s11427-024-2685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
While receptor tyrosine kinase-like orphan receptor 1 (ROR1) is typically expressed at low levels or absent in normal tissues, its expression is notably elevated in various malignant tumors and conditions, including chronic lymphocytic leukemia (CLL), breast cancer, ovarian cancer, melanoma, and lung adenocarcinoma. This distinctive feature positions ROR1 as an attractive target for tumor-specific treatments. Currently, several targeted drugs directed at ROR1 are undergoing clinical development, including monoclonal antibodies, antibody-drug conjugates (ADCs), and chimeric antigen receptor T-cell therapy (CAR-T). Additionally, there are four small molecule inhibitors designed to bind to ROR1, presenting promising avenues for the development of PROTAC degraders targeting ROR1. This review offers updated insights into ROR1's structural and functional characteristics, embryonic development implications, cell survival signaling pathways, and evolutionary targeting strategies, all of which have the potential to advance the treatment of malignant tumors.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Linxiang Zhao
- State Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
2
|
Li J, Gong C, Zhou H, Liu J, Xia X, Ha W, Jiang Y, Liu Q, Xiong H. Kinase Inhibitors and Kinase-Targeted Cancer Therapies: Recent Advances and Future Perspectives. Int J Mol Sci 2024; 25:5489. [PMID: 38791529 PMCID: PMC11122109 DOI: 10.3390/ijms25105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Over 120 small-molecule kinase inhibitors (SMKIs) have been approved worldwide for treating various diseases, with nearly 70 FDA approvals specifically for cancer treatment, focusing on targets like the epidermal growth factor receptor (EGFR) family. Kinase-targeted strategies encompass monoclonal antibodies and their derivatives, such as nanobodies and peptides, along with innovative approaches like the use of kinase degraders and protein kinase interaction inhibitors, which have recently demonstrated clinical progress and potential in overcoming resistance. Nevertheless, kinase-targeted strategies encounter significant hurdles, including drug resistance, which greatly impacts the clinical benefits for cancer patients, as well as concerning toxicity when combined with immunotherapy, which restricts the full utilization of current treatment modalities. Despite these challenges, the development of kinase inhibitors remains highly promising. The extensively studied tyrosine kinase family has 70% of its targets in various stages of development, while 30% of the kinase family remains inadequately explored. Computational technologies play a vital role in accelerating the development of novel kinase inhibitors and repurposing existing drugs. Recent FDA-approved SMKIs underscore the importance of blood-brain barrier permeability for long-term patient benefits. This review provides a comprehensive summary of recent FDA-approved SMKIs based on their mechanisms of action and targets. We summarize the latest developments in potential new targets and explore emerging kinase inhibition strategies from a clinical perspective. Lastly, we outline current obstacles and future prospects in kinase inhibition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.L.)
| |
Collapse
|
3
|
Wang Y, Zhang Y, Sun H, Chen J, Yang H, Zhong Z, Xiao X, Li Y, Tang Y, Lu H, Tang X, Zhang M, Wu W, Zhou S, Yang J. Antitumor activity of a ROR1 × CD3 bispecific antibody in non-small cell lung cancer. Int Immunopharmacol 2023; 123:110686. [PMID: 37499397 DOI: 10.1016/j.intimp.2023.110686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Over the last decade, immuno-oncologic drugs especially CD3-engaging bispecific antibodies (biAbs) are experiencing fast-paced evolution, but big challenges still exist in the clinical development of biAbs in solid tumors, especially non-small cell lung cancer (NSCLC). In this study, we choose a ROR1 × CD3 biAb in scFv-Fc format, named R11 × v9 biAb, to investigate its tumor-inhibiting role in NSCLC. Notably, the ROR1-engaging arm binds both human and mouse ROR1. We found that R11 × v9 biAb specifically binds T cells and tumor cells simultaneously, and dose-dependent cytotoxicity was detected for various ROR1+ NSCLC cell lines. Further, R11 × v9 biAb mediated T-cell derived proinflammatory cytokine secretion, boosted granzyme B and perforin production from CD8+ T cells, and recruited more CD4+ T cells and CD8+ T cells into the tumor tissues. The antitumor activity of R11 × v9 biAb was confirmed in two xenograft mouse models of ROR1+ NSCLC. Importantly, no harmful side effects were observed in these in vivo studies, warranting further preclinical and clinical studies of R11 × v9 biAb in NSCLC.
