1
|
Mazyed S, El-Masry SM, Abbas H, Abd-Alhaseeb MM, Elbedaiwy HM. Gliclazide loaded spanlastic nanovesicles: empowering bioavailability and antidiabetic efficacy. Drug Dev Ind Pharm 2025:1-14. [PMID: 40094313 DOI: 10.1080/03639045.2025.2480183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/15/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE This work aimed to prepare spanlastics nanovesicles (SNVs) loaded with gliclazide (GCZ) to increase the drug's oral bioavailability and anti-diabetic effects. METHODS Two types of edge activators (tween 80 and/or brij35) and two types of spans (span 60 and span 80) were used to prepare SNVs using the ethanol injection method,23 factorial design was used to investigate the effects of various span types, edge activator types, and the ratio of span to edge activator. RESULTS The optimum formulation (F6) was selected and its in-vitro drug release, in-vivo pharmacokinetics, and pharmacodynamics were evaluated. A transition electron microscope (TEM) showed spherical particles with smooth surfaces, (F6) drug release was (Q12 97.05 ± 4.85) while GCZ powder was (97.89 ± 4.56 after 4 h) also showed better entrapment efficiency (EE% 95.1 ± 3.8). In- vivo pharmacokinetic study showed an increase in Cmax and tmax (12.93 ± 1.34, 3.2 ± 0.83) compared to unprocessed GCZ powder (2.88 ± 1.59, 1.8 ± 0.74). In-vivo pharmacodynamics study of diabetic rats demonstrated that GCZ-loaded SNVs has a higher % maximum decrease in blood glucose levels (MR) 58.31 ± 5.70 compared to 38.33 ± 8.18 for free drug and % total drop in blood glucose levels (TD) 25.78 ± 5.31% for GCZ-SNVs compared to 20.26 ± 6.05% for free drug. Histopathological examination revealed no cytotoxic signs in any of the examined samples. CONCLUSION Results revealed a significant rise in relative bioavailability, sustained and prolonged drug release when compared to the unprocessed GCZ powder.
Collapse
Affiliation(s)
- Shimaa Mazyed
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Soha M El-Masry
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Bulington, Vermont, USA
| | - Heba M Elbedaiwy
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
2
|
Kou X, Su D, Zhang J, Pan F, Zhu J, Meng Q, Ke Q. Cyclodextrin-Based Pickering Emulsion Significantly Increases 6-Gingerol Loading Through Two Different Mechanisms: Cyclodextrin Cavity and Pickering Core. Foods 2025; 14:1066. [PMID: 40232095 PMCID: PMC11942410 DOI: 10.3390/foods14061066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
We previously found that host-guest interactions can drive gingerols (Gs) and cyclodextrins (CDs) together to form inclusion complexes (G/CD), which can further construct amphiphilic microcrystals and resultant Pickering emulsions through self-assembly. In this follow-up study, we explored the detailed formation processes and mechanisms of the 6-G/β-CD inclusion complex and the resultant Pickering emulsion. The influence of the 6-G/β-CD molar ratio on the structure, morphology, and loading capacity of the inclusion complex and resultant Pickering emulsion were investigated. The results show that the cyclodextrin-based Pickering emulsion can load 6-G in two places; one place is the cyclodextrin cavity, whose loading capacity is up to 9.28%, while the other one is the Pickering core, with its highest loading capacity at 32.31% when the 6-G/β-CD molar ratio is 5:1. In the above case, the 6-G/β-CD inclusion complex was found to form a unit cell with a 1:2 molar ratio and then self-assemble into amphiphilic microcrystals through cage-type arrangement structures at the oil-water interface, mainly driven by van der Waals forces and hydrogen bonds. This study is helpful in the design and preparation of CD-based high-loading carriers for bioactive compound delivery.
