1
|
Fernández-García R, Fraguas-Sánchez AI. Nanomedicines for Pulmonary Drug Delivery: Overcoming Barriers in the Treatment of Respiratory Infections and Lung Cancer. Pharmaceutics 2024; 16:1584. [PMID: 39771562 PMCID: PMC11677881 DOI: 10.3390/pharmaceutics16121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The pulmonary route for drug administration has garnered a great deal of attention in therapeutics for treating respiratory disorders. It allows for the delivery of drugs directly to the lungs and, consequently, the maintenance of high concentrations at the action site and a reduction in systemic adverse effects compared to other routes, such as oral or intravenous. Nevertheless, the pulmonary administration of drugs is challenging, as the respiratory system tries to eliminate inhaled particles, being the main responsible mucociliary escalator. Nanomedicines represent a primary strategy to overcome the limitations of this route as they can be engineered to prolong pulmonary retention and avoid their clearance while reducing drug systemic distribution and, consequently, systemic adverse effects. This review analyses the use of pulmonary-administered nanomedicines to treat infectious diseases affecting the respiratory system and lung carcinoma, two pathologies that represent major health threats.
Collapse
Affiliation(s)
| | - Ana I. Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
2
|
Brito TLD, Edson EA, Dias Florêncio KG, Machado-Neto JA, Garnique ADMB, Mesquita Luiz JP, Cunha FDQ, Alves-Filho JC, Haygood M, Wilke DV. Tartrolon D induces immunogenic cell death in melanoma. Chem Biol Interact 2024; 400:111177. [PMID: 39097071 DOI: 10.1016/j.cbi.2024.111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Tartrolon D (TRL) is produced by Teredinibacter turnerae, a symbiotic cellulose-degrading bacteria in shipworm gills. Immunogenic cell death (ICD) induction contributes to a better and longer-lasting response to anticancer treatment. Tumor cells undergoing ICD trigger activation of the immune system, as a vaccine. AIMS This study aimed to evaluate ICD induction by TRL. MAIN METHODS Cell viability was evaluated by SRB assay. Cell stress, cell death, ICD features and antigen-presenting molecules were evaluated by flow cytometry and immunoblot. KEY FINDINGS TRL showed antiproliferative activity on 7 tumor cell lines (L929, HCT 116, B16-F10, WM293A, SK-MEL-28, PC-3M, and MCF-7) and a non-tumor cell (HEK293A), with an inhibition concentration mean (IC50) ranging from 0.03 μM to 13 μM. Metastatic melanomas, SK-MEL-28, B16-F10, and WM293A, were more sensitive cell lines, with IC50 ranging from 0.07 to 1.2 μM. TRL induced apoptosis along with autophagy and endoplasmic reticulum stress and release of typical damage-associated molecular patterns (DAMPs) of ICD such calreticulin, ERp57, and HSP70 exposure, and HMGB1 release. Additionally, melanoma B16-F10 exposed to TRL increased expression of antigen-presenting molecules MHC II and CD1d and induced activation of splenocytes of C57BL/6 mice. SIGNIFICANCE In spite of recent advances provided by target therapy and immunotherapy, advanced metastatic melanoma is incurable for more than half of patients. ICD inducers yield better and long-lasting responses to anticancer treatment. Our findings shed light on an anticancer candidate of marine origin that induces ICD in melanoma.
Collapse
Affiliation(s)
- Thaís Lima de Brito
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Ceara, Brazil.
| | - Evelline Araújo Edson
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Ceara, Brazil.
| | - Katharine Gurgel Dias Florêncio
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Ceara, Brazil.
| | | | | | - João Paulo Mesquita Luiz
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| | - Fernando de Queiroz Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| | - José Carlos Alves-Filho
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| | | | - Diego Veras Wilke
- Drug Research and Development Center, Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Ceara, Brazil.
