1
|
Sharma R, Modi U, Kumar R, Sharma C, Srivastav AK, Bhatia D, Solanki R. Bio-inspired, programmable biomacromolecules based nanostructures driven cancer therapy. BIOMATERIALS ADVANCES 2025; 171:214235. [PMID: 39978287 DOI: 10.1016/j.bioadv.2025.214235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Cancer remains a significant global health challenge, driving the development of advanced platforms for highly targeted and efficient drug delivery. Early-stage nanocarriers, such as synthetic polymeric and inorganic materials, face limitations in biocompatibility and biodegradability. In contrast, bioinspired nanocarriers derived from natural biomacromolecules mimic biological processes and present a promising alternative due to their biocompatibility, biodegradability and non-toxicity. The effectiveness of these drug delivery systems is influenced by factors such as size, shape, surface properties, morphology, functionalization, and preparation methods. Various biomacromolecule-inspired nanocarriers such as protein-based, lipid-based, carbohydrate-based and nucleic acid-based are now at the forefront of research. This review highlights the properties, advantages and limitations of different bioinspired materials. We also explore cutting-edge approaches for cancer therapy using these nanocarriers with recent in-vitro, in-vivo and patent evidence. Finally, we address the challenges and potential solutions associated with bioinspired nanocarriers, proposing future directions. Overall, this review explores nature-inspired drug delivery systems that have paved the way for advancements in cancer therapy.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Rahul Kumar
- Dr. B. R. A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Chirag Sharma
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | | | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
2
|
Lorenc P, Dams-Kozlowska H, Guzniczak N, Florczak-Substyk A. Application of nanoparticles to target tumor blood vessels as a promising cancer treatment strategy. Biomed Pharmacother 2025; 186:118038. [PMID: 40215646 DOI: 10.1016/j.biopha.2025.118038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Cancer remains one of the leading causes of death worldwide and poses a significant challenge to effective treatment due to its complexity. Angiogenesis, the formation of new blood vessels, is a critical process in tumor growth and metastasis. The VEGF/VEGFR pathway plays a crucial role in regulating angiogenesis. Many anti-angiogenesis agents, including monoclonal antibodies and tyrosine kinase inhibitors, have been investigated for the treatment of various cancers. However, they face significant limitations such as limited bioavailability and drug resistance. Nanoparticles have emerged as a promising tool for effective drug delivery while minimizing systemic side effects. This review explores the application of nanoparticles dedicated to angiogenesis-targeted cancer therapy, particularly targeting the VEGF/VEGFR pathway. We describe drug delivery systems based on inorganic, lipid, and polymeric nanoparticles. Moreover, special attention is given to functionalized nanoparticles, which can precisely target numerous proteins that are significantly overexpressed on the surfaces of endothelial cells, tumors, or other cells in the tumor microenvironment. We summarize a series of nanoparticles designed for selective targeting of tumor vasculature, emphasizing the challenges faced by anti-angiogenic cancer therapies.
Collapse
Affiliation(s)
- Patryk Lorenc
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland; Doctoral School, Poznan University of Medical Sciences, 70 Bukowska St, Poznan 60-812, Poland
| | - Hanna Dams-Kozlowska
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland
| | - Natalia Guzniczak
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland
| | - Anna Florczak-Substyk
- Chair of Medical Biotechnology, Department of Cancer Immunology, Poznan University of Medical Sciences, 8 Rokietnicka St, Poznan 60-806, Poland; Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St, Poznan 61-866, Poland.
| |
Collapse
|
3
|
Akobundu UU, Ifijen IH, Duru P, Igboanugo JC, Ekanem I, Fagbolade M, Ajayi AS, George M, Atoe B, Matthews JT. Exploring the role of strontium-based nanoparticles in modulating bone regeneration and antimicrobial resistance: a public health perspective. RSC Adv 2025; 15:10902-10957. [PMID: 40196828 PMCID: PMC11974500 DOI: 10.1039/d5ra00308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
Strontium-based nanoparticles (SrNPs) have emerged as a versatile and promising class of nanomaterials with a wide range of potential applications in healthcare, particularly in the fields of bone regeneration and combating antimicrobial resistance (AMR). Recent research has highlighted the unique properties of SrNPs, including their ability to promote osteogenesis, enhance bone healing, and exhibit strong antimicrobial activity against multidrug-resistant pathogens. These attributes position SrNPs as innovative therapeutic agents with the potential to address challenges such as osteoporosis, bone infections, and the growing global AMR crisis. This comprehensive review critically examines the dual functional potential of SrNPs by analyzing their synthesis methods, physicochemical properties, biological interactions, and translational applications in orthopedic and antimicrobial therapies. Specifically, the review emphasizes SrNPs' ability to enhance bone density, accelerate fracture healing, and reduce the economic burden associated with prolonged treatment and rehabilitation for bone-related diseases. Furthermore, their novel application as antimicrobial agents is explored, highlighting their ability to target bacterial metabolic pathways and combat the rise of antibiotic resistance. The review focuses on the synthesis methods used for SrNPs, particularly co-precipitation, hydrothermal synthesis, and sol-gel techniques. Each method is explored for its ability to produce SrNPs with controlled size, shape, and functionality, while addressing their scalability, cost-effectiveness, and environmental impact. Additionally, the toxicological risks associated with SrNPs are also explored, emphasizing the need for comprehensive preclinical and clinical evaluations to ensure safety for humans and ecosystems. The regulatory and ethical landscape of SrNPs highlights the need for global safety protocols, equitable access, and international cooperation to ensure ethical nanotechnology use. Environmental fate studies address bioaccumulation risks and ecological concerns. This review identifies opportunities and challenges in advancing bone regenerative medicine and combating AMR while emphasizing sustainable and ethical SrNP development for researchers, policymakers, and stakeholders.
