1
|
Aina M, Baillon F, Sescousse R, Sanchez-Ballester NM, Begu S, Soulairol I, Sauceau M. From conception to consumption: Applications of semi-solid extrusion 3D printing in oral drug delivery. Int J Pharm 2025; 674:125436. [PMID: 40097055 DOI: 10.1016/j.ijpharm.2025.125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Semi-Solid Extrusion 3D printing (SSE 3DP) has emerged as a promising technology for fabricating oral drug formulations, offering significant opportunities for personalized medicine and tailored therapeutic outcomes. SSE 3DP is particularly advantageous for producing soft and chewable drug products and is well-suited for formulations containing thermosensitive drugs due to its low-temperature printing process. Among various 3D printing techniques, SSE 3DP holds considerable potential for point-of-care applications, enabling the on-demand production of patient-specific dosage forms. Despite these advantages, SSE 3DP faces certain limitations that affect its overall development and widespread adoption. This review provides a comprehensive overview of SSE 3DP's fundamental principles, current applications, and future prospects in oral drug delivery. It also addresses the challenges and limitations associated with SSE 3DP and examines the current outlook of this technique in oral drug delivery applications. An example of such a challenge is the lack of a harmonized method for evaluating rheological properties. To address this issue, the review describes a methodology for obtaining information related to extrudability and shape fidelity from rheological properties. Overall, this review aims to highlight the transformative potential of SSE 3DP in the pharmaceutical landscape, paving the way for tailored, and patient-centric therapies.
Collapse
Affiliation(s)
- Morenikeji Aina
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France.
| | - Fabien Baillon
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France
| | - Romain Sescousse
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France
| | - Noelia M Sanchez-Ballester
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Sylvie Begu
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Martial Sauceau
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013, Albi, France
| |
Collapse
|
2
|
Veselý M, Záruba D, Elbl J. Development of 3D-Printed Chewable Gummy Tablets with Adjustable Ondansetron Content for the Treatment of Pediatric Patients. Pharmaceutics 2025; 17:458. [PMID: 40284453 PMCID: PMC12030306 DOI: 10.3390/pharmaceutics17040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Semi-solid extrusion (SSE) 3D printing is an innovative method utilized for preparation of various drug dosage forms, allowing for individualization by means of incorporation of one or multiple drugs in adjustable doses. SSE provides repeatable results and can be conveniently utilized in small batch production. This study aimed to develop a chewable formulation for pediatric patients which could be easily printed using SSE. Methods: Pectin and gelatin were utilized as gel-forming agents, polyvinylpyrrolidone as a thickener, glycerol as a plasticizer, citric acid as a pH modifier, and potassium sorbate as a conserving agent. Obtained tablets were evaluated for mass and content homogeneity and their mechanical properties compared to the long-time market standard for gummies. Results: Gummy formulation with texture properties comparable to the selected standard and mass homogeneity were prepared. The linear correlation between the model size and ondansetron content was proven. Conclusions: SSE 3D printing thus presents a suitable method of gummy formulation production with possible adjustment of dose by defining the object size.
Collapse
Affiliation(s)
| | | | - Jan Elbl
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University Brno, Palackého Tř. 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
3
|
Auel T, Mentrup AFC, Oldfield LR, Seidlitz A. 3D printing of pharmaceutical dosage forms: Recent advances and applications. Adv Drug Deliv Rev 2025; 217:115504. [PMID: 39706526 DOI: 10.1016/j.addr.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Three-dimensional (3D) printing, also referred to as additive manufacturing, is considered to be a game-changing technology in many industries and is also considered to have potential use cases in pharmaceutical manufacturing, especially if individualization is desired. In this review article the authors systematically researched literature published during the last 5 years (2019 - spring 2024) on the topic of 3D printed dosage forms. Besides all kinds of oral dosage forms ranging from tablets and capsules to films, pellets, etc., numerous reports were also identified on parenteral and cutaneous dosage forms and also rectal, vaginal, dental, intravesical, and ophthalmic preparations. In total, more than 500 publications were identified and grouped according to the site of administration, and an overview of the manuscripts is presented here. Furthermore, selected publications are described and discussed in more detail. The review highlights the very different approaches that are currently used in order to develop 3D printed dosage forms but also addresses remaining challenges.
Collapse
Affiliation(s)
- Tobias Auel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Aaron Felix Christofer Mentrup
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; INVITE GmbH, Formulation Technology, Otto-Bayer-Straße 32, 51061 Köln, Germany
| | - Lee Roy Oldfield
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anne Seidlitz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, Kelchstraße 31, 12169 Berlin, Germany.
