1
|
Bellapukonda SM, Bandela R, Singampalli A, Srikanth D, Kumar P, Nanduri S, Yaddanapudi VM. A systematic review on the anti-microbial activities and structure-activity relationship (SAR) of quinoxaline derivatives. Eur J Med Chem 2025; 289:117472. [PMID: 40048800 DOI: 10.1016/j.ejmech.2025.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Anti-microbial resistance has become a serious global health issue affecting millions of people worldwide. Despite extensive drug discovery efforts aimed at identifying potent molecules for effective anti-microbial treatments, the emergence of superbugs remains a significant challenge. Thus, developing novel therapeutic agents is required to combat these evolving threats. The quinoxaline scaffold emerges as a promising heterocyclic framework for developing novel anti-microbial agents. It's simple, flexible structure, coupled with its bioisosteric relationship to extensively explored quinoline and naphthalene scaffolds, offers a potential avenue for circumventing bacterial resistance developed against these established classes. Hence it has sparked interest in researchers to develop novel antibiotics based on the quinoxaline core. This review focuses on the recent advances of quinoxaline derivatives as anti-microbial agents and their structure-activity relationship studies based on the literature published from 2015 to 2024. The systematic presentation of this information will assist researchers in identifying key substitution patterns around the quinoxaline nucleus, facilitating the development of structure-activity relationship (SAR), and guiding the design of novel anti-microbial drugs to combat the growing threat of anti-microbial resistance.
Collapse
Affiliation(s)
- Sri Mounika Bellapukonda
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Rani Bandela
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Anuradha Singampalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Danaboina Srikanth
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pardeep Kumar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India.
| |
Collapse
|
2
|
Zhu H, Ni X, Su J, Qin Y, He X, Liu B, Ding S, Wang H, Zhang X, Huang J, Hu Q, Ma R, Cai J. Multifunctional Mesoporous Silicon Nanoparticles for MRI-Based Diagnostic Imaging and Glioma Therapy. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40261325 DOI: 10.1021/acsami.5c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
To overcome the limited efficacy of chemodynamic therapy (CDT) caused by insufficient hydrogen peroxide (H2O2) in the tumor microenvironment, we engineered a glutathione (GSH)-responsive multifunctional nanosystem, HCTG-C, based on hollow mesoporous organosilica nanoparticles. This system integrates tirapazamine (TPZ), glucose oxidase (GOx), in situ-synthesized copper sulfide (CuS), and CT2A glioma cell membrane coating to enable dual tumor-targeted therapy and self-imaging capabilities. The therapeutic mechanism relies on three synergistic cascades: (1) GOx-mediated glucose oxidation to deplete oxygen and generate H2O2, establishing a self-sustaining H2O2 supply; (2) GSH-triggered CuS conversion to Cu(I), amplifying Fenton-like reactions for efficient H2O2-to-reactive oxygen species conversion and ferroptosis induction; and (3) hypoxia-activated TPZ to exert cytotoxic effects, synergizing chemotherapy with CDT. Experimental results demonstrated that HCTG-C achieves real-time MRI monitoring via GSH depletion-driven Cu valence transitions, while its self-replenishing H2O2 and oxygen-activation mechanisms significantly enhance antitumor efficacy against CT2A glioma in vitro and in vivo. By innovatively combining H2O2 self-supply cascades, hypoxia-activated chemotherapy, and ferroptosis-driven CDT, this work presents a paradigm-shifting strategy for self-imaging-guided combinatorial therapy, advancing ferroptosis-based approaches for precision glioma treatment.
