1
|
Khalid M, Adnan M, Farooq M, Yoshinori Y, Park J, Ullah A, Mayakrishnan G, Kim IS. Efficient Water-Soluble Cu(II) Complex-Immobilized Electrospun Hydrophobic Polycaprolactone Nanofiber Composites for Highly Controlled and Long-Term Release. ACS OMEGA 2025; 10:12961-12971. [PMID: 40224431 PMCID: PMC11983174 DOI: 10.1021/acsomega.4c09305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025]
Abstract
Water-soluble Cu complexes offer diverse applications in the biomedical field as Cu is an essential trace element for many physiological functions, including the wound healing process. Controlled delivery of such bioactive Cu complexes to the target system is a promising approach in biomedical applications. Herein, water-soluble Cu(II)-Schiff base complex-incorporated PCL nanofiber composites (PCL@C-1%, PCL@C-3%, and PCL@C-5%) were fabricated by the electrospinning process using a green solvent, acetic acid. Physicochemical properties of the resultant composite nanofibers were investigated by FE-SEM, EDS, TEM, UV-vis, FT-IR, XRD, TGA, BET, and XPS analyses. The successful incorporation of the Cu(II) complex into the PCL nanofiber was confirmed. Water contact angle (WCA) values revealed the hydrophobic nature of the PCL-composite nanofibers, which is also quite beneficial in the wound-healing process as it can create a hydrophobic barrier to prevent extra fluid absorption. To our delight, the release behavior of Cu complexes from the composite nanofibers was found to be gradual, highly controlled, and long-term release (up to 40 days). In addition, the resultant PCL composites demonstrated excellent antibacterial activity against both Gram-positive and Gram-negative bacteria. Overall, these findings provide significant insights into these Cu complex-incorporated PCL nanofiber membranes as potential antibacterial and long-term wound dressings.
Collapse
Affiliation(s)
- Maira Khalid
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Muhammad Adnan
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Muhammad Farooq
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Yabuta Yoshinori
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Jeongjin Park
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Azeem Ullah
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research
Group, Institute for Fiber Engineering and Science (IFES), Interdisciplinary
Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
2
|
Pizzoli G, Gargaro M, Drava G, Voliani V. Inorganic Nanomaterials Meet the Immune System: An Intricate Balance. Adv Healthc Mater 2025; 14:e2404795. [PMID: 40079074 PMCID: PMC12023827 DOI: 10.1002/adhm.202404795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/19/2025] [Indexed: 03/14/2025]
Abstract
The immune system provides defense against foreign agents that are considered harmful for the organism. Inorganic nanomaterials can be recognized by the immune system as antigens, inducing an immune reaction dependent on the patient's immunological anamnesis and from several factors including size, shape, and the chemical nature of the nanoparticles. Furthermore, nanomaterials-driven immunomodulation might be exploited for therapeutic purposes, opening new horizons in oncology and beyond. In this scenario, we present a critical review of the state of the art regarding the preclinical evaluation of the effects of the most promising metals for biomedical applications (gold, silver, and copper) on the immune system. Because exploiting the interactions between the immune system and inorganic nanomaterials may result in a game changer for the management of (non)communicable diseases, within this review we encounter the need to summarize and organize the plethora of sometimes inconsistent information, analyzing the challenges and providing the expected perspectives. The field is still in its infancy, and our work emphasizes that a deep understanding on the influence of the features of metal nanomaterials on the immune system in both cultured cells and animal models is pivotal for the safe translation of nanotherapeutics to the clinical practice.
Collapse
Affiliation(s)
- Gloria Pizzoli
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
- Center for Nanotechnology Innovation @NESTIstituto Italiano di TecnologiaPiazza San Silvestro 12Pisa56127Italy
| | - Marco Gargaro
- Department of Pharmaceutical SciencesUniversity of PerugiaVia del Giochetto 1Perugia06126Italy
| | - Giuliana Drava
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
| | - Valerio Voliani
- Department of PharmacySchool of Medical and Pharmaceutical SciencesUniversity of GenoaViale Cembrano 4Genoa16148Italy
- Center for Nanotechnology Innovation @NESTIstituto Italiano di TecnologiaPiazza San Silvestro 12Pisa56127Italy
| |
Collapse
|
3
|
Aslam MW, Sabri S, Umar A, Khan MS, Abbas MY, Khan MU, Wajid M. Exploring the antibiotic potential of copper carbonate nanoparticles, wound healing, and glucose-lowering effects in diabetic albino mice. Biochem Biophys Res Commun 2025; 754:151527. [PMID: 40015075 DOI: 10.1016/j.bbrc.2025.151527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Bio-Nanoscience is an emerging field that integrates nanotechnology with biological systems to revolutionize medicine, agriculture, and environmental sustainability through innovative and targeted solutions. The aim of this study was to synthesize copper carbonate nanoparticles and to investigate their antibacterial, wound healing, and glucose-lowering properties. Nanoparticles (NPs) were Synthesized through chemical reduction method and confirmed by using SEM, XRD, and FTIR. Characterization revealed that the nanoparticles had an average size of 55 ± 16 nm, exhibited a crystalline structure, and were free of impurities. Antibacterial tests demonstrated enhanced inhibition zones for Pseudomonas spp., S. aureus, and other bacterial strains, with the largest zone of inhibition observed at 12 mg/ml, measuring 18.5 ± 1.05 mm for Pseudomonas spp. In wound healing activity in diabetic mice observations revealed a complete wound closure in NPs treated mice by day 14 as compared to the control group (96.10 % wound closure). Nanoparticle administration (oral) also significantly reduced glucose levels in diabetic mice after 15 days in the experimental period, whereas fasting glucose levels reduced from 398.00 ± 6.16 to 116.67 ± 12.47 mg/dl. The docking studies of copper carbonate nanoparticles (NPs) with proteins involved in wound healing, including Antileukoproteinase (-2.7 kcal/mol), Casein (-2.5 kcal/mol), Collagen (-2.9 kcal/mol), Lysozyme (-2.8 kcal/mol), and Phospholipase (-3.9 kcal/mol), revealed significant binding affinities, suggesting potential applications in enhancing wound healing processes. Therefore, the copper carbonate nanoparticles demonstrate strong antibacterial properties and show promising effects on wound healing, along with blood glucose-lowering activity. These findings suggest their potential in biomedical applications, particularly for treating diabetes and bacterial infections.