| |
Collapse
|
4
|
Kovačević Z, Tomanić D, Šarić L, Mugoša S, Budinski K, Novaković D, Horvat O. Exploring pet owners' attitudes toward compounded and human approved medicines: a questionnaire based pilot study. Vet Res Commun 2025; 49:64. [PMID: 39760799 DOI: 10.1007/s11259-024-10635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
With the growing global pet population and increased spending on veterinary care, compounded medications offer customized, often more suitable and affordable treatment options compared to the limited available veterinary medications. This research aims to understand pet owners' attitudes towards compounded medications, focusing on their challenges and needs. A total of 300 respondents from the territory of Novi Sad, province of Vojvodina, Republic of Serbia completed the questionnaire, through face-to-face interviews at veterinary clinics. Pet owners stated that the majority of companion animals were dogs (66.7%), followed by cats (22.8%). A significant portion of them received medication in the past five years (70.7%), while nearly half of them were human-approved (47.9%) out of which more than half (55%) of the pets received antimicrobials for systemic use. Although the majority of pets did not receive compounded medication (79.8%), respondents believed that both they and their pets would benefit from it. Only small fraction of respondents knew that local pharmacies had the ability to compound medications for pets (14.5%). In the era of personalized medicine, compounded medication for specialized needs play an important role providing optimum therapy for veterinary patients. However, limitations persist, including variability in formulation quality, limited regulatory oversight, and challenges in ensuring consistency in potency and stability, as well as decreased efficacy for certain drugs and the challenges related to the lack of pharmacokinetic data for some administration routes. By customizing treatments for individual veterinary patients, we can optimize antimicrobial use, reduce the selective pressure that drives resistance, and enhance patient outcomes, while acknowledging the need for careful oversight and quality control in compounding practices to ensure safety and efficacy.
Collapse
Affiliation(s)
- Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000, Novi Sad, Serbia
| | - Dragana Tomanić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Ljubiša Šarić
- Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Snežana Mugoša
- Faculty of Medicine, University of Montenegro, Krusevac, Bb, 81000, Podgorica, Montenegro
- Institute for Medicine and Medical Devices of Montenegro, Bulevar Ivana Crnojevića, 81000, Podgorica, Montenegro
| | - Katarina Budinski
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000, Novi Sad, Serbia
| | - Dragana Novaković
- Department of Agricultural Economics and Rural Sociology, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovica 8, 21000, Novi Sad, Serbia
| | - Olga Horvat
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia
| |
Collapse
|
5
|
Paccione N, Guarnizo-Herrero V, Ramalingam M, Larrarte E, Pedraz JL. Application of 3D printing on the design and development of pharmaceutical oral dosage forms. J Control Release 2024; 373:463-480. [PMID: 39029877 DOI: 10.1016/j.jconrel.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
3D printing technologies confer an unparalleled degree of control over the material distribution on the structures they produce, which has led them to become an extremely attractive research topic in pharmaceutical dosage form development, especially for the design of personalized treatments. With fine tuning in material selection and careful design, these technologies allow to tailor not only the amount of drug administered but the biopharmaceutical behaviour of the dosage forms as well. While fused deposition modelling (FDM) is still the most studied 3D printing technology in this area, others are gaining more relevance, which has led to many new and exciting dosage forms developed during 2022 and 2023. Considering that these technologies, in time, will join the current manufacturing methods and with the ever-increasing knowledge on this topic, our review aims to explore the advantages and limitations of 3D printing technologies employed in the design and development of pharmaceutical oral dosage forms, giving special focus to the most important aspects governing the resulting drug release profiles.
Collapse
Affiliation(s)
- Nicola Paccione
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain
| | - Víctor Guarnizo-Herrero
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33, 600 28805 Madrid, Spain
| | - Murugan Ramalingam
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Eider Larrarte
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain.
| | - José Luis Pedraz
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain..
| |
Collapse
|
6
|
Adeleke OA, Abedin S. Characterization of Prototype Gummy Formulations Provides Insight into Setting Quality Standards. AAPS PharmSciTech 2024; 25:155. [PMID: 38960983 DOI: 10.1208/s12249-024-02876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
Gummy formulations are considered suitable alternatives to traditional oral dosage forms like tablets and capsules due to their merits that include chewability, softness/flexibility, improved drug release, administration without water, appealing organoleptic properties, better patient compliance, easy preparation and usefulness for persons of different ages (e.g. children). Though there is increasing interest in gummy formulations containing drugs, measurable parameters, and specification limits for evaluating their quality are scarce. Quality check forms an essential part of the pharmaceutical development process because drug products must be distributed as consistently stable, safe, and therapeutically effective entities. Consequently, some quality parameters that could contribute to the overall performance of typical gummy formulations were investigated employing six brands of non-medicinal gummies as specimens. Accordingly, key physicochemical and micromechanical characteristics namely adhesiveness (0.009 - 0.028 mJ), adhesive force (0.009 - 0.055 N), chewiness (2.780 - 6.753 N), cohesiveness (0.910 - 0.990), hardness (2.984 - 7.453 N), springiness (0.960 - 1.000), and resilience (0.388 - 0.572), matrix firmness - compression load (2.653 - 6.753 N) and work done (3.288 - 6.829 mJ), rupture (5.315 - 29.016 N), moisture content (< 5%), weight uniformity (< 2.5 g; < 7.5% deviation), and intraoral dissolution pH (≥ 3.5 ≤ 6.8) were quantified to identify measures that may potentially function as specification limits and serve as prospective reference points for evaluating the quality of gummy formulations. Findings from this work contribute to ongoing efforts to standardize the quality control strategies for gummy formulations, particularly those intended for oral drug delivery.
