1
|
Khadka P, Hejazi M, Hindle M, Schuman T, Longest W, Kaviratna A, Chopski S, Walenga R, Newman B, Golshahi L. Anatomically-detailed segmented representative adult and pediatric nasal models for assessing regional drug delivery and bioequivalence with suspension nasal sprays. Int J Pharm 2024; 666:124743. [PMID: 39343330 DOI: 10.1016/j.ijpharm.2024.124743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
In vitro nasal models can potentially facilitate development and approval of nasal drug products. This study aims to evaluate the potential for using regional deposition measurements from in vitro nasal models to evaluate nasal spray performance across several products. To accomplish this, the posterior regions of six anatomically realistic nasal airway models of adult and pediatric subjects, representing Low (L), Mean (M) and High (H) posterior drug deposition (PD) for each of the two age groups, were segmented with high anatomical precision into five regions of interest. These models were previously developed with the goal of quantifying the range of intersubject variability of PD following administration of inhaled corticosteroids. The in vitro regional drug deposition values were measured for the reference listed drug (RLD) product for triamcinolone acetonide and two corresponding generic (test) nasal spray products, as well as an RLD product for fluticasone furoate nasal spray. In general, the pediatric models mostly demonstrated higher PD compared to the adult models. The majority (>85 %) of PD was confined to the front and the inferior meatus regions. Subsequent population bioequivalence (PBE) analyses of the regional nasal deposition suggested that the anatomical differences among subjects may impact the nasal spray performance across different nasal products.
Collapse
Affiliation(s)
- Prakash Khadka
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammad Hejazi
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Theodore Schuman
- Department of Otolaryngology - Head and Neck Surgery, VCU Health, Richmond, VA, USA
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Anubhav Kaviratna
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Steven Chopski
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Ross Walenga
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Bryan Newman
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Laleh Golshahi
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Dutta R, V Kolanjiyil A, Walenga RL, Chopski SG, Kaviratna A, Mohan AR, Newman B, Golshahi L, Longest W. CFD-PK model for nasal suspension sprays: Validation with human adult in vivo data for triamcinolone acetonide. Int J Pharm 2024; 665:124660. [PMID: 39236773 DOI: 10.1016/j.ijpharm.2024.124660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
The objectives of this study were to expand and implement a Computational Fluid Dynamics (CFD)-Dissolution, Absorption and Clearance (DAC)-Pharmacokinetics (PK) multi-physics modeling framework for simulating the transport of suspension-based nasal corticosteroid sprays. The mean CFD-predicted peak plasma concentration (Cmax) and area under the curve (AUC) of the plasma concentration-time profile, based on three representative nasal airway models (capturing low, medium and high posterior spray deposition), were within one standard deviation of available in vivo PK data for a representative corticosteroid drug (triamcinolone acetonide). The relative differences in mean Cmax between predictions and in vivo data for low dose (110 µg) and high dose (220 µg) cases were 27.8% and 10.1%, respectively. The models confirmed the dose-dependent dissolution-limited behavior of nasally delivered triamcinolone acetonide observed in available in vivo data. The total uptake from the nasal cavity decreased from 68.3% to 51.3% for the medium deposition model as dose was increased from 110 to 220 µg due to concentration-limited dissolution. The modeling framework is envisioned to facilitate faster development and testing of generic locally acting suspension nasal spray products due to its ability to predict the impact of differences in spray characteristics and patient use parameters on systemic PK.
Collapse
Affiliation(s)
- Rabijit Dutta
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Arun V Kolanjiyil
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Ross L Walenga
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Steven G Chopski
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Anubhav Kaviratna
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Abhinav R Mohan
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Bryan Newman
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Laleh Golshahi
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Seifelnasr A, Si X, Xi J. Effects of Nozzle Retraction Elimination on Spray Distribution in Middle-Posterior Turbinate Regions: A Comparative Study. Pharmaceutics 2024; 16:683. [PMID: 38794345 PMCID: PMC11124954 DOI: 10.3390/pharmaceutics16050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The standard multi-dose nasal spray pump features an integrated actuator and nozzle, which inevitably causes a retraction of the nozzle tip during application. The retraction stroke is around 5.5 mm and drastically reduces the nozzle's insertion depth, which further affects the initial nasal spray deposition and subsequent translocation, potentially increasing drug wastes and dosimetry variability. To address this issue, we designed a new spray pump that separated the nozzle from the actuator and connected them with a flexible tube, thereby eliminating nozzle retraction during application. The objective of this study is to test the new device's performance in comparison to the conventional nasal pump in terms of spray generation, plume development, and dosimetry distribution. For both devices, the spray droplet size distribution was measured using a laser diffraction particle analyzer. Plume development was recorded with a high-definition camera. Nasal dosimetry was characterized in two transparent nasal cavity casts (normal and decongested) under two breathing conditions (breath-holding and constant inhalation). The nasal formulation was a 0.25% w/v methyl cellulose aqueous solution with a fluorescent dye. For each test case, the temporospatial spray translocation in the nasal cavity was recorded, and the final delivered doses were quantified in five nasal regions. The results indicate minor differences in droplet size distribution between the two devices. The nasal plume from the new device presents a narrower plume angle. The head orientation, the depth at which the nozzle is inserted into the nostril, and the administration angle play crucial roles in determining the initial deposition of nasal sprays as well as the subsequent translocation of the liquid film/droplets. Quantitative measurements of deposition distributions in the nasal models were augmented with visualization recordings to evaluate the delivery enhancements introduced by the new device. With an extension tube, the modified device produced a lower spray output and delivered lower doses in the front, middle, and back turbinate than the conventional nasal pump. However, sprays from the new device were observed to penetrate deeper into the nasal passages, predominantly through the middle-upper meatus. This resulted in consistently enhanced dosing in the middle-upper turbinate regions while at the cost of higher drug loss to the pharynx.