Collapse
Affiliation(s)
- Muhammad Waseem Aslam
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, 56130, Pakistan
| | - Sabeen Sabri
- Department of Microbiology and Molecular Genetics, Faculty of Life Sciences, University of Okara, Okara, 56130, Pakistan
| | - Ali Umar
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, 56130, Pakistan
| | - Muhammad Saleem Khan
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, 56130, Pakistan.
| | - Muhammad Yasir Abbas
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, 56130, Pakistan
| | | | - Muhammad Wajid
- Department of Zoology, Faculty of Life Sciences, University of Okara, Okara, 56130, Pakistan
| |
Collapse
|
4
|
Shehabeldine AM, Badr BM, Elkady FM, Watanabe T, Abdel-Maksoud MA, Alamri AM, Alrokayan S, Abdelaziz AM. Anti-Virulence Properties of Curcumin/CuO-NPs and Their Role in Accelerating Wound Healing In Vivo. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:515. [PMID: 40142326 PMCID: PMC11943691 DOI: 10.3390/medicina61030515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025]
Abstract
Background and Objectives: This study introduces an innovative approach to accelerating wound healing by leveraging the bactericidal properties of mycosynthesized copper oxide nanoparticles (CuO-NPs) and their combination with curcumin against Pseudomonas aeruginosa. The study aims to evaluate their antimicrobial efficacy, impact on quorum sensing-associated virulence factors, and potential therapeutic applications in wound healing. Materials and Methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CuO-NPs were determined to be 25 μg/mL and 50 μg/mL, respectively. At sub-inhibitory concentrations (0.5 MIC, 0.25 MIC, and 0.125 MIC), their effects on P. aeruginosa growth and quorum sensing-associated virulence factors were assessed. Antioxidant activity and cytotoxicity were also evaluated. Additionally, the combination of CuO-NPs and curcumin (CUR) was tested for its enhanced wound-healing efficacy. Results: While CuO-NPs did not inhibit P. aeruginosa growth at sub-inhibitory concentrations, they significantly reduced quorum sensing-associated virulence factors in a dose-dependent manner: LasB elastase (81.8%, 60.6%, and 53.03%), LasA protease (70%, 68.5%, and 57.1%), and pyocyanin (85.7%, 71.4%, and 55.9%). CuO-NPs exhibited strong antioxidant activity by scavenging free radicals. The combination of CuO-NPs and CUR demonstrated the highest wound-healing efficacy, outperforming the negative control and Mebo ointment by 193.9% and 61.6%, respectively. Additionally, CuO-NPs exhibited selective cytotoxicity against HepG2 cancer cells while displaying minimal toxicity toward normal human skin cells. Conclusions: CuO-NPs, particularly in combination with CUR, show promising potential as a therapeutic agent for wound healing by inhibiting quorum sensing-associated virulence factors, exhibiting strong antioxidant activity, and demonstrating selective cytotoxicity. These findings highlight their potential biomedical applications.
Collapse
Affiliation(s)
- Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
- Academy of Scientific Research & Technology (ASRT), 101 Kasr Al-Ainy St., Cairo 11516, Egypt
| | - Bahaa M. Badr
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 132222, Jordan;
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut 71524, Egypt
| | - Fathy M. Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt;
| | - Toru Watanabe
- Department of Food, Life and Environmental Sciences, Yamagata University, Yamagata 997-8555, Japan;
| | - Mostafa A. Abdel-Maksoud
- Chair of Biomedical Applications of Nanomaterials, Department of Biochemistry, College of Sciences, King Saudi University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.A.-M.); (A.M.A.)
| | - Abdulaziz M. Alamri
- Chair of Biomedical Applications of Nanomaterials, Department of Biochemistry, College of Sciences, King Saudi University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.A.-M.); (A.M.A.)
| | - Salman Alrokayan
- Chair of Biomedical Applications of Nanomaterials, Department of Biochemistry, College of Sciences, King Saudi University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.A.-M.); (A.M.A.)
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| |
Collapse
|
5
|
Borkow G, Melamed E. The Journey of Copper-Impregnated Dressings in Wound Healing: From a Medical Hypothesis to Clinical Practice. Biomedicines 2025; 13:562. [PMID: 40149539 PMCID: PMC11939876 DOI: 10.3390/biomedicines13030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives. Chronic wounds pose a substantial global healthcare burden exacerbated by aging populations and the increasing prevalence of conditions such as diabetes, peripheral vascular disease, and venous insufficiency. Impaired physiological repair mechanisms, including angiogenesis, collagen synthesis, and re-epithelialization, hinder the healing process in chronic wounds. Many of these physiological processes are dependent on their interaction with copper. We hypothesized that the targeted delivery of copper ions to the wound bed would enhance healing. Methods. Wound dressings impregnated with copper oxide microparticles were designed to ensure the controlled release of copper ions. The efficacy of these dressings was evaluated using non-infected wound models, including diabetic mouse models compared against control and silver dressings. Outcome measures included wound closure rates, epidermal skin quality assessed by histopathological examination, and gene expression profiling. Clinical applications were assessed through diverse case studies and controlled trials involving chronic wound management. Results. Copper dressings significantly accelerated wound closure and enhanced angiogenesis compared to control and silver dressings. Histopathological analyses revealed faster granulation tissue formation, epidermal regeneration, and neovascularization. Gene expression studies showed upregulation of critical angiogenic factors such as VEGF and HIF-1α. Investigations and clinical observations corroborated improved healing across various chronic wound types, including non-infected wounds. Conclusions. Copper is essential for wound healing, and copper-impregnated dressings provide a promising solution for chronic wound management. By enhancing angiogenesis and tissue regeneration, these dressings go beyond antimicrobial action, offering a cost-effective and innovative alternative to conventional therapies. Copper dressings represent a transformative advancement in addressing the challenges of chronic wound care.
Collapse
Affiliation(s)
- Gadi Borkow
- MedCu Technologies Ltd., Herzliya 4672200, Israel
- The Skin Research Institute, The Dead-Sea & Arava Science Center, Masada 8691000, Israel
| | - Eyal Melamed
- Foot and Ankle Service, Department of Orthopedics, Bnai Zion Medical Center, Haifa 3109601, Israel
| |
Collapse
|
6
|
Rezvan H, Zolhavarieh SM, Nourian A, Bayat E, Kalanaky S, Fakharzadeh S, Karimi P, Hafizi M, Nazaran MH, Hamoonnavard S. Therapeutic Effects of Nanochelating-Based Copper Nanoparticles on Burn Wound Healing in Mouse Model. Avicenna J Med Biotechnol 2025; 17:2-13. [PMID: 40094097 PMCID: PMC11910018 DOI: 10.18502/ajmb.v17i1.17672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/14/2024] [Indexed: 03/19/2025] Open
Abstract
Background The aim of the present study was to investigate the potential of Nanochelating-based copper to accelerate the wound healing process and prevent infection in burn wounds. Methods Six to eight-week- old female BALB/c mice were burned with a 1 cm2 heated copper plate on the left flank and then divided into four treatment groups, treated with C8 (nanochelating-based CuNPs), cold cream (supplementary materials) as a control drug, Silver Sulfadiazine and no treatment, respectively. Skin tissue samples were taken from the mice on days 0, 3, 8, 15 and 24. One piece was fixed in 10% neutral buffered formalin for pathological examination and the others were stored at -80°C until used for pro-inflammatory and growth factor gene expression. Results The healing process in the group treated with 10 mg/ml C8 was significantly faster, and the survival rate of the mice in this group was significantly higher than in the other groups. The pro-inflammatory genes were expressed and down-regulated earlier in the C8 treated mice. Histopathology confirmed the higher cure rate in the group treated with 10 mg/ml C8 compared to other control groups. Conclusion C8 has beneficial effects on the healing of burn wounds and the effective dose of this compound should be further investigated. The present study demonstrates the anti-inflammatory properties of nano-chelate-based copper particles' on mouse skin burns. This research opens up new possibilities in dermatology and burn therapy and highlights the potential of copper-based formulations in the treatment of burn injuries.