| |
Collapse
|
3
|
Vochița G, Cadinoiu AN, Rață DM, Atanase LI, Popa M, Mahdieh A, Mihai CT, Stache AB, Moldovan CV, Băcăiţă ES, Condriuc IP, Gherghel D. Comparative In Vitro Study between Biocompatible Chitosan-Based Magnetic Nanocapsules and Liposome Formulations with Potential Application in Anti-Inflammatory Therapy. Int J Mol Sci 2024; 25:8454. [PMID: 39126023 PMCID: PMC11313677 DOI: 10.3390/ijms25158454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
This study describes the comparison between the interaction of a series of peptide-functionalized chitosan-based nanocapsules and liposomes with two cell lines, i.e., mouse macrophages RAW 264.7 and human endothelial cells EA.hy926. Both types of nanocarriers are loaded with magnetic nanoparticles and designed for anti-inflammatory therapy. The choice of these magnetic nanostructures is argued based on their advantages in terms of size, morphology, chemical composition, and the multiple possibilities of modifying their surface. Moreover, active targeting might be ensured by using an external magnetic field. To explore the impact of chitosan-based nanocapsules and liposomes on cell cytophysiology, the cell viability, using the MTT assay, and cell morphology were investigated. The results revealed low to moderate cytotoxicity of free nanocapsules and significant cytotoxicity induced by chitosan-coated liposomes loaded with dexamethasone, confirming its release from the delivery system. Thus, after 48 h of treatment with nanocapsules, the viability of RAW 264.7 cells varied between 88.18% (OCNPM-1I, 3.125 µg/mL) and 76.37% (OCNPM-1, 25 µg/mL). In the same conditions, EA.hy926 cell viability was between 99.91% (OCNPM-3, 3.125 µg/mL) and 75.15% (OCNPM-3, 25 µg/mL) at the highest dose (25 µg/mL), the values being comparable for both cell lines. Referring to the cell reactivity after dexamethasone-loaded liposome application, the lowest viability of RAW 264.7 cells was 41.25% (CLDM5CP-1, 25 µg/mL) and 58.20% (CLDMM2CP-1 1.25 µg/mL) in the endothelial cell line, proving a selective character of action of nanocarriers. The cell morphology test, performed to support and confirm the results obtained by the MTT test, revealed a differentiated response for the two types of nano-carriers. As expected, an intense cytotoxic effect in the case of dexamethasone-loaded liposomes and a lack of cytotoxicity for drug-free nanocapsules were noticed. Therefore, our study demonstrated the biocompatible feature of the studied nanocarriers, which highlights them for future research as potential drug delivery systems for pharmacological applications, including anti-inflammatory therapy.
Collapse
Affiliation(s)
- Gabriela Vochița
- Institute of Biological Research Iasi, Branch of NIRDBS, 700107 Iasi, Romania; (G.V.); (D.G.)
| | - Anca Niculina Cadinoiu
- Faculty of Medicine, Apollonia University of Iasi, 700511 Iasi, Romania; (A.N.C.); (D.-M.R.); (M.P.)
| | - Delia-Mihaela Rață
- Faculty of Medicine, Apollonia University of Iasi, 700511 Iasi, Romania; (A.N.C.); (D.-M.R.); (M.P.)
| | - Leonard Ionuț Atanase
- Faculty of Medicine, Apollonia University of Iasi, 700511 Iasi, Romania; (A.N.C.); (D.-M.R.); (M.P.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Marcel Popa
- Faculty of Medicine, Apollonia University of Iasi, 700511 Iasi, Romania; (A.N.C.); (D.-M.R.); (M.P.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Athar Mahdieh
- Department of Pharmaceutics, School of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, N-0316 Oslo, Norway;
| | - Cosmin-Teodor Mihai
- Institute of Biological Research Iasi, Branch of NIRDBS, 700107 Iasi, Romania; (G.V.); (D.G.)
