1
|
Zhang L, Wang Y, Zheng C, Zhou Z, Chen Z. Cellular thermal shift assay: an approach to identify and assess protein target engagement. Expert Rev Proteomics 2024; 21:387-400. [PMID: 39317941 DOI: 10.1080/14789450.2024.2406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION A comprehensive and global knowledge of protein target engagement is of vital importance for mechanistic studies and in drug development. Since its initial introduction, the cellular thermal shift assay (CETSA) has proven to be a reliable and flexible technique that can be widely applied to multiple contexts and has profound applications in facilitating the identification and assessment of protein target engagement. AREAS COVERED This review introduces the principle of CETSA, elaborates on western blot-based CETSA and MS-based thermal proteome profiling (TPP) as well as the major applications and prospects of these approaches. EXPERT OPINION CETSA primarily evaluates a given ligand binding to a particular target protein in cells and tissues with the protein thermal stabilities analyzed by western blot. When coupling mass spectrometry with CETSA, thermal proteome profiling allows simultaneous proteome-wide experiment that greatly increased the efficiency of target engagement evaluation, and serves as a promising strategy to identify protein targets and off-targets as well as protein-protein interactions to uncover the biological effects. The CETSA approaches have broad applications and potentials in drug development and clinical research.
Collapse
Affiliation(s)
- Liying Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Chang Zheng
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zihan Zhou
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhe Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
2
|
Guo H, Chen Y, Zhou L, Xiang X, He F, Chen X, Fu W, Long Y, Wang Y, Ma X. A radioactive and fluorescent dual modality cysteine cathepsin-B activity-based probe for the detection and treatment evaluation in rheumatoid arthritis. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:261-271. [PMID: 39309417 PMCID: PMC11411192 DOI: 10.62347/iaed6442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024]
Abstract
Activated macrophages are key effector cells and specific markers in patients with rheumatoid arthritis (RA). Cysteine cathepsin B (CTS-B) is highly expressed in macrophages and positively associated with RA activity and severity. This study aims to evaluate an activity-based multi-modality diagnostic agent, 68Ga-BMX2, which targets CTS-B to visualize the arthritis activity and evaluate the treatment efficacy. A CTS-B activity-based probe, BMX2, was labeled efficiently with 68Ga to produce 68Ga-BMX2 for fluorescent and positron emission tomography (PET) multi-modality imaging. The affinity and specificity of BMX2 binding with the CTS-B enzyme in macrophages were determined by radioactive experiment using RAW 264.7 cell lines, with CA074 and BMX5 as the inhibitors to test the specificity of the binding. Then, PET and fluorescence imaging were acquired on collagen-induced arthritis (CIA) mice. Additionally, the treatment monitoring capability of 68Ga-BMX2 PET/CT imaging was tested with methotrexate (MTX). RAW 264.7 macrophage cells showed significant uptake of 68Ga-BMX2. The binding of BMX2 with CTS-B in RAW 264.7 macrophage cells is time-dependent and could be blocked by CA074 and BMX5. In vivo optical and PET imaging showed high signals in the right hind arthritis in CIA mice from 68Ga-BMX2 and BMX2 accumulated for at least 120 h. Additionally, 68Ga-BMX2 signals were significantly reduced in the MTX-treated CIA mice compared to the control group. The 68Ga-BMX2, a radioactive and fluorescent dual-modality diagnostic agent targeting CTS-B, demonstrated a practical approach for CIA PET and fluorescence imaging. The 68Ga-BMX2 multimodality imaging could significantly monitor the treatment response in the CIA mice.
Collapse
Affiliation(s)
- Honghui Guo
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, PR China
| | - Yanjing Chen
- Department of Radiology, The Second Xiangya Hospital of Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, PR China
| | - Lianbo Zhou
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, PR China
| | - Xin Xiang
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, PR China
| | - Feng He
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, PR China
| | - Xingdou Chen
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, PR China
| | - Wenjie Fu
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, PR China
| | - Yu Long
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, PR China
| | - Yunhua Wang
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, PR China
| | - Xiaowei Ma
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South UniversityNo. 139 Middle Renmin Road, Changsha 410011, Hunan, PR China
| |
Collapse
|
3
|
Mahoney MW, Helander J, Kooner AS, Norman M, Damalanka VC, De Bona P, Kasperkiewicz P, Rut W, Poreba M, Kashipathy MM, Battaile KP, Lovell S, O'Donoghue AJ, Craik CS, Drag M, Janetka JW. Use of protease substrate specificity screening in the rational design of selective protease inhibitors with unnatural amino acids: Application to HGFA, matriptase, and hepsin. Protein Sci 2024; 33:e5110. [PMID: 39073183 PMCID: PMC11284329 DOI: 10.1002/pro.5110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Inhibition of the proteolytic processing of hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP) is an attractive approach for the drug discovery of novel anticancer therapeutics which prevent tumor progression and metastasis. Here, we utilized an improved and expanded version of positional scanning of substrate combinatorial libraries (PS-SCL) technique called HyCoSuL to optimize peptidomimetic inhibitors of the HGF/MSP activating serine proteases, HGFA, matriptase, and hepsin. These inhibitors have an electrophilic ketone serine trapping warhead and thus form a reversible covalent bond to the protease. We demonstrate that by varying the P2, P3, and P4 positions of the inhibitor with unnatural amino acids based on the protease substrate preferences learned from HyCoSuL, we can predictably modify the potency and selectivity of the inhibitor. We identified the tetrapeptide JH-1144 (8) as a single digit nM inhibitor of HGFA, matriptase and hepsin with excellent selectivity over Factor Xa and thrombin. These unnatural peptides have increased metabolic stability relative to natural peptides of similar structure. The tripeptide inhibitor PK-1-89 (2) has excellent pharmacokinetics in mice with good compound exposure out to 24 h. In addition, we obtained an X-ray structure of the inhibitor MM1132 (15) bound to matriptase revealing an interesting binding conformation useful for future inhibitor design.