Collapse
Affiliation(s)
- Yi Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuxi Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haoyi Sun
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jilan Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Yang
- Department of Pathology, the First People's Hospital of Yunnan Province, Kunming 650034, China
| | - Zhanqiong Zhong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoqian Xiao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanping Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yibei Tang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haolan Lu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinzhi Tang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengyang Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenjun Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Shiyi Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jiahui Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
4
|
Cortesi M, Liu D, Yee C, Marsh DJ, Ford CE. A comparative analysis of 2D and 3D experimental data for the identification of the parameters of computational models. Sci Rep 2023; 13:15769. [PMID: 37737283 PMCID: PMC10517149 DOI: 10.1038/s41598-023-42486-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Computational models are becoming an increasingly valuable tool in biomedical research. Their accuracy and effectiveness, however, rely on the identification of suitable parameters and on appropriate validation of the in-silico framework. Both these steps are highly dependent on the experimental model used as a reference to acquire the data. Selecting the most appropriate experimental framework thus becomes key, together with the analysis of the effect of combining results from different experimental models, a common practice often necessary due to limited data availability. In this work, the same in-silico model of ovarian cancer cell growth and metastasis, was calibrated with datasets acquired from traditional 2D monolayers, 3D cell culture models or a combination of the two. The comparison between the parameters sets obtained in the different conditions, together with the corresponding simulated behaviours, is presented. It provides a framework for the study of the effect of the different experimental models on the development of computational systems. This work also provides a set of general guidelines for the comparative testing and selection of experimental models and protocols to be used for parameter optimization in computational models.
Collapse
Affiliation(s)
- Marilisa Cortesi
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW, Australia.
- Laboratory of Cellular and Molecular Engineering, Department of Electrical Electronic and Information Engineering "G. Marconi", Alma Mater Studiorum-University of Bologna, Cesena, Italy.
| | - Dongli Liu
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW, Australia
| | - Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Deborah J Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Caroline E Ford
- Gynaecological Cancer Research Group, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
5
|
Allegra A, Murdaca G, Mirabile G, Gangemi S. Redox Signaling Modulates Activity of Immune Checkpoint Inhibitors in Cancer Patients. Biomedicines 2023; 11:1325. [PMID: 37238995 PMCID: PMC10215686 DOI: 10.3390/biomedicines11051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although immunotherapy is already a staple of cancer care, many patients may not benefit from these cutting-edge treatments. A crucial field of research now focuses on figuring out how to improve treatment efficacy and assess the resistance mechanisms underlying this uneven response. For a good response, immune-based treatments, in particular immune checkpoint inhibitors, rely on a strong infiltration of T cells into the tumour microenvironment. The severe metabolic environment that immune cells must endure can drastically reduce effector activity. These immune dysregulation-related tumour-mediated perturbations include oxidative stress, which can encourage lipid peroxidation, ER stress, and T regulatory cells dysfunction. In this review, we have made an effort to characterize the status of immunological checkpoints, the degree of oxidative stress, and the part that latter plays in determining the therapeutic impact of immunological check point inhibitors in different neoplastic diseases. In the second section of the review, we will make an effort to assess new therapeutic possibilities that, by affecting redox signalling, may modify the effectiveness of immunological treatment.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino IRCCS, University of Genova, Viale Benedetto XV, n. 6, 16132 Genova, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