Collapse
Affiliation(s)
- Huiru Zhu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xiaoying Ni
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jiaxin Su
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiaoya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Bo Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Haoru Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiangmin Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jie Huang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Qian Hu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Ruofei Ma
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| |
Collapse
|
3
|
Hou H, Liu X, Liu J, Wang Y. Carbohydrate polymer-based nanoparticles with cell membrane camouflage for cancer therapy: A review. Int J Biol Macromol 2025; 289:138620. [PMID: 39674458 DOI: 10.1016/j.ijbiomac.2024.138620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Recent developments in biomimetic nanoparticles, specifically carbohydrate polymer-coated cell membrane nanoparticles, have demonstrated considerable promise in treating cancer. These systems improve drug delivery by imitating natural cell actions, enhancing biocompatibility, and decreasing immune clearance. Conventional drug delivery methods frequently face challenges with non-specific dispersal and immune detection, which can hinder their efficiency and safety. These biomimetic nanoparticles improve target specificity, retention times, and therapeutic efficiency by using biological components like chitosan, hyaluronic acid, and alginate. Chitosan-based nanoparticles, which come from polysaccharides found in nature, have self-assembly abilities that make them better drug carriers. Hyaluronic acid helps target tissues more effectively, especially in cancer environments where there are high levels of hyaluronic acid receptors. Alginate-based systems also enhance drug delivery by being biocompatible and degradable, making them ideal choices for advanced therapeutic uses. Moreover, these particles hold potential for overcoming resistance to multiple drugs and boosting the body's immune reaction to tumors through precise delivery and decreased side effects of chemotherapy drugs. This review delves into the possibilities of using carbohydrate polymer-functionalized nanoparticles and their impact on enhancing the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Haijia Hou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejian Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yudong Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Zhang Y, Xing J, Jiang J, Liao M, Pan G, Wang Y. Hypoxia-responsive nanoparticles for fluorescence diagnosis and therapy of cancer. Theranostics 2025; 15:1353-1375. [PMID: 39816693 PMCID: PMC11729551 DOI: 10.7150/thno.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025] Open
Abstract
Hypoxia, caused by rapid tumor growth and insufficient oxygen supply, is a defining characteristic of numerous solid tumors and exerts a significant influence on tumor growth, metastasis, and invasion. Early diagnosis and effective killing of tumor cells are crucial for cancer treatment. In recent years, the emergence of nanomaterials has overcome the difficulties in the delivery of chemotherapeutic drugs and contrast agents to tumor area. In this review, we summarize the development of hypoxia-responsive nanoparticles for fluorescence imaging and tumor therapy in the last five years, and further discuss their design strategies and applications in bioimaging. In addition, we discuss the therapeutic strategies of hypoxia-responsive prodrugs on different nanoplatforms and the future prospects of hypoxia-responsive nanomedicine in tumor therapy.
Collapse
Affiliation(s)
- Yubing Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission, Key Laboratory of Rare and Rare Diseases in Shandong Province, School of Pharmacy (Institute of Pharmacy) of Shandong First Medical University, Jinan, Shandong 250117, China
| | - Jiaqi Xing
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission, Key Laboratory of Rare and Rare Diseases in Shandong Province, School of Pharmacy (Institute of Pharmacy) of Shandong First Medical University, Jinan, Shandong 250117, China
| | - Juan Jiang
- Shandong Luye Pharmaceutical Co., Ltd., China
| | - Maoliang Liao
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an, 237012, Anhui, China
| | - Guojun Pan
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanfeng Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission, Key Laboratory of Rare and Rare Diseases in Shandong Province, School of Pharmacy (Institute of Pharmacy) of Shandong First Medical University, Jinan, Shandong 250117, China
| |
Collapse
|
5
|
Chen S, Wu Z. Targeting tumor microenvironments with gold nanoparticles for enhanced photothermal therapy. ONCOLOGIE 2024; 26:899-912. [DOI: 10.1515/oncologie-2024-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Abstract
Gold nano-drug delivery system-mediated photothermal therapy (PTT) has been widely studied in the field of anti-tumor. In order to achieve accurate drug release and improve photothermal efficiency, nano-drug delivery strategies targeting tumor microenvironment (TME) have become a hot research topic in recent years. This paper introduces four characteristics of the TME: hypoxia, low pH, high level of reactive oxygen species (ROS), and overexpression of enzymes. These differences between tumor and normal tissue become effective targets for tumor therapy. This paper summarizes the gold nano-drug delivery system that can target these four characteristics, so as to realize a large amount of drug aggregation at the tumor site and achieve efficient photothermal therapy. Moreover, the multi-response nano-drug delivery system can further control drug delivery and improve therapeutic effects. Finally, this paper also summarizes the gold nanoparticles for tumor therapy that have entered clinical trials so far. The purpose of this review is to discuss the research progress of enhanced photothermal therapy with gold nano-drug delivery systems targeting the TME, with a view to providing a reference for the future development of novel anti-tumor nanoplatforms and the clinical translation of gold nanoparticles.