Collapse
Affiliation(s)
- Xingran Kou
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| | - Dongdong Su
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| | - Jingzhi Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
| | - Jiamin Zhu
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| | - Qinfei Ke
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China; (D.S.); (J.Z.); (J.Z.); (Q.M.)
| |
Collapse
|
3
|
Suriyaamporn P, Pornpitchanarong C, Charoenying T, Dechsri K, Ngawhirunpat T, Opanasopit P, Pamornpathomkul B. Artificial intelligence-driven hydrogel microneedle patches integrating 5-fluorouracil inclusion complex-loaded flexible pegylated liposomes for enhanced non-melanoma skin cancer treatment. Int J Pharm 2025; 669:125072. [PMID: 39675535 DOI: 10.1016/j.ijpharm.2024.125072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The current study focused on the development of crosslinked hydrogel microneedle patches (cHMNs) incorporating 5-FU-hydroxypropyl beta-cyclodextrin inclusion complex-loaded flexible PEGylated liposomes (5-FU-HPβCD-loaded FP-LPs) to enhance treatment efficacy and reduce drug toxicity. The research utilized artificial intelligence (AI) algorithms to design, optimize, and evaluate the cHMNs. Various AI models were assessed for accuracy, with metrics such as root mean square error and coefficient of determination guiding the selection of the most effective formulation. The physicochemical and mechanical properties, swelling behavior, in vitro skin permeation, and safety of the chosen cHMNs were tested. The results demonstrated that the 5-FU-HPβCD-loaded FP-LPs, stabilized with limonene, had an optimal particle size of 36.23 ± 2.42 nm, narrow size distribution, and zeta potential of -10.24 ± 0.37 mV, with high encapsulation efficiency. The cHMNs exhibited a conical needle shape with sufficient mechanical strength to penetrate the stratum corneum up to approximately 467.87 ± 65.12 μm. The system provided a high skin permeation rate of 41.78 ± 4.26 % and significant drug accumulation in the skin. Additionally, the formulation was proven safe in cell culture while effectively inhibiting cancer growth and promoting apoptosis. This study highlights the potential of AI-enhanced cHMNs for delivering 5-FU-HPβCD-loaded FP-LPs transdermally, offering a promising new treatment avenue for non-melanoma skin cancers.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
4
|
Aundhia C, Shah N, Talele C, Zanwar A, Kumari M, Patil S. Enhancing Gene Therapy through Ultradeformable Vesicles for Efficient siRNA Delivery. Pharm Nanotechnol 2025; 13:55-69. [PMID: 38284710 DOI: 10.2174/0122117385271654231215064542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 01/30/2024]
Abstract
Gene therapy is a revolutionary approach aimed at treating various diseases by manipulating the expression of specific genes. The composition and formulation of ultra-deformable vesicles play a crucial role in determining their properties and performance as siRNA delivery vectors. In the development of ultra-deformable vesicles for siRNA delivery, careful lipid selection and optimization are crucial for achieving desirable vesicle characteristics and efficient siRNA encapsulation and delivery. The stratum corneum acts as a protective barrier, limiting the penetration of molecules, including siRNA, into the deeper layers of the skin. Ultradeformable vesicles offer a promising solution to overcome this barrier and facilitate efficient siRNA delivery to target cells in the skin. The stratum corneum, the outermost layer of the skin, acts as a significant barrier to the penetration of siRNA.These engineering approaches enable the production of uniform and well-defined vesicles with enhanced deformability and improved siRNA encapsulation efficiency. Looking ahead, advancements in ultra-deformable vesicle design and optimization, along with continued exploration of combination strategies and regulatory frameworks, will further drive the field of ultra-deformable vesicle-based siRNA delivery.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Nirmal Shah
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Aarti Zanwar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Mamta Kumari
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Sapana Patil
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
5
|
Aslam A, Masood F, Perveen K, Berger MR, Pervaiz A, Zepp M, Klika KD, Yasin T, Hameed A. Preparation, characterization and evaluation of HPβCD-PTX/PHB nanoparticles for pH-responsive, cytotoxic and apoptotic properties. Int J Biol Macromol 2024; 270:132268. [PMID: 38734336 DOI: 10.1016/j.ijbiomac.2024.132268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Paclitaxel (PTX) is a potent anticancer drug. However, PTX exhibits extremely poor solubility in aqueous solution along with severe side effects. Therefore, in this study, an inclusion complex was prepared between PTX and hydroxypropyl-β-cyclodextrin (HPβCD) by solvent evaporation to enhance the drug's solubility. The HPβCD-PTX inclusion complex was then encapsulated in poly-3-hydroxybutyrate (PHB) to fabricate drug-loaded nanoparticles (HPβCD-PTX/PHB NPs) by nanoprecipitation. The HPβCD-PTX/PHB NPs depicted a higher release of PTX at pH 5.5 thus demonstrating a pH-dependent release profile. The cytotoxic properties of HPβCD-PTX/PHB NPs were tested against MCF-7, MDA-MB-231 and SW-620 cell lines. The cytotoxic potential of HPβCD-PTX/PHB NPs was 2.59-fold improved in MCF-7 cells in comparison to free PTX. Additionally, the HPβCD-PTX/PHB NPs improved the antimitotic (1.68-fold) and apoptotic (8.45-fold) effects of PTX in MCF-7 cells in comparison to PTX alone. In summary, these pH-responsive nanoparticles could be prospective carriers for enhancing the cytotoxic properties of PTX for the treatment of breast cancer.