Collapse
Affiliation(s)
- Amr Seifelnasr
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA 01854, USA;
| | - Xiuhua Si
- Department of Aerospace, Industrial and Mechanical Engineering, California Baptist University, Riverside, CA 92504, USA;
| | - Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA 01854, USA;
| |
Collapse
|
4
|
Chen J, Finlay WH, Vehring R, Martin AR. Characterizing regional drug delivery within the nasal airways. Expert Opin Drug Deliv 2024; 21:537-551. [PMID: 38568159 DOI: 10.1080/17425247.2024.2336494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/26/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION The nose has been receiving increased attention as a route for drug delivery. As the site of deposition constitutes the first point of contact of the body with the drug, characterization of the regional deposition of intranasally delivered droplets or particles is paramount to formulation and device design of new products. AREAS COVERED This review article summarizes the recent literature on intranasal regional drug deposition evaluated in vivo, in vitro and in silico, with the aim of correlating parameters measured in vitro with formulation and device performance. We also highlight the relevance of regional deposition to two emerging applications: nose-to-brain drug delivery and intranasal vaccines. EXPERT OPINION As in vivo studies of deposition can be costly and time-consuming, researchers have often turned to predictive in vitro and in silico models. Variability in deposition is high due in part to individual differences in nasal geometry, and a complete predictive model of deposition based on spray characteristics remains elusive. Carefully selected or idealized geometries capturing population average deposition can be useful surrogates to in vivo measurements. Continued development of in vitro and in silico models may pave the way for development of less variable and more effective intranasal drug products.
Collapse
Affiliation(s)
- John Chen
- Access to Advanced Health Institute, Seattle, WA, USA
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Reinhard Vehring
- Access to Advanced Health Institute, Seattle, WA, USA
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Sosnowski TR. Towards More Precise Targeting of Inhaled Aerosols to Different Areas of the Respiratory System. Pharmaceutics 2024; 16:97. [PMID: 38258107 PMCID: PMC10818612 DOI: 10.3390/pharmaceutics16010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Pharmaceutical aerosols play a key role in the treatment of lung disorders, but also systemic diseases, due to their ability to target specific areas of the respiratory system (RS). This article focuses on identifying and clarifying the influence of various factors involved in the generation of aerosol micro- and nanoparticles on their regional distribution and deposition in the RS. Attention is given to the importance of process parameters during the aerosolization of liquids or powders and the role of aerosol flow dynamics in the RS. The interaction of deposited particles with the fluid environment of the lung is also pointed out as an important step in the mass transfer of the drug to the RS surface. The analysis presented highlights the technical aspects of preparing the precursors to ensure that the properties of the aerosol are suitable for a given therapeutic target. Through an analysis of existing technical limitations, selected strategies aimed at enhancing the effectiveness of targeted aerosol delivery to the RS have been identified and presented. These strategies also include the use of smart inhaling devices and systems with built-in AI algorithms.