Collapse
Affiliation(s)
| | - Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Prince Duru
- Emergency Medicine Department, University of Tennessee Medical Center 1924 Alcoa Hwy Knoxville TN 37920 USA
| | - Juliet C Igboanugo
- Department of Health, Human Performance and Recreation, University of Arkansas 155 Stadium Drive Fayetteville AR 72701 USA
| | - Innocent Ekanem
- College of Engineering Technology and SHEQ Specialist-Rocjhester Gas and Electric (RG&E), Rochester Institute of Technology (RIT) Rochester NY USA
| | - Moshood Fagbolade
- Department of Biological Sciences, Mississippi State University 295 Lee Boulevard Mississippi State MS 39762 USA
| | | | - Mayowa George
- Biological and Agricultural Engineering, Kansas State University 1016 Seaton Hall Manhattan KS 66506 USA
| | - Best Atoe
- Atoe Specialist Medical Centre Limited 54, Atoe Street, Off Adolor College Road, Ugbowo Benin City Edo State Nigeria
| | - John Tsado Matthews
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai Niger State Nigeria
| |
Collapse
|
4
|
Kumari S, Peela S, Nagaraju GP, Srilatha M. Polysaccharides as therapeutic vehicles in pancreatic cancer. Drug Discov Today 2025; 30:104320. [PMID: 40024518 DOI: 10.1016/j.drudis.2025.104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Pancreatic cancer (PC) is highly aggressive, with rising incidence and mortality rates. It has significant therapy obstacles due to the limited clinical options, late-stage identification, dense tumor microenvironment (TME), and resistance to therapy. Recent advances might improve treatment consequences in therapy strategies that target important TME components. Moreover, new polymeric drug delivery techniques based on polysaccharides such as polymeric micelles, liposomes, and nanoparticles enhance the solubility of drugs, drug stability, and tumor-specific targeting, which increase the chances of circumventing resistance and improving the efficacy of treatment. Preclinical research has suggested that by modulating the TME and enhancing the efficacy of chemotherapy, polysaccharide-based therapy, such as RP02-1 and DPLL-functionalized amylose, may help treat PC.
Collapse
Affiliation(s)
- Seema Kumari
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam 532410 AP, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam 532410 AP, India
| | - Ganji Purnachandra Nagaraju
- School of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India.
| |
Collapse
|
5
|
Velhal K, Sah PM, Naik HS, Raut R, Patil S, Yamgar R, Lakkakula J, Uddin I. Synergistic Nanoformulation: Streamlined One-Pot Synthesis Enhances Paclitaxel Functionalization Gold Nanoparticles for Potent Anticancer Activity. Cell Biochem Biophys 2025:10.1007/s12013-025-01701-w. [PMID: 40011315 DOI: 10.1007/s12013-025-01701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
The development of innovative, eco-friendly methods for synthesizing functional nanoparticles is crucial in advancing cancer therapeutics. This study highlights a one-pot in situ synthesis of paclitaxel-functionalized gold nanoparticles (PTX-AuNPs), with paclitaxel serving as both the reducing and stabilizing agent. The synthesis process was validated using UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and high-resolution transmission electron microscopy (FEG-TEM). High-performance liquid chromatography (HPLC) confirmed the purity and structural integrity of paclitaxel before and after synthesis. The resulting PTX-AuNPs exhibited potent anticancer activity against human cervical cancer (SiHa) and human colon cancer (HT-29) cell lines, with a significantly stronger effect on the HT-29 cell line. A concentration-dependent reduction in HT-29 cell growth was observed as nanoparticle concentrations increased from 10 µg/mL-20 µg/mL. Molecular docking studies further demonstrated paclitaxel's strong binding affinity (-8.5 kcal/mol) to β-Tubulin, elucidating its anticancer mechanism. This cost-effective and environmentally friendly approach offers significant promise for enhancing cancer treatment strategies.
Collapse
Affiliation(s)
- Kamini Velhal
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra, 410206, India
| | - Parvindar M Sah
- Department of Botany, The Institute of Science, Dr. Homi Bhabha State University, 15, Madam Cama Road, Mumbai, Maharashtra, 400032, India
| | - Harshala S Naik
- Department of Botany, The Institute of Science, Dr. Homi Bhabha State University, 15, Madam Cama Road, Mumbai, Maharashtra, 400032, India
| | - Rajesh Raut
- Department of Botany, The Institute of Science, Dr. Homi Bhabha State University, 15, Madam Cama Road, Mumbai, Maharashtra, 400032, India
| | - Smitali Patil
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra, 410206, India
| | - Ramesh Yamgar
- Department of Chemistry, Chikitsak Samuha's Patkar-Varde College Goregaon (W), Mumbai, Maharashtra, 400104, India
| | - Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra, 410206, India.
- Centre for Computational Biology and Translational Research, Amity University Maharashtra, Mumbai - Pune Expressway, Bhatan, Post- Somathne, Panvel, Mumbai, Maharashtra, 410206, India.
| | - Imran Uddin
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
6
|
Kim K. Hybrid Systems of Gels and Nanoparticles for Cancer Therapy: Advances in Multifunctional Therapeutic Platforms. Gels 2025; 11:170. [PMID: 40136875 PMCID: PMC11941994 DOI: 10.3390/gels11030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Cancer is a global health concern. Various therapeutic approaches, including chemotherapy, photodynamic therapy, and immunotherapy, have been developed for cancer treatment. Silica nanoparticles, quantum dots, and metal-organic framework (MOF)-based nanomedicines have gained interest in cancer therapy because of their selective accumulation in tumors via the enhanced permeability and retention (EPR) effect. However, bare nanoparticles face challenges including poor biocompatibility, low stability, limited drug-loading capacity, and rapid clearance by the reticuloendothelial system (RES). Gels with unique three-dimensional network structures formed through various interactions such as covalent and hydrogen bonds are emerging as promising materials for addressing these challenges. Gel hybridization enhances biocompatibility, facilitates controlled drug release, and confers cancer-targeting abilities to nanoparticles. This review discusses gel-nanoparticle hybrid systems for cancer treatment developed in the past five years and analyzes the roles of gels in these systems.