Collapse
Affiliation(s)
- Sisi Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University , Hangzhou , China
| | - Zhibing Wu
- Department of Oncology , 584020 Affiliated Zhejiang Hospital of Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
6
|
Tang Z, Xu YC, Wang S, Huang J, Liu J, Ding M, Sun Y, Li N, Li H, Lin Y, Qin C. Light-activated hypoxia-sensitive biomimetic decoy efficiently cascading photodynamic-chemo therapy for breast cancer. Colloids Surf B Biointerfaces 2024; 243:114145. [PMID: 39142000 DOI: 10.1016/j.colsurfb.2024.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The hypoxic microenvironment within the tumor microenvironment of breast cancer imposes a challenge in overcoming chemotherapy resistance. In this investigation, we designed a novel strategy utilizing a light-controlled cascade targeting nanomedicine specifically tailored for enhanced immune therapy of breast cancer. Albumin nanoparticle was achieved by crosslinking, followed by loading TPZ and Ce6, and subsequent modification to enable selective binding with CD44 hyaluronic acid to form nanomedicine. Encouragingly, it was demonstrated the remarkable ability of the nanomedicine to effectively internalize into cellular entities, thereby inducing apoptosis in 4T1 cells efficiently in vitro when exposed to light irradiation. In vivo assessments showcased the exceptional aptitude of the nanomedicine not only for preferential accumulation within tumor tissues, but also for substantial suppression of tumor growth. Immune mechanisms have shown that nanomedicine treatment promoted the maturation of DCs in vivo, enhanced the proportion of CD8+ T cells in the spleen and tumor, and simultaneously upregulated the ratio of M1 macrophages favorable for anti-tumor effects. These outcomes collectively advance a fresh perspective for the clinical breast cancer therapy.
Collapse
Affiliation(s)
- Zihui Tang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yu Cai Xu
- Department of Oncology, Pinghu Second People's Hospital, Zhapu Town, Jiaxing City, Zhejiang Province, China.
| | - Suyuan Wang
- National Key Laboratory of Immunity and Inflammation, Naval Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | - Jian Huang
- Department of Interventional radiology,Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China.
| | - Jun Liu
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Min Ding
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yang Sun
- Department of Pediatric Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Ning Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Yan Lin
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Chenjie Qin
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Interventional radiology,Eastern Hepatobiliary Surgery Institute, the Naval Medical University, Shanghai 200438, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
7
|
Dirersa W, Kan TC, Chang J, Getachew G, Ochirbat S, Kizhepat S, Wibrianto A, Rasal A, Chen HA, Ghule AV, Chou TH, Chang JY. Engineering H 2O 2 Self-Supplying Platform for Xdynamic Therapies via Ru-Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24172-24190. [PMID: 38688027 PMCID: PMC11103653 DOI: 10.1021/acsami.3c18888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Of the most common, hypoxia, overexpressed glutathione (GSH), and insufficient H2O2 concentration in the tumor microenvironment (TME) are the main barriers to the advancment of reactive oxygen species (ROS) mediated Xdynamic therapies (X = photo, chemodynamic, chemo). Maximizing Fenton catalytic efficiency is crucial in chemodynamic therapy (CDT), yet endogenous H2O2 levels are not sufficient to attain better anticancer efficacy. Specifically, there is a need to amplify Fenton reactivity within tumors, leveraging the unique attributes of the TME. Herein, for the first time, we design RuxCu1-xO2-Ce6/CPT (RCpCCPT) anticancer nanoagent for TME-mediated synergistic therapy based on heterogeneous Ru-Cu peroxide nanodots (RuxCu1-xO2 NDs) and chlorine e6 (Ce6), loaded with ROS-responsive thioketal (TK) linked-camptothecin (CPT). The Ru-Cu peroxide NDs (RCp NDs, x = 0.50) possess the highest oxygen vacancy (OV) density, which grants them the potential to form massive Lewis's acid sites for peroxide adsorption, while the dispersibility and targetability of the NDs were improved via surface modification using hyaluronic acid (HA). In TME, RCpCCPT degrades, releasing H2O2, Ru2+/3+, and Cu+/2+ ions, which cooperatively facilitate hydroxyl radical (•OH) formation and deactivate antioxidant GSH enzymes through a cocatalytic loop, resulting in excellent tumor therapeutic efficacy. Furthermore, when combined with laser treatment, RCpCCPT produces singlet oxygen (1O2) for PDT, which induces cell apoptosis at tumor sites. Following ROS generation, the TK linkage is disrupted, releasing up to 92% of the CPT within 48 h. In vitro investigations showed that laser-treated RCpCCPT caused 81.5% cell death from PDT/CDT and chemotherapy (CT). RCpCCPT in cancer cells produces red-blue emission in images of cells taking them in, which allows for fluorescence image-guided Xdynamic treatment. The overall results show that RCp NDs and RCpCCPT are more biocompatible and have excellent Xdynamic therapeutic effectiveness in vitro and in vivo.