- Praxis Medical Investigations, 700376 Iasi, Romania
| | - Alexandru-Bogdan Stache
- Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translational Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania;
| | - Cristina-Veronica Moldovan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, Nr. 11, 700506 Iasi, Romania
| | - Elena Simona Băcăiţă
- Faculty of Machine Manufacturing and Industrial Management, Gheorghe Asachi Technical University of Iasi, D. Mangeron Bld. No. 73, 700050 Iasi, Romania;
| | - Iustina Petra Condriuc
- Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Daniela Gherghel
- Institute of Biological Research Iasi, Branch of NIRDBS, 700107 Iasi, Romania; (G.V.); (D.G.)
| |
Collapse
|
4
|
Jan N, Shah H, Khan S, Nasar F, Madni A, Badshah SF, Ali A, Bostanudin MF. Old drug, new tricks: polymer-based nanoscale systems for effective cytarabine delivery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3565-3584. [PMID: 38015258 DOI: 10.1007/s00210-023-02865-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cytarabine, an antimetabolite antineoplastic agent, has been utilized to treat various cancers. However, because of its short half-life, low stability, and limited bioavailability, achieving an optimal plasma concentration requires continuous intravenous administration, which can lead to toxicity in normal cells and tissues. Addressing these limitations is crucial to optimize the therapeutic efficacy of cytarabine while minimizing its adverse effects. The use of novel drug delivery systems, such as polymer-based nanocarriers have emerged as promising vehicles for targeted drug delivery due to their unique properties, including high stability, biocompatibility, and tunable release kinetics. In this review, we examine the application of various polymer-based nanocarriers, including polymeric nanoparticles, polymeric micelles, dendrimers, polymer-drug conjugates, and nano-hydrogels, for the delivery of cytarabine. The article highlights the limitations of conventional cytarabine administration which often lead to suboptimal therapeutic outcomes and systemic toxicity. The rationale for using polymer-based nanocarriers is discussed, highlighting their ability to overcome challenges by providing controlled drug release, improved stability, and enhanced targeting capabilities. In summary, this review offers a valuable resource for drug delivery scientists by providing insights into the design principles, formulation strategies, and potential applications of polymer-based nanocarriers that can enhance the therapeutic efficacy of cytarabine.
Collapse
Affiliation(s)
- Nasrullah Jan
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Azad Kashmir, Pakistan.
- Department of Pharmacy, The University of Chenab, Gujrat, 50700, Punjab, Pakistan.
| | - Hassan Shah
- Department of Pharmacy, The University of Chenab, Gujrat, 50700, Punjab, Pakistan
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
- Cadson College of Pharmacy, Kharian, 50090, Punjab, Pakistan
| | - Faiza Nasar
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur, 10250, Azad Kashmir, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Syed Faisal Badshah
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch, Rawalakot, 12350, Azad Kashmir, Pakistan
| | - Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, 112612, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, 112612, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Rehan F, Zhang M, Fang J, Greish K. Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules 2024; 29:2073. [PMID: 38731563 PMCID: PMC11085487 DOI: 10.3390/molecules29092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The concept of nanomedicine has evolved significantly in recent decades, leveraging the unique phenomenon known as the enhanced permeability and retention (EPR) effect. This has facilitated major advancements in targeted drug delivery, imaging, and individualized therapy through the integration of nanotechnology principles into medicine. Numerous nanomedicines have been developed and applied for disease treatment, with a particular focus on cancer therapy. Recently, nanomedicine has been utilized in various advanced fields, including diagnosis, vaccines, immunotherapy, gene delivery, and tissue engineering. Multifunctional nanomedicines facilitate concurrent medication delivery, therapeutic monitoring, and imaging, allowing for immediate responses and personalized treatment plans. This review concerns the major advancement of nanomaterials and their potential applications in the biological and medical fields. Along with this, we also mention the various clinical translations of nanomedicine and the major challenges that nanomedicine is currently facing to overcome the clinical translation barrier.
Collapse
Affiliation(s)
- Farah Rehan
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| | - Mingjie Zhang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda 4-22-1, Nishi-ku, Kumamoto 860-0082, Japan;
| | - Khaled Greish
- Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 323, Bahrain;
| |
Collapse
|
6
|
Kumari NU, Pardhi E, Chary PS, Mehra NK. Exploring contemporary breakthroughs in utilizing vesicular nanocarriers for breast cancer therapy. Ther Deliv 2024; 15:279-303. [PMID: 38374774 DOI: 10.4155/tde-2023-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Breast cancer (BC) is a heterogeneous disease with various morphological features, clinicopathological conditions and responses to different therapeutic options, which is responsible for high mortality and morbidity in women. The heterogeneity of BC necessitates new strategies for diagnosis and treatment, which is possible only by cautious harmonization of the advanced nanomaterials. Recent developments in vesicular nanocarrier therapy indicate a paradigm shift in breast cancer treatment by providing an integrated approach to address current issues. This review provides a detailed classification of various nanovesicles in the treatment of BC with a special emphasis on recent advances, challenges in translating nanomaterials and future potentials.