Collapse
Affiliation(s)
- Kibeom Kim
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
7
|
Alobaid AA, Aojula H, Campbell RA, Harris LK. Exploiting novel placental homing peptides for targeted drug delivery in breast cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 64:102805. [PMID: 39855443 DOI: 10.1016/j.nano.2025.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/29/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
More effective drug formulations are needed to increase the selectivity and efficacy of available chemotherapeutics. We have previously shown that nanoparticles decorated with the tumour homing peptide CGKRK can selectively deliver payloads to the placenta. In this study, we investigated whether two novel placental homing peptides NKGLRNK (NKG) and RSGVAKS (RSG) can be utilized to selectively deliver doxorubicin (DOX) to breast cancer cells. Fluorescence microscopy and flow cytometry showed that NKG and RSG bind to and accumulate in MDA-MB-231 and MCF-7 cells in a time-dependent manner, to a similar extent as CGKRK, but accumulate in healthy MCF-10A cells to a much lesser degree. NKG- and RSG-decorated liposomes facilitated equivalent delivery of DOX to MDA-MB-231 and MCF-7 cells, with a comparable efficacy to CGKRK-decorated liposomes. These findings suggest that NKG and RSG represent novel breast tumour-binding sequences that could be utilized to develop more efficacious targeted breast cancer therapies.
Collapse
Affiliation(s)
- Abdulaziz A Alobaid
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom; Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Harmesh Aojula
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Richard A Campbell
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Lynda K Harris
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom; Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9WL, United Kingdom; St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom; Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
8
|
Herath HDW, Hu YS. Unveiling nanoparticle-immune interactions: how super-resolution imaging illuminates the invisible. NANOSCALE 2025; 17:1213-1224. [PMID: 39618290 DOI: 10.1039/d4nr03838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nanoparticles (NPs) have attracted considerable attention in nanomedicine, particularly in harnessing and manipulating immune cells. However, the current understanding of the interactions between NPs and immune cells at the nanoscale remains limited. Advancing this knowledge guides the design principles of NPs. This review offers a historical perspective on the synergistic evolution of immunology and optical microscopy, examines the current landscape of NP applications in immunology, and explores the advancements in super-resolution imaging techniques, which provide new insights into nanoparticle-immune cell interactions. Key findings from recent studies are discussed, along with challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Herath D W Herath
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| |
Collapse
|
9
|
Yalamandala BN, Huynh TMH, Lien HW, Pan WC, Iao HM, Moorthy T, Chang YH, Hu SH. Advancing brain immunotherapy through functional nanomaterials. Drug Deliv Transl Res 2025:10.1007/s13346-024-01778-5. [PMID: 39789307 DOI: 10.1007/s13346-024-01778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy. Recent advancements in immune-actuated particles for targeted drug delivery have shown the potential to overcome these obstacles. These particles interact with the BBB by rapidly and reversibly disrupting its structure, thereby significantly enhancing targeting and penetrating delivery. The BBB targeting also minimizes potential long-term damage. At GBM, the particles demonstrated effective chemotherapy, chemodynamic therapy, photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy, or magnetotherapy, facilitating tumor disruption and promoting antigen release. Additionally, components of the delivery system retained autologous tumor-associated antigens and presented them to dendritic cells (DCs), ensuring prolonged immune activation. This review explores the immunosuppressive mechanisms of GBM, existing therapeutic strategies, and the role of nanomaterials in enhancing immunotherapy. We also discuss innovative particle-based approaches designed to traverse the BBB by mimicking innate immune functions to improve treatment outcomes for brain tumors.
Collapse
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thi My Hue Huynh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hui-Wen Lien
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thrinayan Moorthy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Yun-Hsuan Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
| |
Collapse
|
10
|
Faderin E, Iorkula TH, Aworinde OR, Awoyemi RF, Awoyemi CT, Acheampong E, Chukwu JU, Agyemang P, Onaiwu GE, Ifijen IH. Platinum nanoparticles in cancer therapy: chemotherapeutic enhancement and ROS generation. Med Oncol 2025; 42:42. [PMID: 39789336 DOI: 10.1007/s12032-024-02598-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Platinum nanoparticles (PtNPs) offer significant promise in cancer therapy by enhancing the therapeutic effects of platinum-based chemotherapies like cisplatin. These nanoparticles improve tumor targeting, reduce off-target effects, and help overcome drug resistance. PtNPs exert their anti-cancer effects primarily through the generation of reactive oxygen species (ROS), which induce oxidative stress and apoptosis in cancer cells. Additionally, PtNPs interact with cellular signaling pathways such as PI3K/AKT and MAPK, sensitizing cancer cells to chemotherapy. Advances in PtNP synthesis focus on optimizing size, shape, and surface modifications to enhance biocompatibility and targeting. Functionalization with biomolecules allows selective tumor delivery, while smart release systems enable controlled drug release. In vivo studies have shown that PtNPs significantly inhibit tumor growth and metastasis. Ongoing clinical trials are evaluating their safety and efficacy. This review explores PtNPs' mechanisms of action, nanotechnology advancements, and challenges in biocompatibility, with a focus on their potential integration into cancer treatments.
