1
|
Mammella A, Bhavana V, Chary PS, Anuradha U, Mehra NK. Modulation of chondroprotective hyaluronic acid and poloxamer gel with Ketoprofen loaded transethosomes: Quality by design-based optimization, characterization, and preclinical investigations in osteoarthritis. Int J Biol Macromol 2024; 280:135919. [PMID: 39341323 DOI: 10.1016/j.ijbiomac.2024.135919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Osteoarthritis (OA) is a chronic joint disease that results in biomechanical and morphological changes that contribute to cartilage degradation. Ketoprofen (KP), used in the treatment of OA, is a selective inhibitor of cyclooxygenase-2 (COX-2). Topical administration of KP bypasses gastric irritation as well as first-pass metabolism and increases localized delivery. The research intricates fabrication and optimization of KP-loaded transethosomes (KP-TEs) via Taguchi orthogonal array design and Central composite design (CCD). The optimized KP-TEs depicted an average vesicle size of 110.0 ± 1.70 nm, poly dispersibility index (PDI) of 0.103 ± 0.01, zeta potential -6.08 ± 0.27 mV, and conductivity of 0.049 ± 0.0001 mS/cm. The optimized KP-TEs were loaded in composite hyaluronic acid (HA) and poloxamer 407 (Px407) for an improvement of osteotrophic and chondroprotective transethosomal gel. The drug content of KP-TEs-HA/Px407 gel was found to be 90.08 ± 1.25 %. Preclinical research has been carried out by using the monosodium iodoacetate to develop model for osteoarthritis in male wistar rats. The X-ray imaging of KP-TEs-HA/Px407 gel treated group showed intact meniscus, healthy articular joint, and normal synovial lining same as the healthy control group. The IL - 1β IL-6, IL-22, TNF-α, and IL-10, levels, X-ray imaging, and studies on histopathology demonstrated the effectiveness of transethosomal gel in reducing pain and inflammation.
Collapse
Affiliation(s)
- Aishwarya Mammella
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Padakanti Sandeep Chary
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Urati Anuradha
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India.
| |
Collapse
|
2
|
Kumar L, Rana R, Kukreti G, Aggarwal V, Chaurasia H, Sharma P, Jyothiraditya V. Overview of Spanlastics: A Groundbreaking Elastic Medication Delivery Device with Versatile Prospects for Administration via Various Routes. Curr Pharm Des 2024; 30:2206-2221. [PMID: 38967069 DOI: 10.2174/0113816128313398240613063019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024]
Abstract
When compared to the challenges associated with traditional dosage forms, medication delivery systems based on nanotechnology have been a huge boon. One such candidate for medication delivery is spanlastics, an elastic nanovesicle that can transport a diverse array of medicinal compounds. The use of spanlastics has been associated with an increase in interest in alternative administration methods. The non-ionic surfactant or surfactant blend is the main component of spanlastics. The purpose of this review was primarily to examine the potential of spanlastics as a delivery system for a variety of medication classes administered via diverse routes. Science Direct, Google Scholar, and Pubmed were utilized to search the academic literature for this review. Several studies have demonstrated that spanlastics greatly improve therapeutic effectiveness, increase medication absorption, and decrease drug toxicity. This paper provides a summary of the composition and structure of spanlastics along with their utility in the delivery of various therapeutic agents by adopting different routes. Additionally, it provides an overview of the numerous disorders that may be treated using drugs that are contained in spanlastic vesicles.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Pharmaceutics, GNA School of Pharmacy, GNA University, Phagwara, Punjab 144401, India
| | - Ritesh Rana
- Department of Pharmaceutical Sciences (Pharmaceutics), Laureate Institute of Pharmacy, Kathog-Kangra, Himachal Pradesh 176031, India