Collapse
Affiliation(s)
- Nalla Usha Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Padakanti Sandeep Chary
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Hyderabad, Telangana, 500037, India
| |
Collapse
|
7
|
Püsküllüoğlu M, Michalak I. The therapeutic potential of natural metabolites in targeting endocrine-independent HER-2-negative breast cancer. Front Pharmacol 2024; 15:1349242. [PMID: 38500769 PMCID: PMC10944949 DOI: 10.3389/fphar.2024.1349242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Breast cancer (BC) is a heterogenous disease, with prognosis and treatment options depending on Estrogen, Progesterone receptor, and Human Epidermal Growth Factor Receptor-2 (HER-2) status. HER-2 negative, endocrine-independent BC presents a significant clinical challenge with limited treatment options. To date, promising strategies like immune checkpoint inhibitors have not yielded breakthroughs in patient prognosis. Despite being considered archaic, agents derived from natural sources, mainly plants, remain backbone of current treatment. In this context, we critically analyze novel naturally-derived drug candidates, elucidate their intricate mechanisms of action, and evaluate their pre-clinical in vitro and in vivo activity in endocrine-independent HER-2 negative BC. Since pre-clinical research success often does not directly correlate with drug approval, we focus on ongoing clinical trials to uncover current trends. Finally, we demonstrate the potential of combining cutting-edge technologies, such as antibody-drug conjugates or nanomedicine, with naturally-derived agents, offering new opportunities that utilize both traditional cytotoxic agents and new metabolites.
Collapse
Affiliation(s)
- Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Izabela Michalak
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław, Poland
| |
Collapse
|
8
|
Fonseca M, Jarak I, Victor F, Domingues C, Veiga F, Figueiras A. Polymersomes as the Next Attractive Generation of Drug Delivery Systems: Definition, Synthesis and Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:319. [PMID: 38255485 PMCID: PMC10817611 DOI: 10.3390/ma17020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Polymersomes are artificial nanoparticles formed by the self-assembly process of amphiphilic block copolymers composed of hydrophobic and hydrophilic blocks. They can encapsulate hydrophilic molecules in the aqueous core and hydrophobic molecules within the membrane. The composition of block copolymers can be tuned, enabling control of characteristics and properties of formed polymersomes and, thus, their application in areas such as drug delivery, diagnostics, or bioimaging. The preparation methods of polymersomes can also impact their characteristics and the preservation of the encapsulated drugs. Many methods have been described, including direct hydration, thin film hydration, electroporation, the pH-switch method, solvent shift method, single and double emulsion method, flash nanoprecipitation, and microfluidic synthesis. Considering polymersome structure and composition, there are several types of polymersomes including theranostic polymersomes, polymersomes decorated with targeting ligands for selective delivery, stimuli-responsive polymersomes, or porous polymersomes with multiple promising applications. Due to the shortcomings related to the stability, efficacy, and safety of some therapeutics in the human body, polymersomes as drug delivery systems have been good candidates to improve the quality of therapies against a wide range of diseases, including cancer. Chemotherapy and immunotherapy can be improved by using polymersomes to deliver the drugs, protecting and directing them to the exact site of action. Moreover, this approach is also promising for targeted delivery of biologics since they represent a class of drugs with poor stability and high susceptibility to in vivo clearance. However, the lack of a well-defined regulatory plan for polymersome formulations has hampered their follow-up to clinical trials and subsequent market entry.