Collapse
Affiliation(s)
- Oluwatoyin A Adeleke
- Preclinical Laboratory for Drug Delivery Innovations, College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
- School of Biomedical Engineering, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 3J5, Canada.
| | - Saba Abedin
- Preclinical Laboratory for Drug Delivery Innovations, College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
7
|
Mathiyalagan R, Sjöholm E, Manandhar S, Lakio S, Rosenholm JM, Kaasalainen M, Wang X, Sandler N. Personalizing oral delivery of nanoformed piroxicam by semi-solid extrusion 3D printing. Eur J Pharm Sci 2023; 188:106497. [PMID: 37329925 DOI: 10.1016/j.ejps.2023.106497] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Semi-solid extrusion (SSE) 3D printing enables flexible designs and dose sizes to be printed on demand and is a suitable tool for fabricating personalized dosage forms. Controlled Expansion of Supercritical Solution (CESS®) is a particle size reduction technology, and it produces particles of a pure active pharmaceutical ingredient (API) in a dry state, suspendable in the printing ink. In the current study, as a model API of poorly water-soluble drug, nanoformed piroxicam (nanoPRX) prepared by CESS® was accommodated in hydroxypropyl methylcellulose- or hydroxypropyl cellulose-based ink formulations to warrant the printability in SSE 3D printing. Importantly, care must be taken when developing nanoPRX formulations to avoid changes in their polymorphic form or particle size. Printing inks suitable for SSE 3D printing that successfully stabilized the nanoPRX were developed. The inks were printed into films with escalating doses with exceptional accuracy. The original polymorphic form of nanoPRX in the prepared dosage forms was not affected by the manufacturing process. In addition, the conducted stability study showed that the nanoPRX in the prepared dosage form remained stable for at least three months from printing. Overall, the study rationalizes that with nanoparticle-based printing inks, superior dose control for the production of personalized dosage forms of poorly water-soluble drugs at the point-of-care can be achieved.
Collapse
Affiliation(s)
- Rathna Mathiyalagan
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Erica Sjöholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | | | - Satu Lakio
- Nanoform Finland Ltd, Viikinkaari 4, 00790 Helsinki, Finland
| | | | | | - Xiaoju Wang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland.
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland; Nanoform Finland Ltd, Viikinkaari 4, 00790 Helsinki, Finland
| |
Collapse
|
8
|
Chakka LRJ, Chede S. 3D printing of pharmaceuticals for disease treatment. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 4:1040052. [PMID: 36704231 PMCID: PMC9871616 DOI: 10.3389/fmedt.2022.1040052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Three-dimensional (3D) printing or Additive manufacturing has paved the way for developing and manufacturing pharmaceuticals in a personalized manner for patients with high volume and rare diseases. The traditional pharmaceutical manufacturing process involves the utilization of various excipients to facilitate the stages of blending, mixing, pressing, releasing, and packaging. In some cases, these excipients cause serious side effects to the patients. The 3D printing of pharmaceutical manufacturing avoids the need for excessive excipients. The two major components of a 3D printed tablet or dosage form are polymer matrix and drug component alone. Hence the usage of the 3D printed dosage forms for disease treatment will avoid unwanted side effects and provide higher therapeutic efficacy. With respect to the benefits of the 3D printed pharmaceuticals, the present review was constructed by discussing the role of 3D printing in producing formulations of various dosage forms such as fast and slow releasing, buccal delivery, and localized delivery. The dosage forms are polymeric tablets, nanoparticles, scaffolds, and films employed for treating different diseases.
Collapse
Affiliation(s)
- L. R. Jaidev Chakka
- College of Pharmacy, TheUniversity of Texas at Austin, Austin, TX, United States,Correspondence: L. R. Jaidev Chakka
| | - Shanthi Chede
- College of Pharmacy, University of Iowa, Iowa, IA, United States
| |
Collapse
|
9
|
Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Innovations in Chewable Formulations: The Novelty and Applications of 3D Printing in Drug Product Design. Pharmaceutics 2022; 14:1732. [PMID: 36015355 PMCID: PMC9412656 DOI: 10.3390/pharmaceutics14081732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Since their introduction, chewable dosage forms have gained traction due to their ability to facilitate swallowing, especially in paediatric, geriatric and dysphagia patients. Their benefits stretch beyond human use to also include veterinary applications, improving administration and palatability in different animal species. Despite their advantages, current chewable formulations do not account for individualised dosing and palatability preferences. In light of this, three-dimensional (3D) printing, and in particular the semi-solid extrusion technology, has been suggested as a novel manufacturing method for producing customised chewable dosage forms. This advanced approach offers flexibility for selecting patient-specific doses, excipients, and organoleptic properties, which are critical for ensuring efficacy, safety and adherence to the treatment. This review provides an overview of the latest advancements in chewable dosage forms for human and veterinary use, highlighting the motivations behind their use and covering formulation considerations, as well as regulatory aspects.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
| |
Collapse
|