1
|
Prabakaran A, Rakshit D, Patel I, Susanna KJ, Mishra A, Radhakrishnanand P, Sarma P, Alexander A. Chitosan-coated nanostructured lipid carriers for intranasal delivery of sinapic acid in Aβ 1-42 induced C57BL/6 mice for Alzheimer's disease treatment. Int J Biol Macromol 2025; 305:141136. [PMID: 39965691 DOI: 10.1016/j.ijbiomac.2025.141136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Sinapic acid (SA) is a plant-derived antioxidant that exhibits neuroprotective activity. However, its poor bioavailability in the brain limits its therapeutic application in treating Alzheimer's disease (AD). Therefore, the present study hypothesizes that coating nanostructured lipid carriers (NLCs) with a biological macromolecule like chitosan (CH-SA-NLCs) could enhance the delivery of SA for AD treatment. The CH-SA-NLCs were spherical with sizes below 200 nm, confirmed by AFM, SEM, and TEM and achieved a sustained drug release of 76.5 % in pH 6.5 simulated nasal fluid over 24 h. Moreover, the histopathology study confirmed the safety of CH-SA-NLCs, validating its suitability for intranasal administration. Not only the in vitro sustained drug release closely correlated with in vivo pharmacokinetics of CH-SA-NLCs (i.n.), demonstrating a 1.7-fold increase in SA's half-life compared to plain SA (i.v.) in plasma but also CH-SA-NLCs (i.n.) achieved a superior AUC0-∞ of 7676.32 ± 2738.55 ng/g*h with a 2.6-fold improved drug targeting efficiency of SA in the brain of BALB/c mice. These improvements resulted in significant neuroprotective effects and decreased oxidative stress and inflammatory levels in Aβ1-42-induced mice. Overall, the study highlights safe and effective intranasal delivery of SA via chitosan-coated nanocarrier as a promising AD treatment strategy.
Collapse
Affiliation(s)
- A Prabakaran
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Inklisan Patel
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - K Jony Susanna
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| | - P Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| | - Phulen Sarma
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Guwahati, Assam 781101, India
| | - Amit Alexander
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
2
|
Dalwadi S, Thakkar V, Prajapati B. Optimizing Neuroprotective Nano-structured Lipid Carriers for Transdermal Delivery through Artificial Neural Network. Pharm Nanotechnol 2025; 13:184-198. [PMID: 38616760 DOI: 10.2174/0122117385294969240326052312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Dementia associated with Alzheimer's disease (AD) is a neurological disorder. AD is a progressive neurodegenerative condition that predominantly impacts the elderly population, although it can also manifest in younger people through the impairment of cognitive functions, such as memory, cognition, and behaviour. Donepezil HCl and Memantine HCl are encapsulated in Nanostructured Lipid Carriers (NLCs) to prolong systemic circulation and minimize the systemic side effects. OBJECTIVE This work explores the use of data mining tools to optimize the formulation of NLCs comprising of Donepezil HCl and Memantine HCl for transdermal drug delivery. Neuroprotective drugs and excipients are utilized for protecting the nervous system against damage or degeneration. METHODS The NLCs were formulated using a high-speed homogenization technique followed by ultrasonication. NLCs were optimized using Box Behnken Design (BBD) in Design Expert Software and artificial neural network (ANN) in IBM SPSS statistics. The independent variables included the ratio of solid lipid to liquid lipid, the percentage of surfactant, and the revolutions per minute (RPM) of the high-speed homogenizer. RESULTS The NLCs that were formulated had a mean particle size ranging from 67.0±0.45 to 142.4±0.52 nm. Both drugs have a %EE range over 75%, and Zeta potential was determined to be - 26±0.36 mV. CryoSEM was used to do the structural study. The permeation study showed the prolonged release of the formulation. CONCLUSION The results indicate that NLCs have the potential to be a carrier for transporting medications to deeper layers of the skin and reaching systemic circulation, making them a suitable formulation for the management of Dementia. Both ANN and BBD techniques are effective tools for systematically developing and optimizing NLC formulation.