Collapse
Affiliation(s)
- Mariana Fonseca
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
| | - Ivana Jarak
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Francis Victor
- Department of Pharmacy, University Chenab Gujarat, Punjab 50700, Pakistan;
| | - Cátia Domingues
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (M.F.); (I.J.); (C.D.); (F.V.)
- Univ. Coimbra, REQUIMTE/LAQV, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Lukáš Petrova S, Vragović M, Pavlova E, Černochová Z, Jäger A, Jäger E, Konefał R. Smart Poly(lactide)- b-poly(triethylene glycol methyl ether methacrylate) (PLA- b-PTEGMA) Block Copolymers: One-Pot Synthesis, Temperature Behavior, and Controlled Release of Paclitaxel. Pharmaceutics 2023; 15:pharmaceutics15041191. [PMID: 37111676 PMCID: PMC10143907 DOI: 10.3390/pharmaceutics15041191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
This paper introduces a new class of amphiphilic block copolymers created by combining two polymers: polylactic acid (PLA), a biocompatible and biodegradable hydrophobic polyester used for cargo encapsulation, and a hydrophilic polymer composed of oligo ethylene glycol chains (triethylene glycol methyl ether methacrylate, TEGMA), which provides stability and repellent properties with added thermo-responsiveness. The PLA-b-PTEGMA block copolymers were synthesized using ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization (ROP-RAFT), resulting in varying ratios between the hydrophobic and hydrophilic blocks. Standard techniques, such as size exclusion chromatography (SEC) and 1H NMR spectroscopy, were used to characterize the block copolymers, while 1H NMR spectroscopy, 2D nuclear Overhauser effect spectroscopy (NOESY), and dynamic light scattering (DLS) were used to analyze the effect of the hydrophobic PLA block on the LCST of the PTEGMA block in aqueous solutions. The results show that the LCST values for the block copolymers decreased with increasing PLA content in the copolymer. The selected block copolymer presented LCST transitions at physiologically relevant temperatures, making it suitable for manufacturing nanoparticles (NPs) and drug encapsulation-release of the chemotherapeutic paclitaxel (PTX) via temperature-triggered drug release mechanism. The drug release profile was found to be temperature-dependent, with PTX release being sustained at all tested conditions, but substantially accelerated at 37 and 40 °C compared to 25 °C. The NPs were stable under simulated physiological conditions. These findings demonstrate that the addition of hydrophobic monomers, such as PLA, can tune the LCST temperatures of thermo-responsive polymers, and that PLA-b-PTEGMA copolymers have great potential for use in drug and gene delivery systems via temperature-triggered drug release mechanisms in biomedicine applications.
Collapse
Affiliation(s)
- Svetlana Lukáš Petrova
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Martina Vragović
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Zulfiya Černochová
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Alessandro Jäger
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Eliézer Jäger
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| | - Rafał Konefał
- Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, 162 06 Prague, Czech Republic
| |
Collapse
|
10
|
Synchronized delivery of dual-drugs for potentiating combination chemotherapy based on smart triple-responsive polymeric micelles. BIOMATERIALS ADVANCES 2023; 147:213344. [PMID: 36841112 DOI: 10.1016/j.bioadv.2023.213344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Here, we combined reversible addition-fragmentation chain transfer (RAFT) polymerization and amide coupling reaction to develop a novel drug-polymer conjugate using poly(AMA-co-IMMA)-b-poly(OEGMA) (termed as PAIPO) as nanocarriers. In order to enhance cellular uptake and obtain subsequent endo/lysosomal escape capacity, the dual-drugs-conjugated prodrug was then coupled with 2,3-dimethylmaleimide (DA) moieties and implanted with imidazolyl groups, respectively. Paclitaxel (PTX) was conjugated to PAIPO via 3,3'-dithiodipropionic acid (DPA) to construct a GSH-responsive moiety, while doxorubicin (DOX) was conjugated to PAIPO via 4-formyl benzoic acid to construct a pH-responsive moiety, which synergistically enabled a synchronized and precise drug delivery. The micelles self-assembled from DOX/PTX@PAIPODA showed an ideal average diameter (163.2-178.3 nm), contributing to passive targeting by the EPR effect. Moreover, a switch of the surface Zeta potential of micelles from steady negatively charged (- 9.74 ± 0.54 mV) at pH 7.4 to positively charged (+ 6.33 ± 1.25 mV) at pH 6.5, facilitated the long blood circulation and cellular endocytosis of micelles, respectively. More importantly, in vitro studies confirmed that DAM(DOXn/PTX) exhibited a strong synergism against tumor cells, and under slightly acidic conditions (pH 6.5), the combination index (CI) values for DAM(DOX1/PTX) on HeLa and Skov-3 cells were estimated to be 0.47 and 0.49 (previous to be 0.50 and 0.56 at pH 7.4), respectively. And in vivo results showed effective tumor accumulation potential, remarkable biosafety, and biocompatibility. Combined, such synchronized delivery approach based on multi-responsive micelles might potentiate the efficacy of combination chemotherapy in clinical cancer treatment.