Collapse
Affiliation(s)
- Hossein Rezvan
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Seyed Masoud Zolhavarieh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Elham Bayat
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Pegah Karimi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | | - Sahar Hamoonnavard
- Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
7
|
Kota S, Dumpala P, Sajja R, Anantha R. Investigation of functional characteristics of copper/copper oxide nanoparticles synthesized with Moringa oleifera and Musa sps. extracts: in-vitro and porcine study. Sci Rep 2024; 14:30857. [PMID: 39730548 DOI: 10.1038/s41598-024-81169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
The study analyzed the aqueous leaf extracts of Moringa oleifera and Musa sps. for phytochemical components, including flavonoids, sterols, saponins, tannins, and glycosides. The LC-MS analysis revealed gingerol, vicenin-2, caffeic acid, quercetin, and other compounds in the extracts. The synthesized MO- and MS- CuNPs (copper nanoparticles) exhibited plasmon resonance at 320 and 480 nm respectively, and Cu(II)-O stretching vibrations, manifested by their Fourier Transform Infrared (FT-IR) spectra. Thermogravimetric analysis showed that MO-/MS-CuNPs experienced a total weight loss of 80.2% and 68% respectively. Further, the EDS analysis revealed that MO-CuNPs have a copper content of 20%, while MS-CuNPs is 32%. The X-ray diffraction (XRD) patterns of the annealed MO and MS-CuNPs indicate the presence of both the cubic phase of copper (Cu) and the monoclinic tenorite phase of copper oxide (CuO). The percent DPPH scavenging activity of MO- and MS-CuNPs is 34.4 and 28.8, and by KMnO4 is 63.8 and 47.3% respectively. The behavior of CuNPs exhibited an asymmetrical response, with greater inhibition of Gram-negative bacteria compared to Gram-positive bacteria. CuNPs and medicinal plant-derived carbon dots were integrated into nanofibrous electrospun biopolymer scaffolds for wound care, demonstrating 100% wound healing in Yorkshire pigs full thickness excision wounds after 34 days.
Collapse
Affiliation(s)
- Sobha Kota
- Department of Chemical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India.
| | - Pradeep Dumpala
- Department of Chemical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India
| | - Radhika Sajja
- Department of Mechanical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India
| | - Ratnakumari Anantha
- Department of Chemical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India
| |
Collapse
|
8
|
Faghani G, Azarniya A. Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon 2024; 10:e39611. [PMID: 39524817 PMCID: PMC11550055 DOI: 10.1016/j.heliyon.2024.e39611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The growing need for developing reliable and efficient wound dressings has led to recent progress in designing novel materials and formulations for different kinds of wounds caused by traumas, burns, surgeries, and diabetes. In cases of extreme urgency, accelerating wound recovery is of high importance to prevent persistent infection and biofilm formation. The application of nanotechnology in this domain resulted in the creation of distinct nanoplatforms for highly advanced wound-healing therapeutic approaches. Recently developed nanomaterials have been used as antibacterial agents or drug carriers to control wound infection. In the present review, the authors aim to review the recently published research on the effects of incorporating emerging nanomaterials into novel wound dressings and investigate their distinct roles in the wound healing process. It was determined that the metallic nanoparticles (NPs) exhibit antimicrobial and regenerative properties, metal oxide NPs regulate inflammation and promote tissue regeneration, MXene NPs enhance cell adhesion and proliferation, while metal-organic frameworks (MOFs) offer controlled drug delivery capabilities. Further research is required to fully understand the mechanisms and optimize the applications of these NPs in wound healing.
Collapse
Affiliation(s)
- Gholamreza Faghani
- Department of Mechanical Engineering, Khatam-Ol-Anbia (PBU) University, Tehran, Iran
| | - Amir Azarniya
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Zhu F, Wen Q, Hu Y, Gong J, Zhang X, Huang C, Zhou H, Chen L, Yu L. Chondroitin sulfate sponge scaffold for slow-release Mg 2+/Cu 2+ in diabetic wound management: Hemostasis, effusion absorption, and healing. Int J Biol Macromol 2024; 282:137561. [PMID: 39537068 DOI: 10.1016/j.ijbiomac.2024.137561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
The management of diabetic wounds presents significant challenges due to persistent inflammation, microenvironmental disruptions, and impaired angiogenesis. To address these issues, this study developed a multifunctional chondroitin sulfate sponge (CSP@Cu-Mg) with anti-inflammatory properties, hemostatic effects, effusion absorption, and enhanced healing promotion. Through ion crosslinking, MgO and CuO were incorporated into the interpenetrating network structure of chondroitin sulfate and acellular dermal matrix, resulting in a sponge with impressive liquid absorption capacity (3450 %) and porosity (83 %). This sponge enabled sustained release of Mg2+/Cu2+ ions, with approximately 40 % cumulative release over 7 days. This release helped reduce inflammation, promote the proliferation and migration of skin repair-related cells, and stimulate angiogenesis. In vivo studies demonstrated that the CSP@Cu-Mg sponge significantly improved diabetic wound healing by modulating inflammation and accelerating collagen deposition, angiogenesis, and re-epithelialization. This extracellular matrix sponge, which synergistically releases Mg2+/Cu2+, presents a promising strategy for comprehensive diabetic wound management with substantial clinical implications.
Collapse
Affiliation(s)
- Fengyi Zhu
- YunFu People's Hospital, Central Laboratory of YunFu People's Hospital, No. 120 Huanshi East Road, Yuncheng District, Yunfu City 527399, PR China; School of Basic Medicine, Jinzhou Medical University, No.40, Section 4, Road Songpo, Jinzhou, Liaoning 121001, PR China
| | - Qiulan Wen
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, PR China
| | - Yuting Hu
- Department of Anesthesiology, Shenzhen Maternal and Child Health Hospital, 2004 Hongli Road, Futian District, Shenzhen City, Guangdong 518031, PR China
| | - Jun Gong
- YunFu People's Hospital, Central Laboratory of YunFu People's Hospital, No. 120 Huanshi East Road, Yuncheng District, Yunfu City 527399, PR China
| | - Xibing Zhang
- YunFu People's Hospital, Central Laboratory of YunFu People's Hospital, No. 120 Huanshi East Road, Yuncheng District, Yunfu City 527399, PR China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, PR China.
| | - Hai Zhou
- YunFu People's Hospital, Central Laboratory of YunFu People's Hospital, No. 120 Huanshi East Road, Yuncheng District, Yunfu City 527399, PR China.
| | - Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangdong 510515, PR China.
| | - Li Yu
- School of Basic Medicine, Jinzhou Medical University, No.40, Section 4, Road Songpo, Jinzhou, Liaoning 121001, PR China.