Collapse
Affiliation(s)
- Saloni Dalwadi
- Gujarat Technological University, Ahmedabad, Gujarat, 382424, India
| | - Vaishali Thakkar
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, 388001, India
| | | |
Collapse
|
3
|
Ghasemi Narimani M, Kalalinia F, Marouzi S, Gheshlaghi S, Salmasi Z, Hashemi M. Nanoformulation innovations: Revolutionizing precision in migraine therapy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:16-30. [PMID: 39877639 PMCID: PMC11771329 DOI: 10.22038/ijbms.2024.79824.17290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 08/03/2024] [Indexed: 01/31/2025]
Abstract
Objectives Migraine, a serious neurological disease that affects millions of people worldwide, is one of the most considerable burdens on the healthcare system and has significant economic implications. Even though various treatment methods are available, including medication, lifestyle changes, and behavioral therapy, many migraine sufferers do not receive adequate relief or experience intolerable side effects. Hence, the present review aims to evaluate the nanoformulation regarding migraine therapy. Materials and Methods Between 2005 and 2024, specific keywords were used to search several databases, such as Pubmed, Google Scholar, and Scopus. Results The nanoformulation field is an increasing field within nanotechnology that offers new solutions for treating migraine, including improving drug delivery, increasing therapeutic efficacy, and minimizing side effects. By combining nanoscale materials with therapeutic agents, nanoformulations can enhance bioavailability, sustain drug release, deliver targeted drugs, and penetrate the Blood-Brain Barrier (BBB) more efficiently. Nanoformulation has the potential to be a useful tool for migraine therapy. However, several challenges still need to be overcome, such as the BBB penetration, safety and biocompatibility of the product, manufacturing, and scalability reproducibility to pass regulatory approval and affordability. To overcome these challenges, research efforts should be focused on developing innovative techniques to penetrate the BBB, target specific migraine pathways, incorporate personalized medicine approaches, and develop nanotechnology-based diagnostics. Conclusion A nanotechnology-based approach aims to revolutionize migraine therapy, improving patient outcomes and living standards by offering personalized and precise treatments.
Collapse
Affiliation(s)
- Mohammad Ghasemi Narimani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Departments of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Marouzi
- Departments of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Gheshlaghi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Departments of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Departments of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Bano F, Aba Alkhayl FF, Rashid M, Alqethami MG, Alsufyani MO, Alhothali KOR, Hakme MJM, Al-Jarallah AM, Dewangan RP, Husain A. Recent Development of Zolmitriptan Formulation in Migraine Therapy: Production, Metabolism and Pharmaceutical Aspects. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:219-233. [PMID: 39279695 DOI: 10.2174/0118715273306929240820071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/18/2024]
Abstract
The triptans class of pharmaceuticals, which was created to treat acute migraine, is made up of indole-containing drugs that bind to a subset (1B/1D) of 5-hydroxytryptamine receptors and are agonists of serotonin receptors. At the moment, naratriptan, eletriptan, zolmitriptan, rizatriptan, almotriptan, and frovatriptan are the seven types of triptans available on the market. Among these are the FDA-approved triptans, Zolmitriptan and Sumatriptan, which are selective serotonin (5-hydroxytryptamine) agonists. Zolmitriptan, a synthetic tryptamine derivative and a well-known member of the triptan family, is available as an orally disintegrating tablet, nasal spray, and tablet. There are melt formulations of rizatriptan and zolmitriptan available on the market that are easier to use and absorb, comparable to regular pills. Recently, the FDA approved zolmitriptan, a medication with tolerability comparable to sumatriptan. Whereas zolmitriptan is only available as an oral melt or tablet, sumatriptan is available as a nasal spray, oral preparation, or self-injectable kit. The only known antimigraine drugs that were widely utilized before the triptan period were ergotamine and dihydroergotamine. However, zolmitriptan binds to plasma proteins only 25% of the time because of significant first-pass degradation. Researchers have looked into fresh ideas for solving this issue and innovations to overcome its pharmacokinetic difficulties. This article emphasizes the role of zolmitriptan in the treatment of migraines, highlighting its pharmacological properties, production, metabolism, and structural features.
Collapse
Affiliation(s)
- Farha Bano
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Mohammad Rashid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| | | | | | | | | | | | - Rikeshwer Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110 062, India
| |
Collapse
|
5
|
Taha E, Nour SA, Mamdouh W, Naguib MJ. Investigating the potential of highly porous zopiclone-loaded 3D electrospun nanofibers for brain targeting via the intranasal route. Int J Pharm 2024; 660:124230. [PMID: 38782156 DOI: 10.1016/j.ijpharm.2024.124230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Nanofibers (NFs) have proven to be very attractive tool as drug delivery plateform among the different plethora of nanosystems, owing to their unique features. They exhibit two- and three-dimensional structures some of which mimic structural environment of the body tissues, in addition to being safe, efficacious, and biocompatible drug delivery platform. Thus, this study embarked on fabricating polyvinyl alcohol/chitosan (PVA/CS) electrospun NFs encapsulating zopiclone (ZP) drug for intranasal brain targeted drug delivery. Electrospun NFs were optimized by adopting a three factor-two level full factorial design. The independent variables were: PVA/CS ratio (X1), flow rate (X2), and applied voltage (X3). The measured responses were: fiber diameter (Y1,nm), pore size (Y2,nm) and ultimate tensile strength (UTS,Y3,MPa). The selected optimum formula had resulted in NFs diameter of 215.90 ± 15.46 nm, pore size 7.12 ± 0.27 nm, and tensile strength around 6.64 ± 0.95 MPa. In-vitro biodegradability testing confirmed proper degradation of the NFs within 8 h. Moreover, swellability and breathability assessment revealed good hydrophilicity and permeability of the prepared NFs. Ex-vivo permeability study declared boosted ex-vivo permeation with an enhancement factor of 2.73 compared to ZP suspension. In addition, optimized NFs formula significantly reduced sleep latency and prolonged sleep duration in rats compared to IV ZP drug solution. These findings demonstrate the feasibility of employing the designed NFs as an effective safe platform for intranasal delivery of ZP for insomnia management.