Collapse
Affiliation(s)
- Tomasz R Sosnowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
6
|
Rigaut C, Deruyver L, Niesen M, Vander Ghinst M, Goole J, Lambert P, Haut B. What Are the Key Anatomical Features for the Success of Nose-to-Brain Delivery? A Study of Powder Deposition in 3D-Printed Nasal Casts. Pharmaceutics 2023; 15:2661. [PMID: 38140002 PMCID: PMC10747338 DOI: 10.3390/pharmaceutics15122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Nose-to-brain delivery is a promising way to improve the treatment of central nervous system disorders, as it allows the bypassing of the blood-brain barrier. However, it is still largely unknown how the anatomy of the nose can influence the treatment outcome. In this work, we used 3D printing to produce nasal replicas based on 11 different CT scans presenting various anatomical features. Then, for each anatomy and using the Design of Experiments methodology, we characterised the amount of a powder deposited in the olfactory region of the replica as a function of multiple parameters (choice of the nostril, device, orientation angle, and the presence or not of a concomitant inspiration flow). We found that, for each anatomy, the maximum amount of powder that can be deposited in the olfactory region is directly proportional to the total area of this region. More precisely, the results show that, whatever the instillation strategy, if the total area of the olfactory region is below 1500 mm2, no more than 25% of an instilled powder can reach this region. On the other hand, if the total area of the olfactory region is above 3000 mm2, the deposition efficiency reaches 50% with the optimal choice of parameters, whatever the other anatomical characteristics of the nasal cavity. Finally, if the relative difference between the areas of the two sides of the internal nasal valve is larger than 20%, it becomes important to carefully choose the side of instillation. This work, by predicting the amount of powder reaching the olfactory region, provides a tool to evaluate the adequacy of nose-to-brain treatment for a given patient. While the conclusions should be confirmed via in vivo studies, it is a first step towards personalised treatment of neurological pathologies.
Collapse
Affiliation(s)
- Clément Rigaut
- Transfers Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium; (P.L.); (B.H.)
| | - Laura Deruyver
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.D.); (J.G.)
| | - Maxime Niesen
- Department of Ear, Nose and Throat and Cervico-Facial Surgery, CUB Hôpital Erasme, Hôpital de Bruxelles (HUB), 1070 Brussels, Belgium; (M.N.); (M.V.G.)
| | - Marc Vander Ghinst
- Department of Ear, Nose and Throat and Cervico-Facial Surgery, CUB Hôpital Erasme, Hôpital de Bruxelles (HUB), 1070 Brussels, Belgium; (M.N.); (M.V.G.)
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de Pharmacie, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.D.); (J.G.)
| | - Pierre Lambert
- Transfers Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium; (P.L.); (B.H.)
| | - Benoit Haut
- Transfers Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium; (P.L.); (B.H.)
| |
Collapse
|
7
|
Seifelnasr A, Si XA, Xi J. Visualization and Estimation of Nasal Spray Delivery to Olfactory Mucosa in an Image-Based Transparent Nasal Model. Pharmaceutics 2023; 15:1657. [PMID: 37376105 DOI: 10.3390/pharmaceutics15061657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Nose-to-brain (N2B) drug delivery offers unique advantages over intravenous methods; however, the delivery efficiency to the olfactory region using conventional nasal devices and protocols is low. This study proposes a new strategy to effectively deliver high doses to the olfactory region while minimizing dose variability and drug losses in other regions of the nasal cavity. Materials and Methods: The effects of delivery variables on the dosimetry of nasal sprays were systematically evaluated in a 3D-printed anatomical model that was generated from a magnetic resonance image of the nasal airway. The nasal model comprised four parts for regional dose quantification. A transparent nasal cast and fluorescent imaging were used for visualization, enabling detailed examination of the transient liquid film translocation, real-time feedback on input effect, and prompt adjustment to delivery variables, which included the head position, nozzle angle, applied dose, inhalation flow, and solution viscosity. Results: The results showed that the conventional vertex-to-floor head position was not optimal for olfactory delivery. Instead, a head position tilting 45-60° backward from the supine position gave a higher olfactory deposition and lower variability. A two-dose application (250 mg) was necessary to mobilize the liquid film that often accumulated in the front nose following the first dose administration. The presence of an inhalation flow reduced the olfactory deposition and redistributed the sprays to the middle meatus. The recommended olfactory delivery variables include a head position ranging 45-60°, a nozzle angle ranging 5-10°, two doses, and no inhalation flow. With these variables, an olfactory deposition fraction of 22.7 ± 3.7% was achieved in this study, with insignificant discrepancies in olfactory delivery between the right and left nasal passages. Conclusions: It is feasible to deliver clinically significant doses of nasal sprays to the olfactory region by leveraging an optimized combination of delivery variables.
Collapse
Affiliation(s)
- Amr Seifelnasr
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA 01854, USA
| | - Xiuhua April Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA 92504, USA
| | - Jinxiang Xi
- Department of Biomedical Engineering, University of Massachusetts, Lowell, MA 01854, USA
| |
Collapse
|
8
|
Kolanjiyil AV, Walenga R, Babiskin A, Golshahi L, Hindle M, Longest W. Establishing quantitative relationships between changes in nasal spray in vitro metrics and drug delivery to the posterior nasal region. Int J Pharm 2023; 635:122718. [PMID: 36781083 DOI: 10.1016/j.ijpharm.2023.122718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Nasal sprays are typically characterized using in vitro spray metrics such as spray cone angle and droplet size distribution. It is currently not clear how these in vitro metrics correlate with regional nasal deposition, and these relationships could help explain the impact of product differences. In this study, the effects of changes in spray cone angle, spray velocity, spray ovality and droplet size distribution on regional nasal deposition were analyzed using a validated computational fluid dynamics model in recently developed adult characteristic nasal airway anatomies. The impact of the spray on the surrounding air phase was included. Results indicated that changes in spray cone angle largely influenced the nasal posterior deposition (PD) of the drug. Changes in the plume ovality and characteristic droplet size moderately influenced PD, but the results were dependent on the insertion conditions and nasal geometry. Changes in spray velocity and uniformity constant of the droplet size distribution had only minimal influence on PD. The rank order of metrics having the greatest to least impact on PD was cone angle ≫ plume ovality ≫ characteristic droplet size ≫ velocity ≫ size distribution uniformity constant. Overall, results from this study established quantitative relationships for predicting expected changes in PD.