| |
Collapse
|
10
|
Astaneh ME, Fereydouni N. Advancing diabetic wound care: The role of copper-containing hydrogels. Heliyon 2024; 10:e38481. [PMID: 39640763 PMCID: PMC11619988 DOI: 10.1016/j.heliyon.2024.e38481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
Diabetic wounds pose a significant challenge in healthcare due to their complex nature and the difficulties they present in treatment and healing. Impaired healing processes in individuals with diabetes can lead to complications and prolonged recovery times. However, recent advancements in wound healing provide reasons for optimism. Researchers are actively developing innovative strategies and therapies specifically tailored to address the unique challenges of diabetic wounds. One focus area is biomimetic hydrogel scaffolds that mimic the natural extracellular matrix, promoting angiogenesis, collagen deposition, and the healing process while also reducing infection risk. Copper nanoparticles and copper compounds incorporated into hydrogels release copper ions with antimicrobial, anti-inflammatory, and angiogenic properties. Copper reduces infection risk, modulates inflammatory response, and promotes tissue regeneration through cell adhesion, proliferation, and differentiation. Utilizing copper nanoparticles has transformative potential for expediting diabetic wound healing and improving patient outcomes while enhancing overall well-being by preventing severe complications associated with untreated wounds. It is crucial to write a review highlighting the importance of investigating the use of copper nanoparticles and compounds in diabetic wound healing and tissue engineering. These groundbreaking strategies hold the potential to transform the treatment of diabetic wounds, accelerating the healing process and enhancing patient outcomes.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
11
|
Tang W, Xie D, Wang X, Liu G, Huang G. Design and decoration of copper nanoparticles into lignosulfonate-starch bionanocomposite: Characterization and evaluation of its therapeutic properties on burn wound. Int J Biol Macromol 2024; 278:134389. [PMID: 39098681 DOI: 10.1016/j.ijbiomac.2024.134389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
In this report, eco-friendly synthesis for the production of copper nanoparticles by employing the sodium lignosulfonate (NaLS) mixed starch composite (NaLS-Starch/Cu NPs). NaLS-Starch mixed hydrogel has notable reducing and stabilizing potential for preparation of Cu nanoparticles. Characterization of NaLS-Starch/Cu NPs bionanocomposite was subjected to analysis of spectroscopic and microscopic techniques, including FE-SEM, TEM, EDS-elemental mapping, particle size distribution, XRD and ICP. TEM images displayed the spherical structured NaLS-Starch/Cu NPs, averaging 5-10 nm size. NaLS-Starch/Cu NPs were applied to cure the induced burn wounds in 60 Wistar rats. A group was considered as control group. The animals were treated with basal, tetracycline 3 % and NaLS-Starch/Cu NPs 3 % for 30 days and the treatment efficacy was determined according to the burn wound area reduction and molecular and histological characteristics. Taken together, these results support therapeutic use of NaLS-Starch/Cu NPs as potent ointment that may be proposed for burn wound healing. NaLS-Starch/Cu NPs ointment increased the levels of platelet-derived growth factors (PDGF) and fibroblast growth factor (bFGF). The mean wound surface, in all groups treated by NaLS-Starch/Cu NPs was larger than control group.
Collapse
Affiliation(s)
- Wenwen Tang
- Department of Medical Cosmetology and Burn & Plastic Surgery, Shanxi Bethune Hospital, No. 99 Longcheng Road, Taiyuan City, Shanxi Province 030000, China
| | - Dong Xie
- Department of Thoracic Surgery, Traditional Chinese medical hospital of Huangdao District Qingdao, Qingdao, Shandong, 266500, China
| | - Xinli Wang
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, No.50, Shifan Road, Tianqiao District, Jinan, 250000, China
| | - Guiyang Liu
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, No.50, Shifan Road, Tianqiao District, Jinan, 250000, China
| | - Guobao Huang
- Department of Burn and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, No.105, Jiefang Road, Lixia District, Jinan 250013, Shandong, China.
| |
Collapse
|
12
|
Tremellen K, Alfer J, Cotán D, Pérez-Sánchez M, Harvey AJ, Gardner DK. Effect of a novel copper chloride gel on endometrial growth and function in healthy volunteers. Reprod Biomed Online 2024; 49:104107. [PMID: 39067212 DOI: 10.1016/j.rbmo.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 05/07/2024] [Indexed: 07/30/2024]
Abstract
RESEARCH QUESTION Does the application of a micro-dose of copper chloride gel increase endometrial production of vascular endothelial growth factor (VEGF) without compromising endometrial function or producing embryo toxicity? DESIGN An estimate of optimal dose was made based on cell culture studies. Ten healthy participants received an initial uterine application of placebo gel, followed by copper chloride gel (37.5 μM, 75 μM, or 150 μM dose) in a later hormone replacement cycle. Endometrial biopsies (day 5.5 luteal) and pelvic ultrasound were carried out during each cycle to evaluate endometrial function and growth. Uterine fluid was assessed for residual copper levels on the day of biopsy, and copper chloride gel underwent mouse embryos assay assessment for potential embryo toxicity. RESULTS The copper gel significantly increased endometrial VEGF expression (quantitative polymerase chain reaction), and also increasing endometrial thickness by an average of 2.2 mm compared with matched control cycles. The copper gel did not adversely affect endometrial morphology or maturation (histological dating and molecular receptivity testing), and mouse embryos assay studies showed no evidence of embryo toxicity. Furthermore, uterine cavity flush samples mostly lacked copper, with only negligible amounts present in one sample. CONCLUSION Applying copper chloride gel to the uterine cavity upregulated endometrial VEGF and significantly increased endometrial thickness and volume. No adverse effects on the endometrium or embryos were observed. Copper chloride gels show promise for treating suboptimal endometrial thickness if the results of this study are confirmed by larger randomized controlled trials.
Collapse
Affiliation(s)
- Kelton Tremellen
- Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University, Bedford Park, South Australia; Repromed, Dulwich, South Australia.
| | | | | | | | | | - David K Gardner
- School of Biosciences, University of Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Gromadzka G, Czerwińska J, Krzemińska E, Przybyłkowski A, Litwin T. Wilson's Disease-Crossroads of Genetics, Inflammation and Immunity/Autoimmunity: Clinical and Molecular Issues. Int J Mol Sci 2024; 25:9034. [PMID: 39201720 PMCID: PMC11354778 DOI: 10.3390/ijms25169034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Wilson's disease (WD) is a rare, autosomal recessive disorder of copper metabolism caused by pathogenic mutations in the ATP7B gene. Cellular copper overload is associated with impaired iron metabolism. Oxidative stress, cuproptosis, and ferroptosis are involved in cell death in WD. The clinical picture of WD is variable. Hepatic/neuropsychiatric/other symptoms may manifest in childhood/adulthood and even old age. It has been shown that phenotypic variability may be determined by the type of ATP7B genetic variants as well as the influence of various genetic/epigenetic, environmental, and lifestyle modifiers. In 1976, immunological abnormalities were first described in patients with WD. These included an increase in IgG and IgM levels and a decrease in the percentage of T lymphocytes, as well as a weakening of their bactericidal effect. Over the following years, it was shown that there is a bidirectional relationship between copper and inflammation. Changes in serum cytokine concentrations and the relationship between cytokine gene variants and the clinical course of the disease have been described in WD patients, as well as in animal models of this disease. Data have also been published on the occurrence of antinuclear antibodies (ANAs), antineutrophil cytoplasmic antibodies (ANCAs), anti-muscle-specific tyrosine kinase antibodies, and anti-acetylcholine receptor antibodies, as well as various autoimmune diseases, including systemic lupus erythematosus (SLE), myasthenic syndrome, ulcerative colitis, multiple sclerosis (MS), polyarthritis, and psoriasis after treatment with d-penicillamine (DPA). The occurrence of autoantibodies was also described, the presence of which was not related to the type of treatment or the form of the disease (hepatic vs. neuropsychiatric). The mechanisms responsible for the occurrence of autoantibodies in patients with WD are not known. It has also not been clarified whether they have clinical significance. In some patients, WD was differentiated or coexisted with an autoimmune disease, including autoimmune hepatitis or multiple sclerosis. Various molecular mechanisms may be responsible for immunological abnormalities and/or the inflammatory processes in WD. Their better understanding may be important for explaining the reasons for the diversity of symptoms and the varied course and response to therapy, as well as for the development of new treatment regimens for WD.