Collapse
Affiliation(s)
- Esraa Taha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Samia A Nour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| | - Marianne J Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
6
|
García-Gareta E, Calderón-Villalba A, Alamán-Díez P, Costa CG, Guerrero PE, Mur C, Flores AR, Jurjo NO, Sancho P, Pérez MÁ, García-Aznar JM. Physico-chemical characterization of the tumour microenvironment of pancreatic ductal adenocarcinoma. Eur J Cell Biol 2024; 103:151396. [PMID: 38359522 DOI: 10.1016/j.ejcb.2024.151396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/25/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy that accounts for more than 90% of pancreatic cancer diagnoses. Our research is focused on the physico-chemical properties of the tumour microenvironment (TME), including its tumoural extracellular matrix (tECM), as they may have an important impact on the success of cancer therapies. PDAC xenografts and their decellularized tECM offer a great material source for research in terms of biomimicry with the original human tumour. Our aim was to evaluate and quantify the physico-chemical properties of the PDAC TME. Both cellularized (native TME) and decellularized (tECM) patient-derived PDAC xenografts were analyzed. A factorial design of experiments identified an optimal combination of factors for effective xenograft decellularization. Our results provide a complete advance in our understanding of the PDAC TME and its corresponding stroma, showing that it presents an interconnected porous architecture with very low permeability and small pores due to the contractility of the cellular components. This fact provides a potential therapeutic strategy based on the therapeutic agent size.
Collapse
Affiliation(s)
- Elena García-Gareta
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain; Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon, Spain; Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London, United Kingdom.
| | - Alejandro Calderón-Villalba
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Pilar Alamán-Díez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Carlos Gracia Costa
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Pedro Enrique Guerrero
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Carlota Mur
- Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Ana Rueda Flores
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Nerea Olivera Jurjo
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain
| | - Patricia Sancho
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain; Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A), School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon, Spain; Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon, Spain
| |
Collapse
|
7
|
Jia B, Li S, Li L, Wang T, Chen W, Chen G. Nanostructured lipid carriers loaded with morellic acid for enhanced anticancer efficacy: preparation, characterization, pharmacokinetics and anticancer evaluation. Am J Cancer Res 2024; 14:1101-1120. [PMID: 38590403 PMCID: PMC10998744 DOI: 10.62347/vbox7111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Morellic acid (MA), a typical compound found in Garcinia plants, is known for its anticancer properties. In present study, we isolated MA from resin of Garcinia hanburyi Hook. f. using preparative chromatography. We have successfully prepared MA-loaded nanostructured lipid carriers (MA-NLCs) and refined the production process via orthogonal testing. Optimization of the preparation process resulted in an average particle size of 165.50±1.70 nm with a PDI of 0.19±0.01. The EE% and DL% of MA-NLCs were 78.17±0.34% and 7.25±0.38%, respectively. The zeta potential of MA-NLCs was -21.85±0.67 mV. Comparatively, MA-NLCs showed a greater area under the curve (AUC) and an extended half-life (t1/2) than free MA. Pharmacokinetics analysis revealed that the AUC0-t increased from 4.91±0.65 μg/mL∙min (free MA) to 18.91±3.40 μg/mL∙min (MA-NLCs) and the t1/2 value for MA-NLCs was 7.93-fold longer than that of free MA. In vitro cytotoxic assessments indicated that MA formulations curtailed the proliferation of cancer cells. In vivo, MA-NLCs significantly inhibited the tumor growth in tumor-bearing mouse model. Molecular mechanism studies revealed that up-regulation of apaf-1 and activation of caspase-3, caspase-9 and GSDME by MA-NLCs may trigger to apoptosis and pyroptosis in cancer cells. Consequently, our findings support the potential of NLCs as an effective MA delivery system for the clinical management of cancer.