| | - Gauree Kukreti
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala Dehradun, Uttarakhand 248161, India
| | - Vikas Aggarwal
- Senior Pharmacovigilance Specialist, Continuum India LLP, 3rd Floor, Tower F DLF Building, Chandigarh Technology Park, Chandigarh 160101, India
| | - Himanshu Chaurasia
- Department of Pharmacy, Quantum School of Health Science, Quantum University, Vill. Mandawar (N.H.73), Roorkee-Dehradun Highway, Roorkee, Uttrakhand 247662, India
| | - Puneet Sharma
- Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research (HIPER), Bela-Nadaun, District-Hamirpur, H.P. 177033, India
| | - Vuluchala Jyothiraditya
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| |
Collapse
|
3
|
El Hosary R, Teaima MH, El-Nabarawi M, Yousry Y, Eltahan M, Bakr A, Aboelela H, Abdelmonem R, Nassif RM. Topical delivery of extracted curcumin as curcumin loaded spanlastics anti-aging gel: Optimization using experimental design and ex-vivo evaluation. Saudi Pharm J 2024; 32:101912. [PMID: 38178851 PMCID: PMC10765109 DOI: 10.1016/j.jsps.2023.101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Objective This study aimed to extract and separate the organic coloring agent known as Curcumin from the rhizomes of Curcuma longa, and then to create Spanlastics that were loaded with curcumin using the ethanol injection technique. The optimized Spanlastic dispersions were then incorporated into a gel preparation for topical anti-aging use. The Spanlastic dispersions were analyzed for particle size, zeta potential, drug loading efficiency, and in vitro release profile. Furthermore, the rheological properties of the gel preparation were assessed, and a skin penetration study was conducted using confocal microscopy. Methods Twelve different Curcumin-loaded Spanlastic dispersions using the ethanol injection method with Span® 60 as a surfactant and Tween® 80 as an edge activator in varying ratios. The dispersions were then subjected to various tests, such as particle size analysis, zeta potential measurement, drug entrapment efficiency assessment, and in vitro release profiling. The optimized formula was selected using Design-Expert® software version 13, then used to create a gel preparation, which utilized 2% HPMC E50 as a gelling polymer. The gel was evaluated for its rheological properties and analyzed using confocal microscopy. Additionally, Raman analysis was performed to ensure that the polymers used in the gel were compatible with the drug substance. Results F5 formula, (that contains 10 mg Curcumin, and mixture 5 of span-tween mixtures that consist of 120 mg Span® 60 with 80 mg Tween® 80) was selected as the optimized formula with a desirability produced by Design Expert® software equal to 0.761, based on its particle size (212.8 ± 4.76), zeta potential (-29.4 ± 2.11), drug loading efficiency (99.788 ± 1.34), and in vitro release profile evaluations at Q 6hr equal to almost 100 %. Statistical significance (P < 0.05) was obtained using one-way ANOVA. Then F5 was used to formulate HPMC E50 gel-based preparations. The gel formula that was created and analyzed using Raman spectroscopy demonstrated no signs of incompatibility between the Curcumin and the polymers that were utilized.The confocal spectroscopy found that the anti-aging gel preparation showed promising results in terms of skin penetration. Also, images revealed that the gel could penetrate the layers of the skin (reached a depth of about 112.5 μm), where it could potentially target and reduce the appearance of fine lines and wrinkles. The gel also appeared to be well-tolerated by the skin, with no signs of irritation or inflammation observed in the images. Conclusion The obtained results successfully confirmed the potential of the promising (F5) formula to produce sustained release action and its ability to be incorporated into 2% HPMC E50 anti-aging gel. The confocal microscopy study suggested that the anti-aging gel had the potential to be an effective and safe topical treatment for aging skin.