Collapse
Affiliation(s)
- Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| | - Julia Czerwińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Elżbieta Krzemińska
- Students Scientific Association “Immunis”, Cardinal Stefan Wyszynski University, Dewajtis Street 5, 01-815 Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland;
| |
Collapse
|
14
|
Jiang S, Xie D, Hu Z, Song H, Tang P, Jin Y, Xia J, Ji Y, Xiao Y, Chen S, Fu Q, Dai J. Enhanced diabetic wound healing with injectable hydrogel containing self-assembling nanozymes. J Control Release 2024; 372:265-280. [PMID: 38906418 DOI: 10.1016/j.jconrel.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
To build a smart system in response to the variable microenvironment in infected diabetic wounds, a multifunctional wound dressing was constructed by co-incorporating glucose oxidase (GOx) and a pH-responsive self-assembly Cu2-xSe-BSA nanozyme into a dual-dynamic bond cross-linked hydrogel (OBG). This composite hydrogel (OBG@CG) can adhere to the wound site and respond to the acidic inflammatory environment, initiating the GOx-catalyzed generation of H2O2 and the self-assembly activated peroxidase-like property of Cu2-xSe-BSA nanozymes, resulting in significant hydroxyl radical production to attack the biofilm during the acute infection period and alleviate the high-glucose microenvironment for better wound healing. During the wound recovery phase, Cu2-xSe-BSA aggregates disassembled owing to the elevated pH, terminating catalytic reactive oxygen species generation. Simultaneously, Cu2+ released from the Cu2-xSe-BSA not only promotes the production of mature collagen but also enhances the migration and proliferation of endothelial cells. RNA-seq analysis demonstrated that OBG@CG exerted its antibacterial property by damaging the integrity of the biofilm by inducing radicals and interfering with the energy supply, along with destroying the defense system by disturbing thiol metabolism and reducing transporter activities. This work proposes an innovative glucose consumption strategy for infected diabetic wound management, which may inspire new ideas in the exploration of smart wound dressing.
Collapse
Affiliation(s)
- Sicheng Jiang
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Dingqi Xie
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Zehui Hu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Honghai Song
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Pan Tang
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Yang Jin
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Jiechao Xia
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Yinwen Ji
- The Children's Hospital, National Clinical Research Center for Child Health, Medical College of Zhejiang University, Hangzhou 310052, China
| | - Ying Xiao
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China
| | - Shuai Chen
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China.
| | - Qinrui Fu
- Institute for Translational Medicine, Medicine College of Qingdao University, Qingdao 266021, China.
| | - Jiayong Dai
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Biomedical Research Center, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
15
|
Anand K, Sharma R, Sharma N. Recent advancements in natural polymers-based self-healing nano-materials for wound dressing. J Biomed Mater Res B Appl Biomater 2024; 112:e35435. [PMID: 38864664 DOI: 10.1002/jbm.b.35435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
The field of wound healing has witnessed remarkable progress in recent years, driven by the pursuit of advanced wound dressings. Traditional dressing materials have limitations like poor biocompatibility, nonbiodegradability, inadequate moisture management, poor breathability, lack of inherent therapeutic properties, and environmental impacts. There is a compelling demand for innovative solutions to transcend the constraints of conventional dressing materials for optimal wound care. In this extensive review, the therapeutic potential of natural polymers as the foundation for the development of self-healing nano-materials, specifically for wound dressing applications, has been elucidated. Natural polymers offer a multitude of advantages, possessing exceptional biocompatibility, biodegradability, and bioactivity. The intricate engineering strategies employed to fabricate these polymers into nanostructures, thereby imparting enhanced mechanical robustness, flexibility, critical for efficacious wound management has been expounded. By harnessing the inherent properties of natural polymers, including chitosan, alginate, collagen, hyaluronic acid, and so on, and integrating the concept of self-healing materials, a comprehensive overview of the cutting-edge research in this emerging field is presented in the review. Furthermore, the inherent self-healing attributes of these materials, wherein they exhibit innate capabilities to autonomously rectify any damage or disruption upon exposure to moisture or body fluids, reducing frequent dressing replacements have also been explored. This review consolidates the existing knowledge landscape, accentuating the benefits and challenges associated with these pioneering materials while concurrently paving the way for future investigations and translational applications in the realm of wound healing.
Collapse
Affiliation(s)
- Kumar Anand
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Rishi Sharma
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
16
|
Joorabloo A, Liu T. Recent advances in reactive oxygen species scavenging nanomaterials for wound healing. EXPLORATION (BEIJING, CHINA) 2024; 4:20230066. [PMID: 38939866 PMCID: PMC11189585 DOI: 10.1002/exp.20230066] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/27/2023] [Indexed: 06/29/2024]
Abstract
Reactive oxygen species play a crucial role in cell signaling pathways during wound healing phases. Treatment strategies to balance the redox level in the deep wound tissue are emerging for wound management. In recent years, reactive oxygen species scavenging agents including natural antioxidants, reactive oxygen species (ROS) scavenging nanozymes, and antioxidant delivery systems have been widely employed to inhibit oxidative stress and promote skin regeneration. Here, the importance of reactive oxygen species in different wound healing phases is critically analyzed. Various cutting-edge bioactive ROS nanoscavengers and antioxidant delivery platforms are discussed. This review also highlights the future directions for wound therapies via reactive oxygen species scavenging. This comprehensive review offers a map of the research on ROS scavengers with redox balancing mechanisms of action in the wound healing process, which benefits development and clinical applications of next-generation ROS scavenging-based nanomaterials in skin regeneration.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research InstituteWestern Sydney UniversityWestmeadAustralia
| | - Tianqing Liu
- NICM Health Research InstituteWestern Sydney UniversityWestmeadAustralia
| |
Collapse
|
17
|
Tang Q, Tan Y, Leng S, Liu Q, Zhu L, Wang C. Cupric-polymeric nanoreactors integrate into copper metabolism to promote chronic diabetic wounds healing. Mater Today Bio 2024; 26:101087. [PMID: 38784443 PMCID: PMC11111831 DOI: 10.1016/j.mtbio.2024.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Given multifunction of copper (Cu) contributing to all stages of the physiology of wound healing, Cu-based compounds have great therapeutic potentials to accelerate the wound healing, but they must be limited to a very low concentration range to avoid detrimental accumulation. Additionally, the cellular mechanism of Cu-based compounds participating the healing process remains elusive. In this study, copper oxide nanoparticles (CuONPs) were synthesized to mimic the multiple natural enzymes and trapped into PEG-b-PCL polymersomes (PS) to construct cupric-polymeric nanoreactors (CuO@PS) via a direct hydration method, thus allowing to compartmentalize Cu-based catalytic reactions in an isolated space to improve the efficiency, selectivity, recyclability as well as biocompatibility. While nanoreactors trafficked to lysosomes following endocytosis, the released Cu-based compounds in lysosomal lumen drove a cytosolic Cu+ influx to mobilize Cu metabolism mostly via Atox1-ATP7a/b-Lox axis, thereby activating the phosphorylation of mitogen-activated protein kinase 1 and 2 (MEK1/2) to initiate downstream signaling events associated with cell proliferation, migration and angiogenesis. Moreover, to facilitate to lay on wounds, cupric-polymeric nanoreactors were finely dispersed into a thermosensitive Pluronic F127 hydrogel to form a composite hydrogel sheet that promoted the healing of chronic wounds in diabetic rat models. Hence, cupric-polymeric nanoreactors represented an attractive translational strategy to harness cellular Cu metabolism for chronic wounds healing.