Collapse
Affiliation(s)
- Arun V Kolanjiyil
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Ross Walenga
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Andrew Babiskin
- Division of Quantitative Methods and Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Laleh Golshahi
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
9
|
Tan ML, Chandran S, Jereb R, Alam K, Bies R, Kozak D, Walenga R, Le Merdy M, Babiskin A. Mechanistic modeling of ophthalmic, nasal, injectable, and implant generic drug products: A workshop summary report. CPT Pharmacometrics Syst Pharmacol 2023; 12:631-638. [PMID: 36851886 DOI: 10.1002/psp4.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/21/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
For approval, a proposed generic drug product must demonstrate it is bioequivalent (BE) to the reference listed drug product. For locally acting drug products, conventional BE approaches may not be feasible because measurements in local tissues at the sites of action are often impractical, unethical, or cost-prohibitive. Mechanistic modeling approaches, such as physiologically-based pharmacokinetic (PBPK) modeling, may integrate information from drug product properties and human physiology to predict drug concentrations in these local tissues. This may allow clinical relevance determination of critical drug product attributes for BE assessment during the development of generic drug products. In this regard, the Office of Generic Drugs of the US Food and Drug Administration has recently established scientific research programs to accelerate the development and assessment of generic products by utilizing model-integrated alternative BE approaches. This report summarizes the presentations and panel discussion from a public workshop that provided research updates and information on the current state of the use of PBPK modeling approaches to support generic product development for ophthalmic, injectable, nasal, and implant drug products.
Collapse
Affiliation(s)
- Ming-Liang Tan
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sajeev Chandran
- Advanced Drug Delivery Research and IVIVC/Biopharmaceutics, Pharmaceutical R & D, Lupin Ltd., Pune, India
| | - Rebeka Jereb
- Clinical Development, Sandoz Development Centre, Ljubljana, Slovenia
| | - Khondoker Alam
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Robert Bies
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at BuffaloBuffalo, New York, USA
| | - Darby Kozak
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ross Walenga
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Andrew Babiskin
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
10
|
Hayati H, Feng Y, Chen X, Kolewe E, Fromen C. Prediction of transport, deposition, and resultant immune response of nasal spray vaccine droplets using a CFPD-HCD model in a 6-year-old upper airway geometry to potentially prevent COVID-19. EXPERIMENTAL AND COMPUTATIONAL MULTIPHASE FLOW 2023; 5:272-289. [PMID: 36694695 PMCID: PMC9851113 DOI: 10.1007/s42757-022-0145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/13/2022] [Accepted: 08/26/2022] [Indexed: 06/11/2023]
Abstract
This study focuses on the transport, deposition, and triggered immune response of intranasal vaccine droplets to the angiotensin-converting-enzyme-2-rich region, i.e., the olfactory region (OR), in the nasal cavity of a 6-year-old female to possibly prevent corona virus disease 19 (COVID-19). To investigate how administration strategy can influence nasal vaccine efficiency, a validated multi-scale model, i.e., computational fluid-particle dynamics (CFPD) and host-cell dynamics (HCD) model, was employed. Droplet deposition fraction, size change, residence time, and the area percentage of OR covered by the vaccine droplets, and triggered immune system response were predicted with different spray cone angles, initial droplet velocities, and compositions. Numerical results indicate that droplet initial velocity and composition have negligible influences on the vaccine delivery efficiency to OR. In contrast, the spray cone angle can significantly impact the vaccine delivery efficiency. The triggered immunity was not significantly influenced by the administration investigated in this study due to the low percentage of OR area covered by the droplets. To enhance the effectiveness of the intranasal vaccine to prevent COVID-19 infection, it is necessary to optimize the vaccine formulation and administration strategy so that the vaccine droplets can cover more epithelial cells in OR to minimize the number of available receptors for SARS-CoV-2.
Collapse
Affiliation(s)
- Hamideh Hayati
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 USA
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 USA
| | - Xiaole Chen
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210042 China
| | - Emily Kolewe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| | - Catherine Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|