Collapse
Affiliation(s)
- Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University, Edwardsville, 1 Hairpin Drive, Edwardsville, IL, 62026-001, USA
| | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo, Provo, UT, USA
| | - Omowunmi Rebecca Aworinde
- Department of Chemistry, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | - Christopher Taiwo Awoyemi
- Laboratory Department, Covenant University Medical Centre, Canaanland, KM 10, Idiroko Road, Ota, Ogun State, Nigeria
| | - Edward Acheampong
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | - Janefrances U Chukwu
- C. Eugene Bennett Department of Chemistry, West Virginia University, 217 Clark Hall, Stewart Hall, PO Box 6201, Morgantown, WV, 26506-6201, USA
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Gregory E Onaiwu
- Department of Physical Science (Chemistry Option), Benson Idahosa University, PMB 1100, Benin City, Edo State, Nigeria
| | - Ikhazuagbe Hilary Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria, PMB 1049, Benin City, Edo State, Nigeria.
| |
Collapse
|
11
|
Sajeevan D, Are RP, Hota P, Babu AR. Nanoparticles as Drug Delivery Carrier-synthesis, Functionalization and Application. Curr Pharm Des 2025; 31:244-260. [PMID: 38685791 DOI: 10.2174/0113816128304018240415095912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
In recent years, advancements in chemistry have allowed the tailoring of materials at the nanoscopic level as needed. There are mainly four main types of nanomaterials used as drug carriers:metal-based nanomaterials, organic nanomaterials, inorganic nanomaterials, and polymer nanomaterials. The nanomaterials as a drug carrier showed advantages for decreased side effects with a higher therapeutic index. The stability of the drug compounds are increased by encapsulation of the drug within the nano-drug carriers, leading to decreased systemic toxicity. Nano-drug carriers are also used for controlled drug release by tailoring system-made solubility characteristics of nanoparticles by surface coating with surfactants. The review focuses on the different types of nanoparticles used as drug carriers, the nanoparticle synthesis process, techniques of nanoparticle surface coating for drug carrier purposes, applications of nano-drug carriers, and prospects of nanomaterials as drug carriers for biomedical applications.
Collapse
Affiliation(s)
- Drishya Sajeevan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Ramakrishna Prasad Are
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Prabhudutta Hota
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Anju R Babu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
12
|
Komal, Nanda BP, Singh L, Bhatia R, Singh A. Paclitaxel in colon cancer management: from conventional chemotherapy to advanced nanocarrier delivery systems. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9449-9474. [PMID: 38990305 DOI: 10.1007/s00210-024-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
Paclitaxel, a potent chemotherapeutic agent derived from the bark of the Pacific yew tree, has demonstrated significant efficacy in the treatment of various cancers, including colon cancer. This comprehensive review delves into the conventional treatments for colon cancer, emphasizing the crucial role of paclitaxel in contemporary management strategies. It explores the intricate process of sourcing and synthesizing paclitaxel, highlighting the importance of its structural properties in its anticancer activity. The review further elucidates the mechanism of action of paclitaxel, its pharmacological effects, and its integration into chemotherapy regimens for colon cancer. Additionally, novel drug delivery systems, such as nanocarriers, liposomes, nanoparticles, microspheres, micelles, microemulsions, and niosomes, are examined for their potential to enhance the therapeutic efficacy of paclitaxel. The discussion extends to recent clinical trials and patents, showcasing advancements in paclitaxel formulations aimed at improving treatment outcomes. The review concludes with prospects in the field underscoring the ongoing innovation and potential breakthroughs in colon cancer therapy.
Collapse
Affiliation(s)
- Komal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Bibhu Prasad Nanda
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Lovekesh Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India.
| |
Collapse
|
13
|
Georgakopoulou VE, Papalexis P, Trakas N. Nanotechnology-based approaches for targeted drug delivery for the treatment of respiratory tract infections. J Biol Methods 2024; 11:e99010032. [PMID: 39839091 PMCID: PMC11744063 DOI: 10.14440/jbm.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 01/23/2025] Open
Abstract
Background Nanotechnology has emerged as a promising field for the diagnosis, monitoring, and treatment of respiratory tract infections (RTIs). By leveraging the unique properties of nanoscale delivery systems, nanotechnology can significantly enhance the selectivity and efficacy of antimicrobials, thereby reducing off-target effects. Objective This review explores the development and application of targeted nanosystems in combating viral, bacterial, and fungal RTIs. Nanotechnology-based systems, including biological and non-biological nanoparticles, offer innovative solutions for overcoming antimicrobial resistance, improving drug bioavailability, and minimizing systemic side effects. RTIs are a leading cause of morbidity and mortality globally, particularly affecting vulnerable populations such as children, the elderly, and immunocompromised individuals. Traditional drug delivery methods face numerous challenges, such as rapid clearance, poor tissue penetration, and drug degradation. Nanoparticle-based delivery systems address these issues by enhancing tissue penetration, providing sustained drug release, and enabling targeted delivery to infection sites. These systems include liposomal delivery, polymeric nanoparticles, dendrimers, and metal-based nanoparticles, each offering unique advantages in treating RTIs. Nanotechnology also plays a crucial role in vaccine development by offering new strategies to enhance immune responses and improve antigen delivery. Furthermore, the review discusses the clinical translation and regulatory considerations for nanotechnology-based drug delivery, emphasizing the need for rigorous testing and quality control to ensure safety and efficacy. Conclusion Nanotechnology offers promising advancements in the treatment, and prevention of RTIs by enhancing drug delivery and efficacy. By addressing challenges such as antimicrobial resistance and poor tissue penetration, nanotechnology-based systems have the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
| | - Petros Papalexis
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, Athens 12243, Greece
| | - Nikolaos Trakas
- Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece
| |
Collapse
|
14
|
Ifijen IH, Christopher AT, Lekan OK, Aworinde OR, Faderin E, Obembe O, Abdulsalam Akanji TF, Igboanugo JC, Udogu U, Ogidi GO, Iorkula TH, Osayawe OJK. Advancements in tantalum based nanoparticles for integrated imaging and photothermal therapy in cancer management. RSC Adv 2024; 14:33681-33740. [PMID: 39450067 PMCID: PMC11498270 DOI: 10.1039/d4ra05732e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Tantalum-based nanoparticles (TaNPs) have emerged as promising tools in cancer management, owing to their unique properties that facilitate innovative imaging and photothermal therapy applications. This review provides a comprehensive overview of recent advancements in TaNPs, emphasizing their potential in oncology. Key features include excellent biocompatibility, efficient photothermal conversion, and the ability to integrate multifunctional capabilities, such as targeted drug delivery and enhanced imaging. Despite these advantages, challenges remain in establishing long-term biocompatibility, optimizing therapeutic efficacy through surface modifications, and advancing imaging techniques for real-time monitoring. Strategic approaches to address these challenges include surface modifications like PEGylation to improve biocompatibility, precise control over size and shape for effective photothermal therapy, and the development of biodegradable TaNPs for safe elimination from the body. Furthermore, integrating advanced imaging modalities-such as photoacoustic imaging, magnetic resonance imaging (MRI), and computed tomography (CT)-enable real-time tracking of TaNPs in vivo, which is crucial for clinical applications. Personalized medicine strategies that leverage biomarkers and genetic profiling also hold promise for tailoring TaNP-based therapies to individual patient profiles, thereby enhancing treatment efficacy and minimizing side effects. In conclusion, TaNPs represent a significant advancement in nanomedicine, poised to transform cancer treatment paradigms while expanding into various biomedical applications.