Collapse
Affiliation(s)
- Worku
Batu Dirersa
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Tzu-Chun Kan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jungshan Chang
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International
Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program for Cell Therapy and Regeneration Medicine, College
of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Girum Getachew
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Sonjid Ochirbat
- International
Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Shamsa Kizhepat
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Akash Rasal
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Hung-An Chen
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Anil Vithal Ghule
- Green
Nanotechnology Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, India
| | - Tzung-Han Chou
- Department
of Chemical and Materials Engineering, National
Yunlin University of Science and Technology, Yunlin 64002, Taiwan, Republic of China
| | - Jia-Yaw Chang
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| |
Collapse
|
8
|
Guo Y, Luo H, Jiang H, Liu X, Long X, Hou Y, Chen Z, Sun Y, Ge D, Shi W. Liposome encapsulated polydopamine nanoparticles: Enhancing ferroptosis and activating hypoxia prodrug activity. Mater Today Bio 2024; 25:101009. [PMID: 38445012 PMCID: PMC10912735 DOI: 10.1016/j.mtbio.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
The short lifespan of active oxygen species and depressed O2 level during ferroptosis treatment in tumor cells weaken ferroptosis therapy. How to improve the utilization efficiency of active oxygen species generated in real time is pivotal for anticancer treatment. Herein, the tirapazamine (TPZ) loaded polydopamine-Fe nanoparticles (PDA-Fe-TPZ) was modified with unsaturated liposome (Lip), which was constructed to overcome the drawbacks of traditional ferroptosis therapy. The Lip@PDA-Fe-TPZ nanoliposomes can react with H2O2 to produce •OH by Fenton reaction, which then attacks Lip and transforms into radical intermediate (L•) and phospholipid peroxide radical (LOO•) to avoid the annihilation of •OH. The introduced Lip enhances lipid peroxidation and promotes oxygen consumption, resulting in increased hypoxia at tumor site. The introduced TPZ can be triggered by reductase in tumor cells under hypoxia, which can reduce to transient oxidative free radicals by reductase enzymes and destroy the structure of the surrounding biomacromolecules, thus achieving the synergistic treatment of ferroptosis and chemotherapy. In this work, we organically combined enhanced ferrroptosis with hypoxic activated chemotherapy to achieve efficient and specific tumor killing effect, which can sever as a promising treatment of cancer in the future.
Collapse
Affiliation(s)
- Yijun Guo
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Huiling Luo
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Hairong Jiang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xinxin Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Xinrui Long
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Yinuo Hou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Zhou Chen
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
9
|
Dirersa WB, Kan TC, Getachew G, Wibrianto A, Ochirbat S, Rasal A, Chang J, Chang JY. Preclinical Assessment of Enhanced Chemodynamic Therapy by an FeMnO x-Based Nanocarrier: Tumor-Microenvironment-Mediated Fenton Reaction and ROS-Induced Chemotherapeutic for Boosted Antitumor Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55258-55275. [PMID: 38013418 DOI: 10.1021/acsami.3c10733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In recent studies, iron-containing Fenton nanocatalysts have demonstrated significant promise for clinical use due to their effective antitumor activity and low cytotoxicity. A new approach was reported in this work utilizing cation exchange synthesis to fabricate FeMnOx nanoparticles (NPs) that boost Fenton reactions and responses to the tumor microenvironment (TME) for chemodynamic therapy (CDT) and chemotherapy (CT). Within the TME, the redox metal pair of Fe2+/Mn2+ helps break down endogenous hydrogen peroxide (H2O2) into very harmful hydroxyl radicals (•OH) while simultaneously deactivating glutathione (GSH) to boost CDT performance. To further enhance the therapeutic potential, FeMnOx NPs were encapsulated with thioketal-linked camptothecin (CPT-TK-COOH), a reactive oxygen species (ROS)-responsive prodrug, achieving a high CPT-loading capacity of up to 51.1%. Upon ROS generation through the Fenton reaction, the prodrug TK linkage was disrupted, releasing 80% of the CPT payload within 48 h. Notably, FeMnOx@CPT exhibited excellent dual-modal imaging capabilities, enabling magnetic resonance and fluorescence imaging for image-guided therapy. In vitro studies showed the cytocompatibility of FeMnOx NPs using MDA-Mb-231 and 4T1 cells, but in the presence of H2O2, they induced significant cytotoxicity, resulting in 80% cell death through CDT and CT effects. Upon intravenous administration, FeMnOx@CPT displayed remarkable tumor accumulation, which enhanced tumor suppression in xenografts through improved CDT and CT effects. Moreover, no significant adverse effects were observed in the FeMnOx NP-treated animals. In the current study, the FeMnOx@CPT anticancer platform, with its boosted •OH-producing capability and ROS-cleavable drug release, has been validated utilizing in vitro and animal studies, suggesting its capacity as a viable strategy for clinical trials.