Collapse
|
11
|
Sapienza Passos J, Dartora VFMC, Cassone Salata G, Draszesski Malagó I, Lopes LB. Contributions of nanotechnology to the intraductal drug delivery for local treatment and prevention of breast cancer. Int J Pharm 2023; 635:122681. [PMID: 36738808 DOI: 10.1016/j.ijpharm.2023.122681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Breast cancer is a major public health problem, affecting millions of people. It is a very heterogeneous disease, with localized and invasive forms, and treatment generally consists of a combination of surgery and radiotherapy followed by administration of estrogen receptor modulators or aromatase inhibitors. Given its heterogeneity, management strategies that take into consideration the type of disease and biological markers and can provide more personalized and local treatment are required. More recently, the intraductal administration (i.e., into the breast ducts) of drugs has attracted significant attention due to its ability of providing drug distribution through the ductal tree in a minimally invasive manner. Although promising, intraductal administration is not trivial, and difficulties in duct identification and cannulation are important challenges to the further development of this route. New drug delivery strategies such as nanostructured systems can help to achieve the full benefits of the route due to the possibility of prolonging tissue retention, improving targeting and selectivity, increasing cytotoxicity and reducing the frequency of administration. This review aims at discussing the potential benefits and challenges of intraductal administration, focusing on the design and use of nanocarriers as innovative and feasible strategies for local breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Julia Sapienza Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Vanessa F M C Dartora
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil; College of Engineering, University of California-Davis, USA
| | - Giovanna Cassone Salata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
12
|
Pandey P, Khan F, Alshammari N, Saeed A, Aqil F, Saeed M. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management. Front Pharmacol 2023; 14:1154034. [PMID: 37021043 PMCID: PMC10067574 DOI: 10.3389/fphar.2023.1154034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Garlic (Allium sativum L.) possesses numerous pharmacological potential, including antibacterial, antiarthritic, antithrombotic, anticancer, hypoglycemic, and hypolipidemic effects. The anti-cancer action of garlic is likely the best researched of the many advantageous pharmacological effects, and its use offers significant protection against the risk of developing cancer. A few active metabolites of garlic have been reported to be essential in the destruction of malignant cells due to their multi-targeted activities and lack of significant toxicity. The bioactive compounds in garlic having anticancer properties include diallyl trisulfide, allicin, allyl mercaptan diallyl disulfide, and diallyl sulphide. Different garlic-derived constituents and their nanoformulations have been tested for their effects against various cancers including skin, ovarian, prostate, gastric, breast, and lung, colorectal, liver, oral, and pancreatic cancer. The objective of this review is to summarize the antitumor activity and associated mechanisms of the organosulfur compounds of garlic in breast carcinoma. Breast cancer continues to have a significant impact on the total number of cancer deaths worldwide. Global measures are required to reduce its growing burden, particularly in developing nations where incidence is increasing quickly and fatality rates are still high. It has been demonstrated that garlic extract, its bioactive compounds, and their use in nanoformulations can prevent breast cancer in all of its stages, including initiation, promotion, and progression. Additionally, these bioactive compounds affect cell signaling for cell cycle arrest and survival along with lipid peroxidation, nitric oxide synthase activity, epidermal growth factor receptor, nuclear factor kappa B (NF-κB), and protein kinase C in breast carcinoma. Hence, this review deciphers the anticancer potential of garlic components and its nanoformulations against several breast cancer thereby projecting it as a potent drug candidate for efficient breast cancer management.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, Uttar Pradesh, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, Uttar Pradesh, India