6
|
Fang X, Zhang T, Chen Z. Solute Carrier Family 7 Member 11 (SLC7A11) is a Potential Prognostic Biomarker in Uterine Corpus Endometrial Carcinoma. Int J Gen Med 2023; 16:481-497. [PMID: 36777097 PMCID: PMC9910205 DOI: 10.2147/ijgm.s398351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/18/2023] [Indexed: 02/06/2023] Open
Abstract
Background Uterine corpus endometrial carcinoma (UCEC) is a common type of gynecological cancers, second only to cervical cancer in incidence. Thus, it is necessary to develop effective therapies and identify biomarkers for its prognosis. Solute carrier family 7 member 11 (SLC7A11) is well known for its role in maintaining the intracellular glutathione level and preventing oxidative-stress-induced cell death. However, the association between SLC7A11 expression and prognosis as well as the correlation between tumor-infiltrating immune cells (TIICs) and immunotherapy of UCEC has rarely been reported. This study aims to evaluate the prognostic significance and immune cell infiltration level of SLC7A11 in UCEC. Methods Bioinformatics analysis tools and databases, including R software, National Center for Biotechnology Information (NCBI), The Cancer Genome Atlas (TCGA), GEPIA2, Sangerbox, Kaplan-Meier (K-M) Plotter, TISIDB, and TIMER2, were utilized to measure the expression level and clarify the clinical significance of SLC7A11 in UCEC. Results SLC7A11 expression was dramatically up-regulated in UCEC patients and associated with prognosis. DNA methylation levels in the SLC7A11-promoter region were significantly higher in normal participants than in patients with UCEC. We also showed that SLC7A11 overexpression was associated with TIICs, immune checkpoint blockers (ICBs), and immunotherapy response in UCEC. The half-maximal inhibitory concentration (IC50) results obtained with the cohort from TCGA showed that Z-VAD-FMK (Caspase inhibitor), S-Triphenylmethyl-L-cysteine (S-Trityl-L-cysteine), and TAE684 (ALK inhibitor) had higher IC50 values in low-expression patient (p < 0.05). Conclusion SLC7A11 overexpression is associated with favorable prognosis of patients with UCEC and is associated with TIICs and the responses to immunotherapy.
Collapse
Affiliation(s)
- Xiangming Fang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People’s Republic of China,Correspondence: Xiangming Fang, Obstetrics and Gynecology Department, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, 848# Dongxin Road, Hangzhou City, Zhejiang Province, 310000, People’s Republic of China, Tel +86-0571-87236570, Email
| | - Ting Zhang
- Department of Pathology, Hangzhou Tongchuang Medical Laboratory, Hangzhou, People’s Republic of China
| | - Zhitao Chen
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People’s Republic of China
| |
Collapse
|
7
|
Osorio-Rodríguez DA, Camacho BA, Ramírez-Segura C. Anti-ROR1 CAR-T cells: Architecture and performance. Front Med (Lausanne) 2023; 10:1121020. [PMID: 36873868 PMCID: PMC9981679 DOI: 10.3389/fmed.2023.1121020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
The receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a membrane receptor that plays a key role in development. It is highly expressed during the embryonic stage and relatively low in some normal adult tissues. Malignancies such as leukemia, lymphoma, and some solid tumors overexpress ROR1, making it a promising target for cancer treatment. Moreover, immunotherapy with autologous T-cells engineered to express a ROR1-specific chimeric antigen receptor (ROR1 CAR-T cells) has emerged as a personalized therapeutic option for patients with tumor recurrence after conventional treatments. However, tumor cell heterogeneity and tumor microenvironment (TME) hinder successful clinical outcomes. This review briefly describes the biological functions of ROR1 and its relevance as a tumor therapeutic target, as well as the architecture, activity, evaluation, and safety of some ROR1 CAR-T cells used in basic research and clinical trials. Finally, the feasibility of applying the ROR1 CAR-T cell strategy in combination with therapies targeting other tumor antigens or with inhibitors that prevent tumor antigenic escape is also discussed. Clinical trial registration https://clinicaltrials.gov/, identifier NCT02706392.
Collapse
Affiliation(s)
- Daniel Andrés Osorio-Rodríguez
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | | | - César Ramírez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia.,Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| |
Collapse
|