Collapse
Affiliation(s)
- Buyun Jia
- College of Integrative Medicine, Anhui University of Chinese MedicineHefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal FormulaHefei, Anhui, China
| | - Shanshan Li
- School of Traditional Chinese Medicine, Anhui University of Chinese MedicineHefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal FormulaHefei, Anhui, China
| | - Lu Li
- College of Integrative Medicine, Anhui University of Chinese MedicineHefei, Anhui, China
| | - Tongsheng Wang
- College of Integrative Medicine, Anhui University of Chinese MedicineHefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal FormulaHefei, Anhui, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese MedicineHefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal FormulaHefei, Anhui, China
| | - Guangliang Chen
- College of Integrative Medicine, Anhui University of Chinese MedicineHefei, Anhui, China
- Anhui Province Key Laboratory of Chinese Medicinal FormulaHefei, Anhui, China
| |
Collapse
|
8
|
Hassan DM, El-Kamel AH, Allam EA, Bakr BA, Ashour AA. Chitosan-coated nanostructured lipid carriers for effective brain delivery of Tanshinone IIA in Parkinson's disease: interplay between nuclear factor-kappa β and cathepsin B. Drug Deliv Transl Res 2024; 14:400-417. [PMID: 37598133 PMCID: PMC10761445 DOI: 10.1007/s13346-023-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/21/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder associated with increased oxidative stress, the underlying vital process contributing to cell death. Tanshinone IIA (TAN) is a phytomedicine with a documented activity in treating many CNS disorders, particularly PD owing to its unique anti-inflammatory and antioxidant effect. However, its clinical utility is limited by its poor aqueous solubility, short half-life, and hence low concentration reaching targeted cells. This work aimed to develop a biocompatible chitosan-coated nanostructured lipid carriers (CS-NLCs) for effective brain delivery of TAN for PD management. The proposed nanosystem was successfully prepared using a simple melt-emulsification ultra-sonication method, optimized and characterized both in vitro and in vivo in a rotenone-induced PD rat model. The developed TAN-loaded CS-NLCs (CS-TAN-NLCs) showed good colloidal properties (size ≤ 200 nm, PDI ≤ 0.2, and ζ-potential + 20 mV) and high drug entrapment efficiency (> 97%) with sustained release profile for 24 h. Following intranasal administration, CS-TAN-NLCs succeeded to achieve a remarkable antiparkinsonian and antidepressant effect in diseased animals compared to both the uncoated TAN-NLCs and free TAN suspension as evidenced by the conducted behavioral tests and improved histopathological findings. Furthermore, biochemical evaluation of oxidative stress along with inflammatory markers, nuclear factor-kabba β (NF-Kβ) and cathepsin B further confirmed the potential of the CS-TAN-NLCs in enhancing brain delivery and hence the therapeutic effect of TAN of treatment of PD. Accordingly, CS-TAN-NLCs could be addressed as a promising nano-platform for the effective management of PD.
Collapse
Affiliation(s)
- Donia M Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt.
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa A Ashour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt
| |
Collapse
|
9
|
Abd-Elal RM, Essawy AM, Salem MA, Elsayed M, Khalil MG, Abdelhakeem E, Ali NA, Tawfik MA. Formulation, optimization, in-vivo biodistribution studies and histopathological safety assessment of duloxetine HCl-loaded ultra-elastic nanovesicles for antidepressant effect after intranasal and transdermal delivery. Int J Pharm X 2023; 6:100194. [PMID: 37434966 PMCID: PMC10331411 DOI: 10.1016/j.ijpx.2023.100194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Duloxetine hydrochloride (DUL) is a BCS class-II antidepressant drug, acting via serotonin and norepinephrine reuptake inhibition. Despite high oral absorption, DUL suffers limited bioavailability due to extensive gastric and first-pass metabolism. To improve DUL's bioavailability; DUL-loaded elastosomes were developed, via full factorial design, utilizing various span®60: cholesterol ratios, edge activator types and amounts. Entrapment efficiency (E.E.%), particle size (PS), zeta potential (ZP) and in-vitro released percentages after 0.5 h (Q0.5h) and 8 h (Q8h) were evaluated. Optimum elastosomes (DUL-E1) were assessed for morphology, deformability index, drug crystallinity and stability. DUL pharmacokinetics were evaluated in rats following intranasal and transdermal application of DUL-E1 elastosomal gel. DUL-E1 elastosomes [comprising span®60 and cholesterol (1:1) and brij S2 (edge activator; 5 mg)] were optimum with high E.E.% (81.5 ± 3.2%), small PS (432 ± 13.2 nm), ZP (-30.8 ± 3.3 mV), acceptable Q0.5h (15.6 ± 0.9%), and high Q8h (79.3 ± 3.8%). Intranasal and transdermal DUL-E1 elastosomes revealed significantly higher Cmax (251 ± 18.6 and 248 ± 15.9 ng/mL) at Tmax (2 and 4 h) and improved relative bioavailability (≈ 2.8 and 3.1 folds) respectively, in comparison to oral DUL aqueous solution. In-vivo histopathological studies were conducted to ensure the safety of DUL-E1. Elastosomes are promising novel nano-carriers, capable of enhancing the bioavailability of DUL via various routes of administration.