Collapse
Affiliation(s)
- Qi Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shaolong Leng
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qi Liu
- The First Dongguan Affiliated Hospital Guangdong Medical University No. 42, Jiaoping Road Dongguan, Guangdong, 523710, China
| | - Linyu Zhu
- Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Cuifeng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Department of Neurosurgery, JiuJiang Hospital of Traditional Chinese Medicine, Jiujiang, China
| |
Collapse
|
18
|
Torabi S, Hassanzadeh-Tabrizi SA. Effective antibacterial agents in modern wound dressings: a review. BIOFOULING 2024; 40:305-332. [PMID: 38836473 DOI: 10.1080/08927014.2024.2358913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Wound infections are a significant concern in healthcare, leading to long healing times. Traditional approaches for managing wound infections rely heavily on systemic antibiotics, which are associated with the emergence of antibiotic-resistant bacteria. Therefore, the development of alternative antibacterial materials for wound care has gained considerable attention. In today's world, new generations of wound dressing are commonly used to heal wounds. These new dressings keep the wound and the area around it moist to improve wound healing. However, this moist environment can also foster an environment that is favorable for the growth of bacteria. Excessive antibiotic use poses a significant threat to human health and causes bacterial resistance, so new-generation wound dressings must be designed and developed to reduce the risk of infection. Wound dressings using antimicrobial compounds minimize wound bacterial colonization, making them the best way to avoid open wound infection. We aim to provide readers with a comprehensive understanding of the latest advancements in antibacterial materials for wound management.
Collapse
Affiliation(s)
- Sadaf Torabi
- Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sayed Ali Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
19
|
Sirotkin AV, Loncová B, Fabová Z, Bartušová M, Martín-García I, Harrath AH, Alonso F. Сopper nanoparticles supported on charcoal and betacellulin - Two novel stimulators of ovarian granulosa cell functions and their functional interrelationships. Theriogenology 2024; 218:137-141. [PMID: 38325150 DOI: 10.1016/j.theriogenology.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
The present experiments are aimed to examine the effect of copper nanoparticles supported on charcoal (CuNPs/C), growth factor betacellulin (BTC) and their interrelationships in the control of ovarian cell functions. Porcine ovarian granulosa cells were cultured in the presence of CuNPs/C (0, 1, 10 or 100 ng/ml), BTC (100 ng/ml) and the combination of both, CuNPs/C + BTC. Markers of cell proliferation (BrDU incorporation), of the S-phase (PCNA) and G-phase (cyclin B1) of the cell cycle, markers of extrinsic (nuclear DNA fragmentation) and cytoplasmic/mitochondrial apoptosis (bax and caspase 3), and the release of progesterone and estradiol were assessed by BrDU test, TUNEL, quantitative immunocytochemistry and ELISA. Both CuNPs/C and BTC, when added alone, increased the expression of all the markers of cell proliferation, reduced the expression of all apoptosis markers and stimulated progesterone and estradiol release. Moreover, BTC was able to promote the CuNPs/C action on the accumulation of PCNA, cyclin B1, bax and estradiol output. These observations demonstrate the stimulatory action of both CuNPs/C and BTC on ovarian cell functions, as well as the ability of BTC to promote the action of CuNPs/C on ovarian cell functions.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, Nitra, 94974, Slovakia.
| | - Barbora Loncová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Nitra, 94974, Slovakia
| | - Zuzana Fabová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Nitra, 94974, Slovakia
| | - Michaela Bartušová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Nitra, 94974, Slovakia
| | - Iris Martín-García
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Francisco Alonso
- Instituto de Síntesis Orgánica (ISO) and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080, Alicante, Spain.
| |
Collapse
|
20
|
Devanabanda M, Sana SS, Madduri R, Kim SC, Iravani S, Varma RS, Vadde R. Immunomodulatory effects of copper nanoparticles against mitogen-stimulated rat splenic and thymic lymphocytes. Food Chem Toxicol 2024; 184:114420. [PMID: 38151072 DOI: 10.1016/j.fct.2023.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
In the present study, we have evaluated the effects of copper (Cu) nanoparticles (NPs) on the primary B-and T-lymphocytes proliferation, cytokine levels, and bio-distribution through in vitro, in vivo and ex-vivo studies to allow the possible exploitations of CuNPs in biomedical applications. CuNPs were characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). The proliferative response of lymphocytes was studied by 3H-thymidine incorporation assay and lymphocyte viability through trypan blue assay. The bio-distribution of CuNPs into lymphoid organs was examined by using ex-vivo imaging system. Cytokine levels in plasma of control and CuNPs treated animal groups were determined by enzyme-linked immunosorbent assay (ELISA) method along with other biochemical analysis. CuNPs significantly suppressed the proliferation of primary splenic and thymic lymphocytes in a dose dependent manner. Ex-vivo imaging exhibited the distribution of CuNPs in spleen and thymus. Oral administration of CuNPs (2 mg and 10 mg/kg body weight) significantly inhibited the proliferation of splenic and thymic lymphocytes along with lowered cytokines levels (TNF-alpha and IL-2) on comparison with controls. The results indicated the significant inhibition of lymphocytes proliferative response and secretion of cytokines, thus unveiling the immunomodulatory effects of CuNPs.
Collapse
Affiliation(s)
- Mallaiah Devanabanda
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, India; Cellular Immunology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500042, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Ramanadham Madduri
- Cellular Immunology Laboratory, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500042, India
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, 516005, India.
| |
Collapse
|
21
|
Dang Z, Ma X, Yang Z, Wen X, Zhao P. Electrospun Nanofiber Scaffolds Loaded with Metal-Based Nanoparticles for Wound Healing. Polymers (Basel) 2023; 16:24. [PMID: 38201687 PMCID: PMC10780332 DOI: 10.3390/polym16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Failures of wound healing have been a focus of research worldwide. With the continuous development of materials science, electrospun nanofiber scaffolds loaded with metal-based nanoparticles provide new ideas and methods for research into new tissue engineering materials due to their excellent antibacterial, anti-inflammatory, and wound healing abilities. In this review, the stages of extracellular matrix and wound healing, electrospun nanofiber scaffolds, metal-based nanoparticles, and metal-based nanoparticles supported by electrospun nanofiber scaffolds are reviewed, and their characteristics and applications are introduced. We discuss in detail the current research on wound healing of metal-based nanoparticles and electrospun nanofiber scaffolds loaded with metal-based nanoparticles, and we highlight the potential mechanisms and promising applications of these scaffolds for promoting wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (Z.D.); (X.M.); (Z.Y.); (X.W.)