- *Correspondence: Fahad Khan, ; Mohd Saeed,
| | - Nawaf Alshammari
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Amir Saeed
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Farrukh Aqil
- Department of Medicine and Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
- *Correspondence: Fahad Khan, ; Mohd Saeed,
| |
Collapse
|
13
|
Pourmadadi M, Mahdi Eshaghi M, Ostovar S, Mohammadi Z, K. Sharma R, Paiva-Santos AC, Rahmani E, Rahdar A, Pandey S. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug deliveryapplications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
14
|
Kciuk M, Gielecińska A, Mujwar S, Kołat D, Kałuzińska-Kołat Ż, Celik I, Kontek R. Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells 2023; 12:659. [PMID: 36831326 PMCID: PMC9954613 DOI: 10.3390/cells12040659] [Citation(s) in RCA: 206] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Doxorubicin (DOX) constitutes the major constituent of anti-cancer treatment regimens currently in clinical use. However, the precise mechanisms of DOX's action are not fully understood. Emerging evidence points to the pleiotropic anticancer activity of DOX, including its contribution to DNA damage, reactive oxygen species (ROS) production, apoptosis, senescence, autophagy, ferroptosis, and pyroptosis induction, as well as its immunomodulatory role. This review aims to collect information on the anticancer mechanisms of DOX as well as its influence on anti-tumor immune response, providing a rationale behind the importance of DOX in modern cancer therapy.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, 90-136 Lodz, Poland
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
15
|
Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Front Bioeng Biotechnol 2023; 11:1177151. [PMID: 37122851 PMCID: PMC10133513 DOI: 10.3389/fbioe.2023.1177151] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Nanomaterial-based drug delivery systems (NBDDS) are widely used to improve the safety and therapeutic efficacy of encapsulated drugs due to their unique physicochemical and biological properties. By combining therapeutic drugs with nanoparticles using rational targeting pathways, nano-targeted delivery systems were created to overcome the main drawbacks of conventional drug treatment, including insufficient stability and solubility, lack of transmembrane transport, short circulation time, and undesirable toxic effects. Herein, we reviewed the recent developments in different targeting design strategies and therapeutic approaches employing various nanomaterial-based systems. We also discussed the challenges and perspectives of smart systems in precisely targeting different intravascular and extravascular diseases.
Collapse
|
16
|
Effect of Nanoparticles of DOX and miR-125b on DNA Damage Repair in Glioma U251 Cells and Underlying Mechanisms. Molecules 2022; 27:molecules27196201. [PMID: 36234731 PMCID: PMC9573026 DOI: 10.3390/molecules27196201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Glioma is the most common primary craniocerebral malignant tumor, arising from the canceration of glial cells in the brain and spinal cord. The quality of life and prognosis of patients with this disease are still poor. Doxorubicin (DOX) is one of the most traditional and economical chemotherapeutic drugs for the treatment of glioma, but its toxic effect on normal cells and the resistance of tumor cells to DOX make the application of DOX in the treatment of glioma gradually less effective. To solve this problem, we co-encapsulated DOX and endogenous tumor suppressor miR-125b into nanoparticles (NPs) by nanoprecipitation methods, and passively targeted them into glioma cells. In vitro experiments show that miR-125b and DOX can be effectively encapsulated into nanoparticles with different ratios, and by targeting YES proto-oncogene 1 (YES1), they can affect the adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK)/p53 pathway and induce brain glioma cell apoptosis. They can also affect the DNA damage repair process and inhibit cell proliferation. The obtained data suggest that co-delivery of DOX and miR-125b could achieve synergistic effects on tumor suppression. Nanosystem-based co-delivery of tumor suppressive miRNAs and chemotherapeutic agents may be a promising combined therapeutic strategy for enhanced anti-tumor therapy.
Collapse
|