Collapse
Affiliation(s)
- Rania El Hosary
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Yousra Yousry
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Mahmoud Eltahan
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| | - Ahmed Bakr
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Hussein Aboelela
- Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| | - Rafik M. Nassif
- Department of Pharmacognosy, Faculty of Pharmacy, Misr University for Science and Technology, 6th October City, Egypt
| |
Collapse
|
4
|
Raafat SN, El Wahed SA, Badawi NM, Saber MM, Abdollah MR. Enhancing the anticancer potential of metformin: fabrication of efficient nanospanlastics, in vitro cytotoxic studies on HEP-2 cells and reactome enhanced pathway analysis. Int J Pharm X 2023; 6:100215. [PMID: 38024451 PMCID: PMC10630776 DOI: 10.1016/j.ijpx.2023.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin (MET), an oral antidiabetic drug, was reported to possess promising anticancer effects. We hypothesized that MET encapsulation in unique nanospanlastics would enhance its anticancer potential against HEP-2 cells. Our results showed the successful fabrication of Nano-MET spanlastics (d = 232.10 ± 0.20 nm; PDI = 0.25 ± 0.11; zeta potential = (-) 44.50 ± 0.96; drug content = 99.90 ± 0.11 and entrapment efficiency = 88.01 ± 2.50%). MTT assay revealed the enhanced Nano-MET cytotoxicity over MET with a calculated IC50 of 50 μg/mL and > 500 μg/mL, respectively. Annexin V/PI apoptosis assay showed that Nano-MET significantly decreased the percentage of live cells from 95.49 to 93.70 compared to MET and increased the percentage of cells arrested in the G0/G1 phase by 8.38%. Moreover, Nano-MET downregulated BCL-2 and upregulated BAX protein levels by 1.57 and 1.88 folds, respectively. RT-qPCR revealed that Nano-MET caused a significant 13.75, 4.15, and 2.23-fold increase in caspase-3, -8, and - 9 levels as well as a 100 and 43.47-fold decrease in cyclin D1 and mTOR levels, respectively. The proliferation marker Ki67 immunofluorescent staining revealed a 3-fold decrease in positive cells in Nano-MET compared to the control. Utilizing the combined Pathway-Enrichment Analysis (PEA) and Reactome analysis indicated high enrichment of certain pathways including nucleotides metabolism, Nudix-type hydrolase enzymes, carbon dioxide hydration, hemostasis, and the innate immune system. In summary, our results confirm MET cytotoxicity enhancement by its encapsulation in nanospanlastics. We also highlight, using PEA, that MET can modulate multiple pathways implicated in carcinogenesis.
Collapse
Affiliation(s)
- Shereen Nader Raafat
- Department of Pharmacology, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
- Stem Cells and Tissue Culture Hub (CIDS), Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Sara Abd El Wahed
- Department of Oral Pathology, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Noha M. Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
| | - Mona M. Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Maha R.A. Abdollah
- Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Egypt
- Department of Pharmacology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
5
|
Saini H, Rapolu Y, Razdan K, Nirmala, Sinha VR. Spanlastics: a novel elastic drug delivery system with potential applications via multifarious routes of administration. J Drug Target 2023; 31:999-1012. [PMID: 37926975 DOI: 10.1080/1061186x.2023.2274805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Drug delivery systems (DDS) based on nanocarriers are designed to transport therapeutic agents to specific areas of the body where they are required to exhibit pharmacodynamic effect. These agents rely on an appropriate carrier to protect them from rapid degradation or clearance and enhance their concentration in target tissues. Spanlastics, an elastic, deformable surfactant-based nanovesicles have the potential to be used as a drug delivery vehicle for wide array of drug molecules. Spanlastics are formed by the self-association of non-ionic surfactants and edge activators in an aqueous phase and have gained attention as promising drug carriers due to their biodegradable, biocompatible, and non-immunogenic structure. In recent years, numerous scientific journals have published research articles exploring the potential of spanlastics to serve as a DDS for various types of drugs as they offer targeted delivery and regulated release of the drugs. Following brief introduction to spanlastics, their structure and methods of preparation, this review focuses on the delivery of various drugs using spanlastics as a carrier via various routes viz. topical, transdermal, ototopical, ocular, oral and nasal. Work carried out by various researchers by employing spanlastics as a carrier for enhancing therapeutic activity of different moieties has been discussed in detail.