| |
Collapse
|
22
|
Antonio-Pérez A, Durán-Armenta LF, Pérez-Loredo MG, Torres-Huerta AL. Biosynthesis of Copper Nanoparticles with Medicinal Plants Extracts: From Extraction Methods to Applications. MICROMACHINES 2023; 14:1882. [PMID: 37893319 PMCID: PMC10609153 DOI: 10.3390/mi14101882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/29/2023]
Abstract
Copper nanoparticles (CuNPs) can be synthesized by green methods using plant extracts. These methods are more environmentally friendly and offer improved properties of the synthesized NPs in terms of biocompatibility and functional capabilities. Traditional medicine has a rich history of utilization of herbs for millennia, offering a viable alternative or complementary option to conventional pharmacological medications. Plants of traditional herbal use or those with medicinal properties are candidates to be used to obtain NPs due to their high and complex content of biocompounds with different redox capacities that provide a dynamic reaction environment for NP synthesis. Other synthesis conditions, such as salt precursor concentration, temperature, time synthesis, and pH, have a significant effect on the characteristics of the NPs. This paper will review the properties of some compounds from medicinal plants, plant extract obtention methods alternatives, characteristics of plant extracts, and how they relate to the NP synthesis process. Additionally, the document includes diverse applications associated with CuNPs, starting from antibacterial properties to potential applications in metabolic disease treatment, vegetable tissue culture, therapy, and cardioprotective effect, among others.
Collapse
Affiliation(s)
- Aurora Antonio-Pérez
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
| | - Luis Fernando Durán-Armenta
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium;
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - María Guadalupe Pérez-Loredo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
- División Académica de Tecnología Ambiental, Universidad Tecnológica Fidel Velázquez, Av. Emiliano Zapata S/N, El Tráfico, Nicolás Romero C.P.54400, Mexico
| | - Ana Laura Torres-Huerta
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
| |
Collapse
|
23
|
Xiang J, Zhu Y, Xie Y, Chen H, Zhou L, Chen D, Guo J, Wang M, Cai L, Guo L. A Cu@ZIF-8 encapsulated antibacterial and angiogenic microneedle array for promoting wound healing. NANOSCALE ADVANCES 2023; 5:5102-5114. [PMID: 37705764 PMCID: PMC10496905 DOI: 10.1039/d3na00291h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/12/2023] [Indexed: 09/15/2023]
Abstract
Skin wounds caused by external injuries remain a serious challenge in clinical practice. Wound dressings that are antibacterial, pro-angiogenic, and have potent regeneration capacities are highly desirable for wound healing. In this study, a minimally invasive and wound-friendly Cu@ZIF-8 encapsulated PEGDA/CMCS microneedle (MN) array was fabricated using the molding method to promote wound healing. The MNs had good biocompatibility, excellent mechanical strength, as well as strong antibacterial properties and pro-angiogenic effects. When incubated with H2O2, Cu@ZIF-8 nanoparticles generated reactive oxygen species, which contributed to their antibacterial properties. Due to the oxidative stress of the cupric ions released from Cu@ZIF-8 and the anti-bacterial capability of the PEGDA/CMCS hydrogel scaffold, such an MN array presents excellent antibacterial activity. Moreover, with the continuous release of Cu ions from the scaffold, such MNs are effective in terms of promoting angiogenesis. With considerable biocompatibility and a minimally invasive approach, the degradable MN array composed of PEGDA/CMCS possessed superior capabilities to continuously and steadily release the loaded ingredients and avoid secondary damage to the wound. Benefiting from these features, the Cu@ZIF-8 encapsulated degradable MN array can dramatically accelerate epithelial regeneration and neovascularization. These results indicated that the combination of Cu@ZIF-8 and degradable MN arrays is valuable in promoting wound healing, which opened a new window for treatment of skin defection.
Collapse
Affiliation(s)
- Jieyu Xiang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Yufan Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Yuanlong Xie
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Hang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Ling Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Jia Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| |
Collapse
|
24
|
Salvo J, Sandoval C, Schencke C, Acevedo F, del Sol M. Healing Effect of a Nano-Functionalized Medical-Grade Honey for the Treatment of Infected Wounds. Pharmaceutics 2023; 15:2187. [PMID: 37765158 PMCID: PMC10536296 DOI: 10.3390/pharmaceutics15092187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Based on the qualities of Ulmo honey (Eucryphia cordifolia), a medical-grade honey (Ulmoplus®) has been developed. Relevant to this, the use of copper represents an emerging therapy for the treatment of wounds. Therefore, the aim of this study was to see how this medical-grade honey with copper nanoparticles (CuNPs) helped to heal infected or non-infected wounds. Twenty-four guinea pigs (Cavia porcellus) were divided into four groups for phase 1 (without and with infection, U + F1 and U + F2), and two groups for phase 2 (selected formulation, without and with infection, U + F2NI and U + F2I). Bacteriological and histopathological studies, collagen fibers content evaluation, and stereological analysis were performed. The selected formulation displayed the same antibacterial potency as Ulmoplus®, indicating that this medical-grade honey by itself can be used as an antibacterial agent. However, the evaluation of collagen content demonstrated a significant increase in fibroblast and type III collagen fibers for infected and uninfected groups, which correlated with the histopathological study. Therefore, it is correct to affirm that adding CuNPs to Ulmoplus® improved the maturation of collagen fibers. Finally, polymorphonuclear cells presented similar values between experimental groups, which would indicate that the formulation under study was able to regulate the inflammatory process despite their infectious condition.
Collapse
Affiliation(s)
- Jessica Salvo
- Escuela de Enfermería, Facultad de Salud, Universidad Santo Tomás, Temuco 4811230, Chile;
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Cristian Sandoval
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile;
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
| | - Carolina Schencke
- Carrera de Psicología, Facultad de Ciencias Sociales y Humanidades, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francisca Acevedo
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile;
- Núcleo Científico-Tecnológico en Biorecursos (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Mariano del Sol
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile;
- Centro de Excelencia en Estudios Morfológicos y Quirúrgicos (CEMyQ), Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
25
|
Salvo J, Sandoval C, Schencke C, Acevedo F, del Sol M. Healing Effect of a Nano-Functionalized Medical-Grade Honey for the Treatment of Infected Wounds. Pharmaceutics 2023; 15:2187. [DOI: https:/doi.org/10.3390/pharmaceutics15092187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Based on the qualities of Ulmo honey (Eucryphia cordifolia), a medical-grade honey (Ulmoplus®) has been developed. Relevant to this, the use of copper represents an emerging therapy for the treatment of wounds. Therefore, the aim of this study was to see how this medical-grade honey with copper nanoparticles (CuNPs) helped to heal infected or non-infected wounds. Twenty-four guinea pigs (Cavia porcellus) were divided into four groups for phase 1 (without and with infection, U + F1 and U + F2), and two groups for phase 2 (selected formulation, without and with infection, U + F2NI and U + F2I). Bacteriological and histopathological studies, collagen fibers content evaluation, and stereological analysis were performed. The selected formulation displayed the same antibacterial potency as Ulmoplus®, indicating that this medical-grade honey by itself can be used as an antibacterial agent. However, the evaluation of collagen content demonstrated a significant increase in fibroblast and type III collagen fibers for infected and uninfected groups, which correlated with the histopathological study. Therefore, it is correct to affirm that adding CuNPs to Ulmoplus® improved the maturation of collagen fibers. Finally, polymorphonuclear cells presented similar values between experimental groups, which would indicate that the formulation under study was able to regulate the inflammatory process despite their infectious condition.