Collapse
Affiliation(s)
- Aqsa Aslam
- SA Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| | - Farha Masood
- Department of Biosciences, COMSATS University, Islamabad, Pakistan.
| | - Kousar Perveen
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Asim Pervaiz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Tariq Yasin
- Department of Chemistry, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Abdul Hameed
- SA Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
6
|
Saitani EM, Pippa N, Perinelli DR, Forys A, Papakyriakopoulou P, Lagopati N, Bonacucina G, Trzebicka B, Gazouli M, Pispas S, Valsami G. Fabricating Polymer/Surfactant/Cyclodextrin Hybrid Particles for Possible Nose-to-Brain Delivery of Ropinirole Hydrochloride: In Vitro and Ex Vivo Evaluation. Int J Mol Sci 2024; 25:1162. [PMID: 38256239 PMCID: PMC10816138 DOI: 10.3390/ijms25021162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Ropinirole is a non-ergolinic dopamine agonist used to manage Parkinson's disease and it is characterized by poor oral bioavailability. This study aimed to design and develop advanced drug delivery systems composed of poloxamer 407, a non-ionic surfactant (Tween 80), and cyclodextrins (methyl-β-CD or hydroxy-propyl-β-CD) for possible brain targeting of ropinirole after nasal administration for the treatment of Parkinson's disease. The hybrid systems were formed by the thin-film hydration method, followed by an extensive physicochemical and morphological characterization. The in vitro cytotoxicity of the systems on HEK293 cell lines was also tested. In vitro release and ex vivo mucosal permeation of ropinirole were assessed using Franz cells at 34 °C and with phosphate buffer solution at pH 5.6 in the donor compartment, simulating the conditions of the nasal cavity. The results indicated that the diffusion-controlled drug release exhibited a progressive increase throughout the experiment, while a proof-of-concept experiment on ex vivo permeation through rabbit nasal mucosa revealed a better performance of the prepared hybrid systems in comparison to ropinirole solution. The encouraging results in drug release and mucosal permeation indicate that these hybrid systems can serve as attractive platforms for effective and targeted nose-to-brain delivery of ropinirole with a possible application in Parkinson's disease. Further ex vivo and in vivo studies to support the results of the present work are ongoing.
Collapse
Affiliation(s)
- Elmina-Marina Saitani
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (E.-M.S.); (N.P.); (P.P.)
| | - Natassa Pippa
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (E.-M.S.); (N.P.); (P.P.)
| | - Diego Romano Perinelli
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (G.B.)
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (E.-M.S.); (N.P.); (P.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.L.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Giulia Bonacucina
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.R.P.); (G.B.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Science, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.L.); (M.G.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece; (E.-M.S.); (N.P.); (P.P.)
| |
Collapse
|
7
|
Abdelwahab AF, Abdelmohymen AM, Mostafa NM, Magdy G, Mazyed EA. Formulation of Deformable Liponiosomal Hybrid of Repaglinide: In vitro Characterization and Evaluation of the Anti-Diabetic Effect. Int J Nanomedicine 2023; 18:7417-7440. [PMID: 38090365 PMCID: PMC10712347 DOI: 10.2147/ijn.s434840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose The current study sought to create novel deformable liponiosomal hybrids (LNHs) as a viable RPG delivery system. Repaglinide (RPG) is an effective anti-hyperglycemic drug. However, its limited solubility may limit its therapeutic applicability. LNHs are a potential liposome-niosome combination. Using phospholipids and non-ionic surfactants together improves their functionality in regulating drug release and increasing their permeability and stability. Materials and Methods The development of RPG-loaded LNHs was performed using the reverse ethanol injection method based on the 23 factorial design to explore the potential of various variables on the encapsulation efficiency (EE%) and % RPG released after 12 h (Q12h). Further in vitro characterization tests and in vivo study were also performed on the optimal RPG-loaded LNHs. Results After investigating how the examined independent factors could affect significantly both the EE % and Q12h, F7 was selected as the optimal liponiosomal formulation. F7 showed 87.07 ± 2.27 EE% and 94.32 ± 1.25 Q12h. F7 demonstrated higher permeability and stability than the corresponding liposomes and niosomes. Furthermore, F7 demonstrated greater hypoglycemic efficacy and bioavailability than pure RPG. Conclusion The combination of liponiosomes and niosomes in the form of LNHs has the potential to be an effective nano-drug delivery vehicle for RPG.