Collapse
Affiliation(s)
- Radwa M.A. Abd-Elal
- Pharmaceutics and Drug Manufacturing Department, Faculty of pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt
| | - Aya M. Essawy
- Department of Clinical Pharmacy, Faculty of pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt
| | - Maha A. Salem
- Department of Pharmacology and Toxicology, Faculty of pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt
| | - Mahitab Elsayed
- Department of Clinical Pharmacy, Faculty of pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt
| | - Mona G. Khalil
- Department of Pharmacology and Toxicology, Faculty of pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt
| | - Eman Abdelhakeem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nouran A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Tawfik MA, Eltaweel MM, Fatouh AM, Shamsel-Din HA, Ibrahim AB. Brain targeting of zolmitriptan via transdermal terpesomes: statistical optimization and in vivo biodistribution study by 99mTc radiolabeling technique. Drug Deliv Transl Res 2023; 13:3059-3076. [PMID: 37273147 PMCID: PMC10624728 DOI: 10.1007/s13346-023-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Zolmitriptan (ZT) is a potent second generation triptan, commonly administered to alleviate migraine attacks. ZT suffers various limitations; massive hepatic first pass metabolism, P-gp efflux transporters susceptibility, and limited (≈40%) oral bioavailability. Transdermal route of administration could be explored to enhance its bioavailability. A 23.31 full factorial design was constructed to developed twenty-four ZT loaded terpesomes via thin film hydration technique. The influence of drug: phosphatidylcholine ratio, terpene type, terpene concentration and sodium deoxycholate concentration on the characterization of the developed ZT-loaded terpesomes was assessed. Particle size (PS), zeta potential (ZP), ZT entrapment efficiency (EE%), drug loading (DL%) and drug released percentages after 6 h (Q6h) were the selected dependent variables. Further morphological, crystallinity, and in-vivo histopathological studies were conducted for the optimum terpesomes (T6). 99mTc-ZT and 99mTc-ZT-T6 gel were radio-formulated for in-vivo biodistribution studies in mice following transdermal application of 99mTc-ZT-T6 gel, relative to 99mTc-ZT oral solution. T6 terpesomes [comprising ZT and phosphatidylcholine (1:15), cineole (1% w/v) and sodium deoxycholate (0.1% w/v)] were optimum with respect to spherical PS (290.2 nm), ZP (-48.9 mV), EE% (83%), DL% (3.9%) and Q6h (92.2%) with desirability value of 0.85. The safety of the developed T6 terpesomes was verified by the in-vivo histopathological studies. 99mTc-ZT-T6 gel showed maximum brain concentration (5 ± 0.1%ID/ g) with highest brain to blood ratio of 1.92 ± 0.1 at 4 h post transdermal application. Significant improvement of ZT brain relative bioavailability (529%) and high brain targeting efficiency (315%) were revealed with 99mTc-ZT-T6 gel, which confirmed successful ZT delivery to the brain. Terpesomes could be safe, successful systems capable of improving ZT bioavailability with high brain targeting efficiency.
Collapse
Affiliation(s)
- Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mai M Eltaweel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M Fatouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hesham A Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Ahmed B Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| |
Collapse
|
11
|
Ahmed Tawfik M, Eltaweel MM, Farag MM, Shamsel-Din HA, Ibrahim AB. Sonophoresis-assisted transdermal delivery of antimigraine-loaded nanolipomers: Radio-tracking, histopathological assessment and in-vivo biodistribution study. Int J Pharm 2023; 644:123338. [PMID: 37607646 DOI: 10.1016/j.ijpharm.2023.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Migraine is a disabling neurovascular polygenic disorder affecting life quality with escorted socioeconomic encumbrances. Herein, we investigated the consolidated amalgamation of passive lipomer approach alongside active sonophoresis assisted transdermal delivery of zolmitriptan (ZT) using high frequency ultrasound pre-treatment protocol to mitigate migraine attacks. A modified nanoprecipitation technique was utilized to prepare zolmitriptan loaded lipomers (ZTL) adopting 23 factorial design. Three factors were scrutinized namely lipid type, ZT: lipid ratio and ZT: Gantrez® ratio. The prepared systems were characterized regarding particle size, zeta potential, polydispersity index, entrapment efficiency and in-vitro release studies. The best achieved ZTL system was evaluated for ZT- Gantrez® intermolecular interactions, drug crystallinity, morphology, ex-vivo permeation and histopathological examination. Finally, a comparative in-vivo biodistribution study through radiotracking technique using Technetium-99 m was adopted. L2 was the best-achieved ZTL system with respect to spherical particle size (390.7 nm), zeta-potential (-30.8 mV), PDI (0.2), entrapment efficiency (86.2%), controlled release profile, flux (147.13 μg/cm2/hr) and enhancement ratio (5.67). Histopathological studies proved the safety of L2 system upon application on skin. L2 revealed higher brain Cmax (12.21 %ID/g), prolonged brain MRT (8.67 hr), prolonged brain 0.23 hr), significantly high relative bioavailability (2929.36%) and similar brain Tmax (0.5 hr) compared to I.V. route with higher brain/blood ratio. Thus, sonophoresis assisted transdermal delivery of ZTL offers a propitious alterative to alleviate migraine symptoms.