Collapse
Affiliation(s)
- Ikhazuagbe H Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| | - Awoyemi Taiwo Christopher
- Laboratory Department, Covenant University Medical Centre Canaan land, KM 10, Idiroko Road Ota Ogun State Nigeria
| | - Ogunnaike Korede Lekan
- Department of Chemistry, Wichita State University 1845 Fairmount, Box 150 Wichita KS 67260-0150 USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University Edwardsville, 1 Hairpin Drive Edwardsville IL 62026-001 USA
| | | | | | - Juliet C Igboanugo
- Department of Health, Human Performance, and Recreation 155 Stadium Drive Arkansas 72701 USA
| | - Uzochukwu Udogu
- Department of Chemistry, Federal University of Technology Owerri Nigeria
| | | | - Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | |
Collapse
|
15
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
16
|
Qausain S, Basheeruddin M. Therapeutic Applications of Azo Dye Reduction: Insights From Methyl Orange Degradation for Biomedical Innovations. Cureus 2024; 16:e69952. [PMID: 39445263 PMCID: PMC11496386 DOI: 10.7759/cureus.69952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024] Open
Abstract
This paper emphasizes the possible application of methyl orange reduction as a therapeutic technique, highlighting the potential of azo dye reduction in biomedical fields. The generally used azo dyes are toxic and carcinogenic; hence, they implicitly threaten the environment and health. The degradation of methyl orange, a famous example of azo dyes, is used to describe the degradation process for other azo dyes. This work discusses the ability of different methyl orange degradation methods, focusing on biocatalysts and nanomaterials, among the methods that identified enzymatic degradation with azoreductase enzymes as the method that quickly breaks down azo dyes under mild conditions as the most appropriate method, as well as its specificity as environmentally friendly. Moreover, metal nanoparticles such as silver and gold impellers increase the reducing efficiency because they offer a pivotal surface for the reduction reactions that undergo electron transfer. The complete breakdown of methyl orange is essential in biomedical usage. The strategies for treating azo dye reduction can be extended to next-generation drug delivery systems (DDS), biosensors, and therapeutic agents. Organisms involved in degradation can be functionalized to selectively degrade specific cells or tissues, thus presenting a new targeted therapy. Knowledge of degradation pathways and non-toxic products is essential in creating programs that build better and more efficient therapeutic agents. This work endeavors to illustrate the development of enzymatic and nanomaterials-based approaches to achieve sustainable azo dye decolorisation to open the gateway to developing other biomedical applications that tend to promote environmental and health-friendly solutions.
Collapse
Affiliation(s)
- Sana Qausain
- Biochemistry, Jawaharlal Nehru Medical College, Wardha, IND
| | | |
Collapse
|
17
|
Atrooz OM, Reihani N, Mozafari MR, Salawi A, Taghavi E. Enhancing hair regeneration: Recent progress in tailoring nanostructured lipid carriers through surface modification strategies. ADMET AND DMPK 2024; 12:431-462. [PMID: 39091900 PMCID: PMC11289513 DOI: 10.5599/admet.2376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Hair loss is a prevalent problem affecting millions of people worldwide, necessitating innovative and efficient regrowth approaches. Nanostructured lipid carriers (NLCs) have become a hopeful option for transporting bioactive substances to hair follicles because of their compatibility with the body and capability to improve drug absorption. REVIEW APPROACH Recently, surface modification techniques have been used to enhance hair regeneration by improving the customization of NLCs. These techniques involve applying polymers, incorporating targeting molecules, and modifying the surface charge. KEY RESULTS The conversation focuses on how these techniques enhance stability, compatibility with the body, and precise delivery to hair follicles within NLCs. Moreover, it explains how surface-modified NLCs can improve the bioavailability of hair growth-promoting agents like minoxidil and finasteride. Furthermore, information on how surface-modified NLCs interact with hair follicles is given, uncovering their possible uses in treating hair loss conditions. CONCLUSION This review discusses the potential of altering the surface of NLCs to customize them for enhanced hair growth. It offers important information for upcoming studies on hair growth.