Collapse
Affiliation(s)
- Harshita Saini
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
- University School of Pharmaceutical Sciences, Rayat Bahra University, Mohali, India
| | - Yugendhar Rapolu
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Karan Razdan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Nirmala
- University School of Pharmaceutical Sciences, Rayat Bahra University, Mohali, India
| | - Vivek Ranjan Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Abd-Elsalam WH, Abouelatta SM. Contemporary Techniques and Potential Transungual Drug Delivery Nanosystems for The Treatment of Onychomycosis. AAPS PharmSciTech 2023; 24:150. [PMID: 37421509 DOI: 10.1208/s12249-023-02603-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/04/2023] [Indexed: 07/10/2023] Open
Abstract
The humanoid nail is considered an exceptional protective barrier that is formed mainly from keratin. Onychomycosis is the cause of 50% of nail infections that is generally caused by dermatophytes. Firstly, the infection was regarded as a cosmetic problem but because of the tenacious nature of onychomycosis and its relapses, these infections have attracted medical attention. The first line of therapy was the oral antifungal agents which were proven to be effective; nevertheless, they exhibited hepato-toxic side effects, alongside drug interactions. Following, the opportunity was shifted to the topical remedies, as onychomycosis is rather superficial, yet this route is hindered by the keratinized layers in the nail plate. A potential alternative to overcome the obstacle was applying different mechanical, physical, and chemical methods to boost the penetration of drugs through the nail plate. Unfortunately, these methods might be expensive, require an expert to be completed, or even be followed by pain or more serious side effects. Furthermore, topical formulations such as nail lacquers and patches do not provide enough sustaining effects. Recently, newer therapies such as nanovesicles, nanoparticles, and nanoemulsions have emerged for the treatment of onychomycosis that provided effective treatment with possibly no side effects. This review states the treatment strategies such as mechanical, physical, and chemical methods, and highlights various innovative dosage forms and nanosystems developed in the last 10 years with a focus on advanced findings regarding formulation systems. Furthermore, it demonstrates the natural bioactives and their formulation as nanosystems, and the most relevant clinical outcomes.
Collapse
Affiliation(s)
- Wessam H Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Samar M Abouelatta
- Department of Pharmaceutics, Faculty of Pharmacy, Ahram Candian University, 6 October, Cairo, Egypt
| |
Collapse
|
7
|
Nair AB, Aldhubiab B, Shah J, Jacob S, Attimarad M, Sreeharsha N, Venugopala KN, Joseph A, Morsy MA. Design, Development, and Evaluation of Constant Voltage Iontophoresis for the Transungual Delivery of Efinaconazole. Pharmaceutics 2023; 15:pharmaceutics15051422. [PMID: 37242664 DOI: 10.3390/pharmaceutics15051422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The efficacy of topical antifungal therapy in onychomycosis has been hindered by the failure of the antimycotic to permeate the nail plate. This research aims to design and develop a transungual system for the effective delivery of efinaconazole utilizing constant voltage iontophoresis. Seven prototype drug-loaded hydrogel formulations (E1-E7) were prepared to assess the influence of solvent (ethanol) and cosolvent (Labrasol®) on transungual delivery. Optimization was performed to evaluate the effect of three independent variables; voltage, solvent-to-cosolvent ratio, and penetration enhancer (PEG 400) concentration on critical quality attributes (CQAs), such as drug permeation and loading into the nail. The selected hydrogel product was characterized for pharmaceutical properties, efinaconazole release from the nail, and antifungal activity. Preliminary data indicates ethanol, Labrasol®, and voltage influence the transungual delivery of efinaconazole. Optimization design indicates a significant impact by applied voltage (p-0.0001) and enhancer concentration (p-0.0004) on the CQAs. Excellent correlation between selected independent variables and CQAs was confirmed by the high desirability value (0.9427). A significant (p < 0.0001) enhancement in the permeation (~78.59 µg/cm2) and drug loading (3.24 µg/mg) was noticed in the optimized transungual delivery with 10.5 V. FTIR spectral data indicates no interaction between the drug and excipients, while the DSC thermograms confirmed the amorphous state of the drug in the formulation. Iontophoresis produces a drug depot in the nail that releases above the minimum inhibitory concentration level for an extended period, potentially reducing the need for frequent topical treatment. Antifungal studies further substantiate the release data and have shown remarkable inhibition of Trichophyton mentagrophyte. Overall, the promising results obtained here demonstrate the prospective of this non-invasive method for the effective transungual delivery of efinaconazole, which could improve the treatment of onychomycosis.
Collapse
Affiliation(s)
- Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4000, South Africa
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
8
|
Nanospanlastics as a Novel Approach for Improving the Oral Delivery of Resveratrol in Lipopolysaccharide-Induced Endotoxicity in Mice. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Purpose
Resveratrol (RSV) is a natural polyphenolic compound that has numerous biological effects. Owing to its poor bioavailability, only trace concentrations of RSV could be found at the site of action. Therefore, the present study was aimed at developing RSV-loaded nanospanlastics to improve its oral delivery and therapeutic activity.