Collapse
Affiliation(s)
- Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Mai M Eltaweel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Michael M Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Hesham A Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Ahmed B Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| |
Collapse
|
12
|
Koduru TS, Gupta VN, Veeranna B, Seetharaman S. A Dual Therapy of Nanostructured Lipid Carrier Loaded with Teriflunomide-A Dihydro-Orotate Dehydrogenase Inhibitor and an miR-155-Antagomir in Cuprizone-Induced C57BL/6J Mouse. Pharmaceutics 2023; 15:pharmaceutics15041254. [PMID: 37111739 PMCID: PMC10143733 DOI: 10.3390/pharmaceutics15041254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The effective treatment of central nervous system (CNS) disorders such as multiple sclerosis (MS) has been challenging due to the limited ability of therapeutic agents to cross the blood-brain barrier (BBB). In this study, we investigated the potential of nanocarrier systems to deliver miR-155-antagomir-teriflunomide (TEF) dual therapy to the brain via intranasal (IN) administration to manage MS-associated neurodegeneration and demyelination. Our results showed that the combinatorial therapy of miR-155-antagomir and TEF loaded in nanostructured lipid carriers (NLCs) significantly increased brain concentration and improved targeting potential. The novelty of this study lies in the use of a combinatorial therapy approach of miR-155-antagomir and TEF loaded in NLCs. This is a significant finding, as the effective delivery of therapeutic molecules to the CNS has been a challenge in treating neurodegenerative disorders. Additionally, this study sheds light on the potential use of RNA-targeting therapies in personalized medicine, which could revolutionize the way CNS disorders are managed. Furthermore, our findings suggest that nanocarrier-loaded therapeutic agents have great potential for safe and economical delivery in treating CNS disorders. Our study provides novel insights into the effective delivery of therapeutic molecules via the IN route for managing neurodegenerative disorders. In particular, our results demonstrate the potential of delivering miRNA and TEF via the intranasal route using the NLC system. We also demonstrate that the long-term use of RNA-targeting therapies could be a promising tool in personalized medicine. Importantly, using a cuprizone-induced animal model, our study also investigated the effects of TEF-miR155-antagomir-loaded NLCs on demyelination and axonal damage. Following six weeks of treatment, the TEF-miR155-antagomir-loaded NLCs potentially lowered the demyelination and enhanced the bioavailability of the loaded therapeutic molecules. Our study is a paradigm shift in delivering miRNAs and TEF via the intranasal route and highlights the potential of this approach for managing neurodegenerative disorders. In conclusion, our study provides critical insights into the effective delivery of therapeutic molecules via the IN route for managing CNS disorders, and especially MS. Our findings have significant implications for the future development of nanocarrier-based therapies and personalized medicine. Our results provide a strong foundation for further studies and the potential to develop safe and economic therapeutics for CNS disorders.