Collapse
Affiliation(s)
- Matthew W. Mahoney
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Jonathan Helander
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Anoopjit S. Kooner
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Mariah Norman
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Vishnu C. Damalanka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Paolo De Bona
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| | - Paulina Kasperkiewicz
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Wioletta Rut
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Marcin Poreba
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - Maithri M. Kashipathy
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of KansasLawrenceKansasUSA
| | | | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of KansasLawrenceKansasUSA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of CaliforniaSan DiegoCaliforniaUSA
| | - Charles S. Craik
- Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marcin Drag
- Division of Chemical Biology and Bioimaging, Department of ChemistryWroclaw University of Science and TechnologyWroclawPoland
| | - James W. Janetka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisMissouriUSA
| |
Collapse
|
4
|
Wodtke R, Laube M, Hauser S, Meister S, Ludwig FA, Fischer S, Kopka K, Pietzsch J, Löser R. Preclinical evaluation of an 18F-labeled N ε-acryloyllysine piperazide for covalent targeting of transglutaminase 2. EJNMMI Radiopharm Chem 2024; 9:1. [PMID: 38165538 PMCID: PMC10761660 DOI: 10.1186/s41181-023-00231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.
Collapse
Affiliation(s)
- Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany.
| |
Collapse
|
5
|
Lourenço AL. Editorial: Mapping enzyme activity: from novel diagnostics to target-based therapeutics, how activity-based probes are improving our understanding of biological catalysts. Front Pharmacol 2023; 14:1271247. [PMID: 37675044 PMCID: PMC10478076 DOI: 10.3389/fphar.2023.1271247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- André Luiz Lourenço
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Gates EWJ, Calvert ND, Cundy NJ, Brugnoli F, Navals P, Kirby A, Bianchi N, Adhikary G, Shuhendler AJ, Eckert RL, Keillor JW. Cell-Impermeable Inhibitors Confirm That Intracellular Human Transglutaminase 2 Is Responsible for the Transglutaminase-Associated Cancer Phenotype. Int J Mol Sci 2023; 24:12546. [PMID: 37628729 PMCID: PMC10454375 DOI: 10.3390/ijms241612546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional enzyme primarily responsible for crosslinking proteins. Ubiquitously expressed in humans, TG2 can act either as a transamidase by crosslinking two substrates through formation of an Nε(ɣ-glutaminyl)lysine bond or as an intracellular G-protein. These discrete roles are tightly regulated by both allosteric and environmental stimuli and are associated with dramatic changes in the conformation of the enzyme. The pleiotropic nature of TG2 and multi-faceted activities have resulted in TG2 being implicated in numerous disease pathologies including celiac disease, fibrosis, and cancer. Targeted TG2 therapies have not been selective for subcellular localization, such that currently no tools exist to selectively target extracellular over intracellular TG2. Herein, we have designed novel TG2-selective inhibitors that are not only highly potent and irreversible, but also cell impermeable, targeting only extracellular TG2. We have also further derivatized the scaffold to develop probes that are intrinsically fluorescent or bear an alkyne handle, which target both intra- and extracellular TG2, in order to facilitate cellular labelling and pull-down assays. The fluorescent probes were internalized and imaged in cellulo, and provide the first implicit experimental evidence that by comparison with their cell-impermeable analogues, it is specifically intracellular TG2, and presumably its G-protein activity, that contributes to transglutaminase-associated cancer progression.
Collapse
Affiliation(s)
- Eric W. J. Gates
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Nicholas D. Calvert
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Nicholas J. Cundy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44021 Ferrara, Italy; (F.B.); (N.B.)
| | - Pauline Navals
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Alexia Kirby
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44021 Ferrara, Italy; (F.B.); (N.B.)
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.A.); (R.L.E.)
| | - Adam J. Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.A.); (R.L.E.)