Collapse
Affiliation(s)
- Omar M. Atrooz
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Department of Biological Sciences, Mutah University, Mutah, Jordan
| | - Nasim Reihani
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - M. R. Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, Victoria 3800, Australia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Elham Taghavi
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
18
|
Yao Y, Zheng Y, Wu M, Gao Y, Yu Q, Liu M, Luo X, Wang R, Jiang L. CD133-targeted multifunctional nanomicelles for dual-modality imaging and synergistic high-intensity focus ultrasound (HIFU) ablation on pancreatic cancer in nude mice. J Mater Chem B 2024; 12:5884-5897. [PMID: 38775254 DOI: 10.1039/d4tb00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pancreatic cancer is an aggressive and highly fatal malignant tumor. Recent studies have shown that cancer stem cells (CSCs) play an important role in resisting current therapeutic modalities. Furthermore, CD133 is highly expressed in CSCs. High-intensity focused ultrasound (HIFU) is a promising non-invasive therapeutic strategy for unresectable pancreatic cancers. In our study, we synthesized targeted CD133 organosilane nanomicelles by encapsulating perfluorohexane (PFH). The CD133 antibody on the surface could specifically bind to CD133-positive pancreatic cancer cells and selectively concentrate in pancreatic cancer tumor tissues. PFH was introduced to improve the ablation effect of HIFU due to its liquid-gas phase transition properties. By combining with the dorsal skinfold window chamber model (DSWC) of pancreatic cancer in nude mice, multiphoton fluorescence microscopy was used to evaluate the targeting effect of nanomicelles on pancreatic cancer tumor tissue. These multifunctional nanomicelles synergistically affected HIFU treatment of pancreatic cancer, providing an integrated research platform for diagnosing and treating pancreatic cancer with HIFU.
Collapse
Affiliation(s)
- Yijing Yao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yiwen Zheng
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Mingtai Wu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Yihui Gao
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Qian Yu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Mengyao Liu
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Xiaoxiao Luo
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Rui Wang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
19
|
Shaw I, Boafo GF, Ali YS, Liu Y, Mlambo R, Tan S, Chen C. Advancements and prospects of lipid-based nanoparticles: dual frontiers in cancer treatment and vaccine development. J Microencapsul 2024; 41:226-254. [PMID: 38560994 DOI: 10.1080/02652048.2024.2326091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Cancer is a complex heterogeneous disease that poses a significant public health challenge. In recent years, lipid-based nanoparticles (LBNPs) have expanded drug delivery and vaccine development options owing to their adaptable, non-toxic, tuneable physicochemical properties, versatile surface functionalisation, and biocompatibility. LBNPs are tiny artificial structures composed of lipid-like materials that can be engineered to encapsulate and deliver therapeutic agents with pinpoint accuracy. They have been widely explored in oncology; however, our understanding of their pharmacological mechanisms, effects of their composition, charge, and size on cellular uptake, tumour penetration, and how they can be utilised to develop cancer vaccines is still limited. Hence, we reviewed LBNPs' unique characteristics, biochemical features, and tumour-targeting mechanisms. Furthermore, we examined their ability to enhance cancer therapies and their potential contribution in developing anticancer vaccines. We critically analysed their advantages and challenges impeding swift advancements in oncology and highlighted promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Yimer Seid Ali
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
- Department of Pharmacy, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia
| | - Yang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Ronald Mlambo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
20
|
Kumar P, Thakur N, Kumar K, Kumar S, Dutt A, Thakur VK, Gutiérrez-Rodelo C, Thakur P, Navarrete A, Thakur N. Catalyzing innovation: Exploring iron oxide nanoparticles - Origins, advancements, and future application horizons. Coord Chem Rev 2024; 507:215750. [DOI: 10.1016/j.ccr.2024.215750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Khan M, Cherni K, Dekhili R, Spadavecchia J. Spectroscopic Assessment of Doxorubicin (DOX)-Gemcitabine (GEM) Gold Complex Nanovector as Diagnostic Tool of Galectin-1 Biomarker. Nanotechnol Sci Appl 2024; 17:95-105. [PMID: 38567312 PMCID: PMC10986416 DOI: 10.2147/nsa.s448883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction The aim of this study is focused on the development of theranostic hybrid nanovectors based on gold-doxorubicin (DOX)-gemcitabine (GEM) complexes and their active targeting with Galectin-1 (Gal-1) as a promising therapeutic and prognostic marker in cancer. Methods For this purpose, a gold salt (HAuCl4) interacts with antitumor drugs (DOX; GEM) by chelation and then stabilizes with dicarboxylic acid-terminated polyethylene glycol (PEG) as a biocompatible surfactant. The proposed methodology is fast and reproducible, and leads to the formation of a hybrid nanovector named GEM@DOX IN PEG-AuNPs, in which the chemo-biological stability was improved. All synthetic chemical products were evaluated using various spectroscopic techniques (Raman and UV-Vis spectroscopy) and transmission electron microscopy (TEM). Results To conceive a therapeutic application, our hybrid nanovector (GEM@DOX IN PEG-AuNPs) was conjugated with the Galectin-1 protein (Gal-1) at different concentrations to predict and specifically recognize cancer cells. Gal-1 interacts with GEM@DOX in PEG-AuNPs, as shown by SPR and Raman measurements. We observed both dynamic variation in the plasmon position (SPR) and Raman band with Gal-1 concentration. Discussion We identified that GEM grafted electrostatically onto DOX IN PEG-AuNPs assumes a better chemical conformation, in which the amino group (NH3+) reacts with the carboxylic (COO-) group of PEG diacide, whereas the ciclopenthanol group at position C-5' reacts with NH3+ of DOX. Conclusion This study opens further way in order to built "smart nanomedical devices" that could have a dual application as therapeutic and diagnostic in the field of nanomedicine and preclinical studies associated.