Collapse
Affiliation(s)
- Ali F Abdelwahab
- Department of Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Nada M Mostafa
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Galal Magdy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Eman A Mazyed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
8
|
Sezgin-Bayindir Z, Losada-Barreiro S, Fernández-Bravo S, Bravo-Díaz C. Innovative Delivery and Release Systems for Antioxidants and Other Active Substances in the Treatment of Cancer. Pharmaceuticals (Basel) 2023; 16:1038. [PMID: 37513948 PMCID: PMC10383431 DOI: 10.3390/ph16071038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the major diseases leading to death worldwide, and the fight against the disease is still challenging. Cancer diseases are usually associated with increased oxidative stress and the accumulation of reactive oxygen and nitrogen species as a result of metabolic alterations or signaling aberrations. While numerous antioxidants exhibit potential therapeutic properties, their clinical efficiency against cancer is limited and even unproven. Conventional anticancer antioxidants and drugs have, among others, the great disadvantage of low bioavailability, poor targeting efficiency, and serious side effects, constraining their use in the fight against diseases. Here, we review the rationale for and recent advances in potential delivery systems that could eventually be employed in clinical research on antioxidant therapy in cancer. We also review some of the various strategies aimed at enhancing the solubility of poorly water-soluble active drugs, including engineered delivery systems such as lipid-based, polymeric, and inorganic formulations. The use of cyclodextrins, micro- and nanoemulsions, and thermosensitive smart liposomes as useful systems for the delivery and release of poorly aqueous-soluble drugs, improving their bioactivity and stability, is also addressed. We also provide some details on their formulation processes and their use in a variety of medical applications. Finally, we briefly cover a case study specifically focused on the use of delivery systems to minimize oral cancer and associated dental problems.
Collapse
Affiliation(s)
- Zerrin Sezgin-Bayindir
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Sonia Losada-Barreiro
- Departamento de Química-Física, Facultade de Química, Universidade de Vigo, 36200 Vigo, Spain
| | - Sofía Fernández-Bravo
- Odontology Department, Primary Health Care Unit, Galician Health Service (SERGAS), Camiño do Lodairo s/n, 15570 Narón, Spain
| | - Carlos Bravo-Díaz
- Departamento de Química-Física, Facultade de Química, Universidade de Vigo, 36200 Vigo, Spain
| |
Collapse
|
9
|
Ghazwani M, Alqarni MH, Hani U, Alam A. QbD-Optimized, Phospholipid-Based Elastic Nanovesicles for the Effective Delivery of 6-Gingerol: A Promising Topical Option for Pain-Related Disorders. Int J Mol Sci 2023; 24:9983. [PMID: 37373129 DOI: 10.3390/ijms24129983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, elastic nanovesicles, constructed of phospholipids optimized by Quality by Design (QbD), release 6-gingerol (6-G), a natural chemical that may alleviate osteoporosis and musculoskeletal-related pain. A 6-gingerol-loaded transfersome (6-GTF) formulation was developed using a thin film and sonication approach. 6-GTFs were optimized using BBD. Vesicle size, PDI, zeta potential, TEM, in vitro drug release, and antioxidant activity were evaluated for the 6-GTF formulation. The optimized 6-GTF formulation had a 160.42 nm vesicle size, a 0.259 PDI, and a -32.12 mV zeta potential. TEM showed sphericity. The 6-GTF formulation's in vitro drug release was 69.21%, compared to 47.71% for the pure drug suspension. The Higuchi model best described 6-G release from transfersomes, while the Korsmeyer-Peppas model supported non-Fickian diffusion. 6-GTF had more antioxidant activity than the pure 6-G suspension. The optimized transfersome formulation was converted into a gel to improve skin retention and efficacy. The optimized gel had a spreadability of 13.46 ± 4.42 g·cm/s and an extrudability of 15.19 ± 2.01 g/cm2. The suspension gel had a 1.5 μg/cm2/h ex vivo skin penetration flux, while the 6-GTF gel had 2.71 μg/cm2/h. Rhodamine B-loaded TF gel reached deeper skin layers (25 μm) compared to the control solution in the CLSM study. The gel formulation's pH, drug concentration, and texture were assessed. This study developed QbD-optimized 6-gingerol-loaded transfersomes. 6-GTF gel improved skin absorption, drug release, and antioxidant activity. These results show that the 6-GTF gel formulation has the ability to treat pain-related illnesses effectively. Hence, this study offers a possible topical treatment for conditions connected to pain.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