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| |
Collapse
|
7
|
Zhou L, He F, Xiang X, Dong C, Xiang T, Li X, Li H, Bu L, Wang Y, Ma X. Radioactive and Fluorescent Dual Modality Cysteine Cathepsin B Activity-Based Probe for Cancer Theranostics. Mol Pharm 2023; 20:3539-3548. [PMID: 37289648 PMCID: PMC10324598 DOI: 10.1021/acs.molpharmaceut.3c00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Cysteine cathepsin B (CTS-B) is a crucial enzyme that is overexpressed in numerous malignancies and contributes to the invasion and metastasis of cancer. Therefore, this study sets out to develop and evaluate an activity-based multimodality theranostic agent targeting CTS-B for cancer imaging and therapy. A CTS-B activity-based probe, BMX2, was synthesized and labeled efficiently with 68Ga and 90Y to produce 68Ga-BMX2 for multimodality imaging and 90Y-BMX2 for radiation therapy. The affinity and specificity of BMX2 binding with the CTS-B enzyme were determined by fluorescent western blots using recombined active human CTS-B enzyme (rh-CTS-B) and four cancer cell lines including HeLa, HepG2, MCF7, and U87MG, with CA074 as the CTS-B inhibitor for control. Confocal laser scanning microscope imaging and cell uptake measurement were also performed. Then, in vivo PET imaging and fluorescence imaging were acquired on HeLa xenografts. Finally, the therapeutic effect of 90Y-BMX2 was tested. BMX2 could be specifically activated by rh-CTS-B and stably bound to the enzyme. The binding of BMX2 with CTS-B is time-dependent and enzyme concentration-dependent. Although CTS-B expression varied between cell lines, all showed significant uptake of BMX2 and 68Ga-BMX2. In vivo optical and PET imaging showed a high tumor uptake of BMX2 and 68Ga-BMX2 and accumulation for more than 24 h. 90Y-BMX2 could significantly inhibit HeLa tumor growth. The development of 68Ga/90Y-BMX2, a radioactive and fluorescent dual modality theranostic agent, demonstrated an effective theranostic approach for PET diagnostic imaging, fluorescence imaging, and radionuclide therapy of cancers, which may have a potential for clinical translation for cancer theranostics in the future.
Collapse
Affiliation(s)
- Lianbo Zhou
- Department
of Nuclear Medicine, The 2nd Xiangya Hospital
of Central South University, 139 Middle Renmin Road, Changsha 410011, PR China
| | - Feng He
- Department
of Nuclear Medicine, The 2nd Xiangya Hospital
of Central South University, 139 Middle Renmin Road, Changsha 410011, PR China
| | - Xin Xiang
- Department
of Nuclear Medicine, The 2nd Xiangya Hospital
of Central South University, 139 Middle Renmin Road, Changsha 410011, PR China
| | - Chuning Dong
- Department
of Nuclear Medicine, The 2nd Xiangya Hospital
of Central South University, 139 Middle Renmin Road, Changsha 410011, PR China
| | - Tian Xiang
- Department
of Nuclear Medicine, The 2nd Xiangya Hospital
of Central South University, 139 Middle Renmin Road, Changsha 410011, PR China
| | - Xian Li
- Department
of Nuclear Medicine, The 2nd Xiangya Hospital
of Central South University, 139 Middle Renmin Road, Changsha 410011, PR China
| | - Hong Li
- Department
of Nuclear Medicine, The 2nd Xiangya Hospital
of Central South University, 139 Middle Renmin Road, Changsha 410011, PR China
| | - Lihong Bu
- Molecular
Imaging Centre, Renmin Hospital of Wuhan
University, 99 Zhang Zhi Dong Road, Wuhan 430060, PR China
| | - Yunhua Wang
- Department
of Nuclear Medicine, The 2nd Xiangya Hospital
of Central South University, 139 Middle Renmin Road, Changsha 410011, PR China
| | - Xiaowei Ma
- Department
of Nuclear Medicine, The 2nd Xiangya Hospital
of Central South University, 139 Middle Renmin Road, Changsha 410011, PR China
| |
Collapse
|
8
|
Sotiropoulou G, Zingkou E, Pampalakis G. Novel specific activity-based probes validate KLK proteases as druggable targets. Cancer Biol Ther 2022; 23:401-403. [PMID: 35652924 PMCID: PMC9176256 DOI: 10.1080/15384047.2022.2074775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Georgios Pampalakis
- Department of Pharmacology-Pharmacognosy, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
9
|
New Advances in the Understanding of Proteases as Diagnostic and Pharmaceutical Targets in Homeostatic and Pathologic Conditions. Pharmaceutics 2022; 14:pharmaceutics14071516. [PMID: 35890410 PMCID: PMC9318474 DOI: 10.3390/pharmaceutics14071516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protease biology represents a hot topic in biomedical research because of their pivotal role in regulating cell and tissue homeostasis, regeneration and pathogenesis [...]
Collapse
|