Collapse
Affiliation(s)
- Memona Khan
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris 13, Sorbonne Paris Nord, Bobigny, France
| | - Khaoula Cherni
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris 13, Sorbonne Paris Nord, Bobigny, France
| | - Rawdha Dekhili
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris 13, Sorbonne Paris Nord, Bobigny, France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris 13, Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
22
|
Dasari N, Guntuku GS, Pindiprolu SKSS. Targeting triple negative breast cancer stem cells using nanocarriers. DISCOVER NANO 2024; 19:41. [PMID: 38453756 PMCID: PMC10920615 DOI: 10.1186/s11671-024-03985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is a complex and heterogeneous disease, encompassing various subtypes characterized by distinct molecular features, clinical behaviors, and treatment responses. Categorization of subtypes is based on the presence or absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), leading to subtypes such as luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). TNBC, comprising around 20% of all breast cancers, lacks expression of ER, PR, and HER2 receptors, rendering it unresponsive to targeted therapies and presenting significant challenges in treatment. TNBC is associated with aggressive behavior, high rates of recurrence, and resistance to chemotherapy. Tumor initiation, progression, and treatment resistance in TNBC are attributed to breast cancer stem cells (BCSCs), which possess self-renewal, differentiation, and tumorigenic potential. Surface markers, self-renewal pathways (Notch, Wnt, Hedgehog signaling), apoptotic protein (Bcl-2), angiogenesis inhibition (VEGF inhibitors), and immune modulation (cytokines, immune checkpoint inhibitors) are among the key targets discussed in this review. However, targeting the BCSC subpopulation in TNBC presents challenges, including off-target effects, low solubility, and bioavailability of anti-BCSC agents. Nanoparticle-based therapies offer a promising approach to target various molecular pathways and cellular processes implicated in survival of BSCS in TNBC. In this review, we explore various nanocarrier-based approaches for targeting BCSCs in TNBC, aiming to overcome these challenges and improve treatment outcomes for TNBC patients. These nanoparticle-based therapeutic strategies hold promise for addressing the therapeutic gap in TNBC treatment by delivering targeted therapies to BCSCs while minimizing systemic toxicity and enhancing treatment efficacy.
Collapse
Affiliation(s)
- Nagasen Dasari
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India.
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India.
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India.
| | - Girija Sankar Guntuku
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| |
Collapse
|
23
|
Cheng Y, Zhang H, Wei H, Yu CY. Injectable hydrogels as emerging drug-delivery platforms for tumor therapy. Biomater Sci 2024; 12:1151-1170. [PMID: 38319379 DOI: 10.1039/d3bm01840g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Tumor therapy continues to be a prominent field within biomedical research. The development of various drug carriers has been propelled by concerns surrounding the side effects and targeting efficacy of various chemotherapeutic drugs and other therapeutic agents. These carriers strive to enhance drug concentration at tumor sites, minimize systemic side effects, and improve therapeutic outcomes. Among the reported delivery systems, injectable hydrogels have emerged as an emerging candidate for the in vivo delivery of chemotherapeutic drugs due to their minimal invasive drug delivery properties. This review systematically summarizes the composition and preparation methodologies of injectable hydrogels and further highlights the delivery mechanisms of diverse drugs using these hydrogels for tumor therapy, along with an in-depth discussion on the optimized therapeutic efficiency of drugs encapsulated within the hydrogels. The work concludes by providing a dynamic forward-looking perspective on the potential challenges and possible solutions of the in situ injectable hydrogels for non-surgical and real-time diagnostic applications.
Collapse
Affiliation(s)
- Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, China.
| |
Collapse
|
24
|
Dutta M, Banerjee S, Mandal M, Bhattacharjee M. A self-healable metallohydrogel for drug encapsulations and drug release. RSC Adv 2023; 13:15448-15456. [PMID: 37223407 PMCID: PMC10201648 DOI: 10.1039/d3ra00930k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
A self-healable metallohydrogel (MOG) of Mn(ii) has been prepared using a low molecular weight gelator, Na2HL {H3L = l-(3,5-di-tert-butyl-2-hydroxy-benzyl)amino aspartic acid}. The MOG has been characterized by MALDI TOF mass spectrometry, rheological studies, IR spectroscopy, and microscopic techniques. Non-steroidal anti-inflammatory drug (NSAID), indomethacin (IND) and anti-cancer drug gemcitabine (GEM) were encapsulated into the metallohydrogel. The GEM-loaded metallogel (MOG_GEM) shows better delivery and more adverse cytotoxicity than the drug against breast cancer cell lines MDA-MB-468 and 4T1. The anti-cancer property was evaluated with in vitro MTT cytotoxic assay, live-dead assay and cell migration assay. In vitro cytotoxicity assay against RAW 264.7 cell line with the treatment of MOG_IND shows the improved anti-inflammatory response in the case of MOG_IND compared to the drug alone.
Collapse
Affiliation(s)
- Mita Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur 721302 India
| | - Shreya Banerjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur 721302 India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur 721302 India
| | | |
Collapse
|
25
|
Boggio E, Gigliotti CL, Stoppa I, Pantham D, Sacchetti S, Rolla R, Grattarola M, Monge C, Pizzimenti S, Dianzani U, Dianzani C, Battaglia L. Exploiting Nanomedicine for Cancer Polychemotherapy: Recent Advances and Clinical Applications. Pharmaceutics 2023; 15:937. [PMID: 36986798 PMCID: PMC10057931 DOI: 10.3390/pharmaceutics15030937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The most important limitations of chemotherapeutic agents are severe side effects and the development of multi-drug resistance. Recently, the clinical successes achieved with immunotherapy have revolutionized the treatment of several advanced-stage malignancies, but most patients do not respond and many of them develop immune-related adverse events. Loading synergistic combinations of different anti-tumor drugs in nanocarriers may enhance their efficacy and reduce life-threatening toxicities. Thereafter, nanomedicines may synergize with pharmacological, immunological, and physical combined treatments, and should be increasingly integrated in multimodal combination therapy regimens. The goal of this manuscript is to provide better understanding and key considerations for developing new combined nanomedicines and nanotheranostics. We will clarify the potential of combined nanomedicine strategies that are designed to target different steps of the cancer growth as well as its microenvironment and immunity interactions. Moreover, we will describe relevant experiments in animal models and discuss issues raised by translation in the human setting.