10
|
Preparation and Characterization of Patch Loaded with Clarithromycin Nanovesicles for Transdermal Drug Delivery. J Funct Biomater 2023; 14:jfb14020057. [PMID: 36826856 PMCID: PMC9964574 DOI: 10.3390/jfb14020057] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Clarithromycin (CLR), categorized as a Biopharmaceutical Classification System class II drug, has several gastrointestinal tract side effects and an extremely unpalatable bitter taste. The current study aimed to design transdermal patch-embedded CLR niosomes to overcome the aforementioned CLR-related challenges. Various niosomal formulations were successfully fabricated and characterized for their morphology, size, in vitro release, and antimicrobial efficacy. Subsequently, the CLR niosomes were loaded into transdermal patches using the solvent casting method. The polydispersity index of the niosomes ranged from 0.005 to 0.360, indicating the uniformity of the niosomes. The encapsulating efficiency (EE)% varied from 12 to 86%. The optimal Chol: surfactant ratio for drug release was found to be 0.5:1. In addition, the encapsulation of CLR into niosomal nanovesicles did not reduce the antibacterial activity of the CLR. The niosomal patch had a significantly higher permeability coefficient of CLR than the conventional patch. In addition to that, a shear-thinning behavior was observed in the niosomal gels before loading them into a niosomal patch. The flux (Jss) of the niosomal patch was significantly higher than the conventional patch by more than 200 times. In conclusion, niosome-based transdermal patches could be a promising method for the transdermal drug delivery of class II drugs and drugs experiencing GIT side effects.
Collapse
|
11
|
Environment friendly green synthesis method based natural bioactive functional “catechin and gingerol” loaded nanomedicine for the management of obesity. Int J Pharm 2022; 628:122340. [DOI: 10.1016/j.ijpharm.2022.122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
12
|
Karthic A, Roy A, Lakkakula J, Alghamdi S, Shakoori A, Babalghith AO, Emran TB, Sharma R, Lima CMG, Kim B, Park MN, Safi SZ, de Almeida RS, Coutinho HDM. Cyclodextrin nanoparticles for diagnosis and potential cancer therapy: A systematic review. Front Cell Dev Biol 2022; 10:984311. [PMID: 36158215 PMCID: PMC9494816 DOI: 10.3389/fcell.2022.984311] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer is still one of the world's deadliest health concerns. As per latest statistics, lung, breast, liver, prostate, and cervical cancers are reported topmost worldwide. Although chemotherapy is most widely used methodology to treat cancer, poor pharmacokinetic parameters of anticancer drugs render them less effective. Novel nano-drug delivery systems have the caliber to improve the solubility and biocompatibility of various such chemical compounds. In this regard, cyclodextrins (CD), a group of natural nano-oligosaccharide possessing unique physicochemical characteristics has been highly exploited for drug delivery and other pharmaceutical purposes. Their cup-like structure and amphiphilic nature allows better accumulation of drugs, improved solubility, and stability, whereas CDs supramolecular chemical compatibility renders it to be highly receptive to various kinds of functionalization. Therefore combining physical, chemical, and bio-engineering approaches at nanoscale to specifically target the tumor cells can help in maximizing the tumor damage without harming non-malignant cells. Numerous combinations of CD nanocomposites were developed over the years, which employed photodynamic, photothermal therapy, chemotherapy, and hyperthermia methods, particularly targeting cancer cells. In this review, we discuss the vivid roles of cyclodextrin nanocomposites developed for the treatment and theranostics of most important cancers to highlight its clinical significance and potential as a medical tool.
Collapse
Affiliation(s)
- Anandakrishnan Karthic
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
- Centre for Computational Biology and Translational Research, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore, Pakistan
| | - Ray Silva de Almeida
- Department of Biological Chemistry, Regional University of Cariri –URCA, Crato, Brazil
| | | |
Collapse
|