Collapse
Affiliation(s)
- Trideva Sastri Koduru
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | - Vishal N Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | - Balamuralidhara Veeranna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Mysuru 570015, India
| | | |
Collapse
|
13
|
El-Dahmy RM, Elsayed I, Hussein J, Althubiti M, Almaimani RA, El-Readi MZ, Elbaset MA, Ibrahim BMM. Development of Transdermal Oleogel Containing Olmesartan Medoxomil: Statistical Optimization and Pharmacological Evaluation. Pharmaceutics 2023; 15:1083. [PMID: 37111569 PMCID: PMC10146305 DOI: 10.3390/pharmaceutics15041083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Olmesartan medoxomil (OLM) is a first-line antihypertensive drug with low oral bioavailability (28.6%). This study aimed to develop oleogel formulations to decrease OLM side effects and boost its therapeutic efficacy and bioavailability. OLM oleogel formulations were composed of Tween 20, Aerosil 200, and lavender oil. A central composite response surface design chose the optimized formulation, containing Oil/Surfactant (SAA) ratio of 1:1 and Aerosil % of 10.55%, after showing the lowest firmness and compressibility, and the highest viscosity, adhesiveness, and bioadhesive properties (Fmax and Wad). The optimized oleogel increased OLM release by 4.21 and 4.97 folds than the drug suspension and gel, respectively. The optimized oleogel formulation increased OLM permeation by 5.62 and 7.23 folds than the drug suspension and gel, respectively. The pharmacodynamic study revealed the superiority of the optimized formulation in maintaining normal blood pressure and heart rate for 24 h. The biochemical analysis revealed that the optimized oleogel achieved the best serum electrolyte balance profile, preventing OLM-induced tachycardia. The pharmacokinetic study showed that the optimized oleogel increased OLM's bioavailability by more than 4.5- and 2.5-folds compared to the standard gel and the oral market tablet, respectively. These results confirmed the success of oleogel formulations in the transdermal delivery of OLM.
Collapse
Affiliation(s)
- Rania Moataz El-Dahmy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Central Axis, Cairo 12585, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 04184, United Arab Emirates
| | - Jihan Hussein
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| | - Mohammad Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
| | - Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, Makkah 24381, Saudi Arabia
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit 71524, Egypt
| | - Marawan A. Elbaset
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| | - Bassant M. M. Ibrahim
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
14
|
Makky AMA, S El-Leithy E, Hussein DG, Khattab A. A Full Factorial Design to Optimize Aminexil Nano Lipid Formulation to Improve Skin Permeation and Efficacy Against Alopecia. AAPS PharmSciTech 2023; 24:40. [PMID: 36653508 DOI: 10.1208/s12249-023-02500-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Aminexil (AMX) is considered to be one of the most widely used hair growth promoters. Nanostructured lipid carriers (NLC) are employed to increase the permeation of both lipophilic and hydrophilic drugs. Aminexil nanostructured lipid carrier (NLC) designed by pre-emulsion/ultrasonication method was utilized for alopecia treatment. For selecting optimum excipients, a solubility study was executed in liquid lipids, solid lipids, surfactants, and co-surfactants. A 23 full factorial design was utilized for NLC optimization. Characterization of the developed formulas was performed. The penetration of the optimized formula across cuticle tissues was studied using confocal laser scanning microscopy (CLSM). AMX showed high solubility in glyceryl monostearate (GMS) and stearic acid, 28.87 ± 2.17 and 58.06 ± 2.227 mg/g, respectively. The results of physicochemical characterization showed that formula A7 was the optimized one. It is composed of GMS (solid lipid), oleic acid:garlic oil (1:1 v/v) (liquid lipid), and a surfactant/co-surfactant mixture (Cremophor EL/Transcutol HP). The particle size (PS) was 238.0 ± 2.13 nm, entrapment efficiency (EE) 100.535 ± 6.73%, and zeta potential (ZP) - 29.3 ± 0.93 mv. Ex vivo permeation study demonstrates the potential of AMX-NLC (formula A7) as a delivery system for AMX. The CLSM highly proved AMX-loaded NLC penetration through the skin. The histological study clearly demonstrated that AMX-loaded NLC promoted hair growth more effectively than the market product in chemotherapy-induced alopecia rats. The acquired findings revealed that targeting of AMX-loaded NLC into hair follicles was improved.
Collapse
Affiliation(s)
- Amna M A Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Eman S El-Leithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Doaa Galaa Hussein
- Department of Pharmaceutics, Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Abeer Khattab
- Department of Pharmaceutics, Egyptian Drug Authority (EDA), Cairo, Egypt.
| |
Collapse
|
15
|
Venegas-García DJ, Wilson LD. Kinetics and Thermodynamics of Adsorption for Aromatic Hydrocarbon Model Systems via a Coagulation Process with a Ferric Sulfate-Lime Softening System. MATERIALS (BASEL, SWITZERLAND) 2023; 16:655. [PMID: 36676392 PMCID: PMC9867294 DOI: 10.3390/ma16020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
The adsorption mechanisms for model hydrocarbons, 4-nitrophenol (PNP), and naphthalene were studied in a coagulation-based process using a ferric sulfate-lime softening system. Kinetic and thermodynamic adsorption parameters for this system were obtained under variable ionic strength and temperature. An in situ method was used to investigate kinetic adsorption profiles for PNP and naphthalene, where a pseudo-first order kinetic model adequately described the process. Thermodynamic parameters for the coagulation of PNP and naphthalene reveal an endothermic and spontaneous process. River water was compared against lab water samples at optimized conditions, where the results reveal that ions in the river water decrease the removal efficiency (RE; %) for PNP (RE = 28 to 20.3%) and naphthalene (RE = 89.0 to 80.2%). An aluminum sulfate (alum) coagulant was compared against the ferric system. The removal of PNP with alum decreased from RE = 20.5% in lab water and to RE = 16.8% in river water. Naphthalene removal decreased from RE = 89.0% with ferric sulfate to RE = 83.2% with alum in lab water and from RE = 80.2% for the ferric system to RE = 75.1% for alum in river water. Optical microscopy and dynamic light scattering of isolated flocs corroborated the role of ions in river water, according to variable RE and floc size distribution.