Collapse
Affiliation(s)
- Elena Boggio
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ian Stoppa
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Deepika Pantham
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Sara Sacchetti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Roberta Rolla
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Margherita Grattarola
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Monge
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
- Centro Interdipartimentale Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10124 Torino, Italy
| |
Collapse
|
26
|
Brar B, Marwaha S, Poonia AK, Koul B, Kajla S, Rajput VD. Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol 2023; 205:62. [PMID: 36629918 DOI: 10.1007/s00203-023-03404-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/24/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
In the 20th century, the discovery of antibiotics played an essential role in the fight against infectious diseases, including meningitis, typhoid fever, pneumonia and Mycobacterium tuberculosis. The development of multidrug resistance in microflora due to improper antibiotic use created significant public health issues. Antibiotic resistance has increased at an alarming rate in the past few decades. Multidrug-resistant bacteria (superbugs) such as methicillin-resistant Staphylococcus aureus (MRSA) as well as drug-resistant tuberculosis pose serious health implications. Despite the continuous increase in resistant microbes, the discovery of novel antibiotics is constrained by the cost and complexities of discovery of drugs. The nanotechnology has given new hope in combating this problem. In the present review, recent developments in therapeutics utilizing nanotechnology for novel antimicrobial drug development are discussed. The nanoparticles of silver, gold and zinc oxide have proved to be efficient antimicrobial agents against multidrug-resistant Klebsiella, Pseudomonas, Escherichia Coli and MRSA. Using nanostructures as carriers for antimicrobial agents provides better bioavailability, less chances of sub-therapeutic drug accumulation and less drug-related toxicity. Nanophotothermal therapy using fullerene and antibody functionalized nanostructures are other strategies that can prove to be helpful.
Collapse
Affiliation(s)
- Basanti Brar
- HABITAT, Genome Improvement Primary Producer Company Ltd. Centre of Biofertilizer Production and Technology, HAU, Hisar, 125004, India
| | - Sumnil Marwaha
- ICAR-National Research Centre On Camel, Bikaner, 334001, Rajasthan, India
| | - Anil Kumar Poonia
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India. .,Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Bhupendra Koul
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Subhash Kajla
- Department of Molecular Biology &Biotechnology, CCSHAU, Hisar, 125004, Haryana, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-On-Don, 344090, Russia.
| |
Collapse
|
27
|
Identification of Transferrin Receptor 1 (TfR1) Overexpressed in Lung Cancer Cells, and Internalization of Magnetic Au-CoFe2O4 Core-Shell Nanoparticles Functionalized with Its Ligand in a Cellular Model of Small Cell Lung Cancer (SCLC). Pharmaceutics 2022; 14:pharmaceutics14081715. [PMID: 36015341 PMCID: PMC9413248 DOI: 10.3390/pharmaceutics14081715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
Lung cancer is, currently, one of the main malignancies causing deaths worldwide. To date, early prognostic and diagnostic markers for small cell lung cancer (SCLC) have not been systematically and clearly identified, so most patients receive standard treatment. In the present study, we combine quantitative proteomics studies and the use of magnetic core-shell nanoparticles (mCSNP’s), first to identify a marker for lung cancer, and second to functionalize the nanoparticles and their possible application for early and timely diagnosis of this and other types of cancer. In the present study, we used label-free mass spectrometry in combination with an ion-mobility approach to identify 220 proteins with increased abundance in small cell lung cancer (SCLC) cell lines. Our attention was focused on cell receptors for their potential application as mCSNP’s targets; in this work, we report the overexpression of Transferrin Receptor (TfR1) protein, also known as Cluster of Differentiation 71 (CD71) up to a 30-fold increase with respect to the control cell. The kinetics of endocytosis, evaluated by a flow cytometry methodology based on fluorescence quantification, demonstrated that receptors were properly activated with the transferrin supported on the magnetic core-shell nanoparticles. Our results are important in obtaining essential information for monitoring the disease and/or choosing better treatments, and this finding will pave the way for future synthesis of nanoparticles including chemotherapeutic drugs for lung cancer treatments.
Collapse
|
28
|
Zhao R, Liu J, Li Z, Zhang W, Wang F, Zhang B. Recent Advances in CXCL12/CXCR4 Antagonists and Nano-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081541. [PMID: 35893797 PMCID: PMC9332179 DOI: 10.3390/pharmaceutics14081541] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Chemokines can induce chemotactic cell migration by interacting with G protein-coupled receptors to play a significant regulatory role in the development of cancer. CXC chemokine-12 (CXCL12) can specifically bind to CXC chemokine receptor 4 (CXCR4) and is closely associated with the progression of cancer via multiple signaling pathways. Over recent years, many CXCR4 antagonists have been tested in clinical trials; however, Plerixafor (AMD3100) is the only drug that has been approved for marketing thus far. In this review, we first summarize the mechanisms that mediate the physiological effects of the CXCL12/CXCR4 axis. Then, we describe the use of CXCL12/CXCR4 antagonists. Finally, we discuss the use of nano-based drug delivery systems that exert action on the CXCL12/CXCR4 biological axis.
Collapse
Affiliation(s)
| | | | | | | | - Feng Wang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| | - Bo Zhang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| |
Collapse
|