Collapse
Affiliation(s)
- Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Tzu-Chun Kan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Sonjid Ochirbat
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Akash Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| |
Collapse
|
10
|
Tan KF, In LLA, Vijayaraj Kumar P. Surface Functionalization of Gold Nanoparticles for Targeting the Tumor Microenvironment to Improve Antitumor Efficiency. ACS APPLIED BIO MATERIALS 2023; 6:2944-2981. [PMID: 37435615 DOI: 10.1021/acsabm.3c00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Gold nanoparticles (AuNPs) have undergone significant research for their use in the treatment of cancer. Numerous researchers have established their potent antitumor properties, which have greatly impacted the treatment of cancer. AuNPs have been used in four primary anticancer treatment modalities, namely radiation, photothermal therapy, photodynamic therapy, and chemotherapy. However, the ability of AuNPs to destroy cancer is lacking and can even harm healthy cells without the right direction to transport them to the tumor microenvironment. Consequently, a suitable targeting technique is needed. Based on the distinct features of the human tumor microenvironment, this review discusses four different targeting strategies that target the four key features of the tumor microenvironment, including abnormal vasculature, overexpression of specific receptors, an acidic microenvironment, and a hypoxic microenvironment, to direct surface-functionalized AuNPs to the tumor microenvironment and increase antitumor efficacies. In addition, some current completed or ongoing clinical trials of AuNPs will also be discussed below to further reinforce the concept of using AuNPs in anticancer therapy.
Collapse
Affiliation(s)
- Kin Fai Tan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Palanirajan Vijayaraj Kumar
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
11
|
Xu Y, Lv J, Kong C, Li Y, Wang K, Shen N, Tang Z. A novel hypoxia‐activated polymeric
Tirapazamine
derivative for enhanced antitumor therapy. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yajun Xu
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Jianlin Lv
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Chaoying Kong
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Yanran Li
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| | - Kun Wang
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
| | - Na Shen
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
| | - Zhaohui Tang
- CAS Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- College of Applied Chemistry and Engineering University of Science and Technology of China Hefei P. R. China
| |
Collapse
|
12
|
Mbugua SN. Targeting Tumor Microenvironment by Metal Peroxide Nanoparticles in Cancer Therapy. Bioinorg Chem Appl 2022; 2022:5041399. [PMID: 36568636 PMCID: PMC9788889 DOI: 10.1155/2022/5041399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Solid tumors have a unique tumor microenvironment (TME), which includes hypoxia, low acidity, and high hydrogen peroxide and glutathione (GSH) levels, among others. These unique factors, which offer favourable microenvironments and nourishment for tumor development and spread, also serve as a gateway for specific and successful cancer therapies. A good example is metal peroxide structures which have been synthesized and utilized to enhance oxygen supply and they have shown great promise in the alleviation of hypoxia. In a hypoxic environment, certain oxygen-dependent treatments such as photodynamic therapy and radiotherapy fail to respond and therefore modulating the hypoxic tumor microenvironment has been found to enhance the antitumor impact of certain drugs. Under acidic environments, the hydrogen peroxide produced by the reaction of metal peroxides with water not only induces oxidative stress but also produces additional oxygen. This is achieved since hydrogen peroxide acts as a reactive substrate for molecules such as catalyse enzymes, alleviating tumor hypoxia observed in the tumor microenvironment. Metal ions released in the process can also offer distinct bioactivity in their own right. Metal peroxides used in anticancer therapy are a rapidly evolving field, and there is good evidence that they are a good option for regulating the tumor microenvironment in cancer therapy. In this regard, the synthesis and mechanisms behind the successful application of metal peroxides to specifically target the tumor microenvironment are highlighted in this review. Various characteristics of TME such as angiogenesis, inflammation, hypoxia, acidity levels, and metal ion homeostasis are addressed in this regard, together with certain forms of synergistic combination treatments.
Collapse
Affiliation(s)
- Simon Ngigi Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| |
Collapse
|