Collapse
Affiliation(s)
| | - Lee D. Wilson
- Correspondence: ; Tel.: +1-306-966-2961; Fax: +1-306-966-4730
| |
Collapse
|
16
|
Cod liver oil nano-structured lipid carriers (Cod-NLCs) as a promising platform for nose to brain delivery: Preparation, in vitro optimization, ex vivo cytotoxicity & in vivo biodistribution utilizing radioiodinated zopiclone. Int J Pharm X 2023; 5:100160. [PMID: 36647457 PMCID: PMC9840360 DOI: 10.1016/j.ijpx.2023.100160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Nano-structured lipid carriers containing zopiclone were prepared as a targeted drug delivery system to convey zopiclone directly to brain via nasal route. Nano-structured lipid carriers were constructed adopting hot emulsification-ultrasonication method using palmitic acid in place of the solid lipid, cod liver oil as liquid lipid, and poloxamer 407 as a surfactant. A three-factor three-level central composite face-centered design was used to optimize the formulated nano-structured lipid carriers. The independent factors were lipid amount (X1), surfactant amount (X2), and sonication time (X3). The examined responses were entrapment efficiency (EE,Y1,%), particle size (PS,Y2,nm), zeta potential(mV), polydispersity index(PDI,Y3), in vitro release(Q8h,Y4,%) and dissolution efficiency (DE,Y5,%). The optimum formula showed high entrapment efficiency of 94.31% ± 2.44, in vitro drug release of 83.89% ± 1.77 with dissolution efficiency equals 88.63% ± 2.01, small particle size of 71.27 nm ± 13.57 and low polydispersity index 0.097 ± 0.15. In vivo biodistribution in mice was evaluated by a radiobiological technique using radioiodinated zopiclone([131I]iodo-ZP). Results revealed the superiority of the intranasal route to deliver zopiclone directly to brain faster and higher brain uptake (6.9 ± 1.02%ID/g at 5 min post-administration). The current study confirmed that intranasal administration of nano-structured lipid carriers had great potential as an effective tool for targeted brain zopiclone delivery for insomnia treatment.
Collapse
|
17
|
Spanlastics as a Potential Platform for Enhancing the Brain Delivery of Flibanserin: In Vitro Response-Surface Optimization and In Vivo Pharmacokinetics Assessment. Pharmaceutics 2022; 14:pharmaceutics14122627. [PMID: 36559120 PMCID: PMC9786754 DOI: 10.3390/pharmaceutics14122627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Flibanserin was licensed by the United States Food and Drug Administration (FDA) as an oral non-hormonal therapy for pre-menopausal women with inhibited sexual desire disorder. However, it suffers from susceptibility to first-pass metabolism in the liver, low aqueous solubility, and degradation in the acidic stomach environment. Such hurdles result in a limited oral bioavailability of 33%. Thus, the aim of the study was to utilize the principles of nanotechnology and the benefits of an intranasal route of administration to develop a formulation that could bypass these drawbacks. A response-surface randomized D-optimal strategy was used for the formulation of flibanserin spanlastics (SPLs) with reduced size and increased absolute zeta potential. Two numerical factors were studied, namely the Span 60: edge activator ratio (w/w) and sonication time (min), in addition to one categorical factor that deals with the type of edge activator. Particle size (nm) and zeta potential (mV) were studied as responses. A mathematical optimization method was implemented for predicting the optimized levels of the variables. The optimized formulation was prepared using a Span: sodium deoxycholate ratio of 8:2 w/w; a sonication time of 5 min showed particle sizes of 129.70 nm and a zeta potential of -33.17 mV. Further in vivo assessment following intranasal administration in rats showed boosted plasma and brain levels, with 2.11- and 2.23-fold increases (respectively) compared to raw FLB. The aforementioned results imply that the proposed spanlastics could be regarded as efficient drug carriers for the trans-nasal delivery of drugs to the brain.
Collapse
|
18
|
Sueiro AC, Santos ÉMD, Tundisi LL, Fava ALM, Silvério LAL, Coco JC, Ataide JA, Paiva-Santos AC, Mazzola PG. Transdermal delivery systems for migraine treatment: A gap to explore. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|