Methods
RSV-loaded nanospanlastics were prepared using the thin film hydration technique. The developed formulations were characterized via vesicular size (VS), polydispersity index (PDI), zeta potential (ZP) measurements, fourier transform infrared (FT-IR) spectroscopy analysis and transmission electron microscopy (TEM). In vitro release profile was carried out using dialysis bag diffusion technique. In vivo study was carried out using lipopolysaccharide (LPS)-induced endotoxicity model in mice to evaluate the formulations activity.
Results
The results revealed the successful development of RSV-loaded nanospanlastics which exhibited EE% ranging from 45 to 85%, particle sizes ranging from 260.5 to 794.3 nm; negatively charged zeta potential (≤ − 20 mV) and TEM revealed their spherical shape. An in vitro release study showed biphasic pattern with sustained release of drug up to 24 h. In vivo results showed the superiority of RSV-loaded nanospanlastics over conventional niosomes in attenuating serum levels of liver and kidney functions (aspartate transaminase (AST), alanine transaminase (ALT), and creatinine) in LPS-induced endotoxic mice. Furthermore, both of them suppressed the elevated oxidative stress and inflammatory markers (malondialdehyde (MDA), nitric oxide (NO), and interleukin-1beta (IL-1β)) estimated in the liver and kidney tissues. However, the nanospanlastics showed a prevalence effect over conventional niosomes in kidney measurements and the histopathological examinations.
Conclusions
These findings reveal the potential of nanospanlastics in improving the oral delivery and therapeutic efficacy of RSV.
Collapse
|
9
|
Quality by Design Assisted Optimization and Risk Assessment of Black Cohosh Loaded Ethosomal Gel for Menopause: Investigating Different Formulation and Process Variables. Pharmaceutics 2023; 15:pharmaceutics15020465. [PMID: 36839787 PMCID: PMC9966456 DOI: 10.3390/pharmaceutics15020465] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Black cohosh (Cimicifuga racemosa) (CR) is a popular herb and is medically lauded for ameliorating myriad symptoms associated with menopause. However, its pharmaceutical limitations and non-availability of a patient-compliant drug delivery approach have precluded its prevalent use. Henceforth, the current research premise is aimed at developing an ethosomal gel incorporating triterpene enriched fraction (TEF) obtained from CR and evaluating its effectiveness through the transdermal application. TEF-loaded ethosomes were formulated using solvent injection, optimized and characterised. The optimized ethosomes were then dispersed into a polymeric gel base to form ethosomal gel which was further compared with the conventional gel by in-vitro and ex-vivo experiments. Here, the quality by design (QbD) approach was exploited for the optimization and development of ethosomal gel. The elements of QbD comprising initial risk assessment, design of experimentation (DoE), and model validation for the development of formulation have all been described in detail. The optimized ethosomes (F03) showed a nanometric size range, negative zeta potential and good entrapment. The in vitro release profile of gel revealed a burst release pattern following the Korsmeyer Peppas model having Fickian diffusion. The transdermal flux of ethosomal gel was observed to be more than that of conventional gel. Texture analysis and rheological characterization of the gel, revealed good strength showing shear thinning and pseudoplastic behaviour. The confocal microscope investigation revealed the deeper skin permeation of ethosomal gel than conventional gel. This result was further strengthened by DSC, IR and histological assessment of the animal skin (Wistar rat), treated with the optimized formulation. Conclusively, the implementation of QbD in the formulation resulted in a better understanding of the process and the product. It aids in the reduction of product variability and defects, hence improving product development efficiencies. Additionally, the ethosomal gel was found to be a more effective and successful carrier for TEF than the conventional gel through the transdermal route. Moreover, this demands an appropriate animal study, which is underway, for a stronger outcome.
Collapse
|
10
|
Agrawal V, Patel R, Patel M. Design, characterization, and evaluation of efinaconazole loaded poly(D, L-lactide-co-glycolide) nanocapsules for targeted treatment of onychomycosis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|