Collapse
Affiliation(s)
- Jessica Salvo
- Escuela de Enfermería, Facultad de Salud, Universidad Santo Tomás, Temuco 4811230, Chile
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Cristian Sandoval
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile
| | - Carolina Schencke
- Carrera de Psicología, Facultad de Ciencias Sociales y Humanidades, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francisca Acevedo
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
- Núcleo Científico-Tecnológico en Biorecursos (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Mariano del Sol
- Programa de Doctorado en Ciencias Morfológicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Excelencia en Estudios Morfológicos y Quirúrgicos (CEMyQ), Facultad de Medicina, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
26
|
Alshammari SO, Mahmoud SY, Farrag ES. Synthesis of Green Copper Nanoparticles Using Medicinal Plant Krameria sp. Root Extract and Its Applications. Molecules 2023; 28:4629. [PMID: 37375184 DOI: 10.3390/molecules28124629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Nanotechnology is one of the most dynamic research areas and the fastest-growing market. Developing eco-friendly products using available resources to acquire maximum production, better yield, and stability is a great challenge for nanotechnology. In this study, copper nanoparticles (CuNP) were synthesized via the green method using root extract of the medical plant Rhatany (Krameria sp.) as a reducing and capping agent and used to investigate the influence of microorganisms. The maximum production of CuNP was noted at 70 °C after 3 h of reaction time. The formation of nanoparticles was confirmed through UV-spectrophotometer, and the product showed an absorbance peak in the 422-430 nm range. The functional groups were observed using the FTIR technique, such as isocyanic acid attached to stabilize the nanoparticles. The spherical nature and average crystal sizes of the particle (6.16 nm) were determined using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and X-ray diffractometer (XRD) analysis. In tests with a few drug-resistant pathogenic bacteria and fungus species, CuNP showed encouraging antimicrobial efficacy. CuNP had a significant antioxidant capacity of 83.81% at 200 g/m-1. Green synthesized CuNP are cost-effective and nontoxic and can be applied in agriculture, biomedical, and other fields.
Collapse
Affiliation(s)
- Shifaa O Alshammari
- Biology Department, College of Science, University of Hafr Al Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Sabry Younis Mahmoud
- Biology Department, College of Science, University of Hafr Al Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Eman Saleh Farrag
- Clinical Laboratory Sciences Department, College of Applied Medical Science, University of Hafr Al Batin, Hafr Al-Batin 31991, Saudi Arabia
- Microbiology Department, South Valley University, Qena 83523, Egypt
| |
Collapse
|
27
|
T A, Prabhu A, Baliga V, Bhat S, Thenkondar ST, Nayak Y, Nayak UY. Transforming Wound Management: Nanomaterials and Their Clinical Impact. Pharmaceutics 2023; 15:pharmaceutics15051560. [PMID: 37242802 DOI: 10.3390/pharmaceutics15051560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Wound healing is a complex process that can be further complicated in chronic wounds, leading to prolonged healing times, high healthcare costs, and potential patient morbidity. Nanotechnology has shown great promise in developing advanced wound dressings that promote wound healing and prevent infection. The review article presents a comprehensive search strategy that was applied to four databases, namely Scopus, Web of Science, PubMed, and Google Scholar, using specific keywords and inclusion/exclusion criteria to select a representative sample of 164 research articles published between 2001 and 2023. This review article provides an updated overview of the different types of nanomaterials used in wound dressings, including nanofibers, nanocomposites, silver-based nanoparticles, lipid nanoparticles, and polymeric nanoparticles. Several recent studies have shown the potential benefits of using nanomaterials in wound care, including the use of hydrogel/nano silver-based dressings in treating diabetic foot wounds, the use of copper oxide-infused dressings in difficult-to-treat wounds, and the use of chitosan nanofiber mats in burn dressings. Overall, developing nanomaterials in wound care has complemented nanotechnology in drug delivery systems, providing biocompatible and biodegradable nanomaterials that enhance wound healing and provide sustained drug release. Wound dressings are an effective and convenient method of wound care that can prevent wound contamination, support the injured area, control hemorrhaging, and reduce pain and inflammation. This review article provides valuable insights into the potential role of individual nanoformulations used in wound dressings in promoting wound healing and preventing infections, and serves as an excellent resource for clinicians, researchers, and patients seeking improved healing outcomes.
Collapse
Affiliation(s)
- Ashwini T
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ashlesh Prabhu
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vishal Baliga
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shreesha Bhat
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Siddarth T Thenkondar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
28
|
Ramasubbu K, Padmanabhan S, Al-Ghanim KA, Nicoletti M, Govindarajan M, Sachivkina N, Rajeswari VD. Green Synthesis of Copper Oxide Nanoparticles Using Sesbania grandiflora Leaf Extract and Their Evaluation of Anti-Diabetic, Cytotoxic, Anti-Microbial, and Anti-Inflammatory Properties in an In-Vitro Approach. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Green methods of synthesizing nanoparticles are safer than chemical and physical methods, as well as being eco-friendly and cost-efficient. In this study, we use copper oxide nanoparticles (CuO NPs) fabricated with Sesbania grandiflora (Sg) (Hummingbird tree) leaves to test the effectiveness of green synthesizing methods. The attained Sg-CuO NPs physical and optical nature is characterized by UV-Vis spectroscopy Differential Reflectance Spectroscopy (UV-Vis DRS), Fourier Transform Infra-Red spectroscopy (FTIR), X-ray Diffraction spectroscopy (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive X-ray Analysis (EDAX). UV-Vis spectrum for Sg-CuO NPs revealed a peak at 410 nm. SEM images showed the aggregation of needle-shaped particles, at a size of 33 nm. The amylase and glucosidase enzymes were inhibited by the Sg-CuO NPs up to 76.7% and 72.1%, respectively, indicating a possible antihyperglycemic effect. Fabricated Sg-CuO NPs disclosed the excellent inhibition of DPPH-free radicle formation (89.7%) and repressed protein degradation (81.3%). The results showed that Sg-CuO NPs display good anti-bacterial activity against the gram-negative (Escherichia coli and Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus). Cytotoxicity of the Sg-CuO NPs was determined using anIC50 of 37 μg/mL. Sg-CuO NPs have shown promising anti-diabetic, anti-oxidant, protein degradation-inhibiting, and anti-microbial properties. Our findings have shown that synthesized Sg-CuO NPs have biological activities that may be utilized to treat bacterial infections linked to hyperglycemia.
Collapse
|
29
|
Zhang Y, Poon K, Masonsong GSP, Ramaswamy Y, Singh G. Sustainable Nanomaterials for Biomedical Applications. Pharmaceutics 2023; 15:922. [PMID: 36986783 PMCID: PMC10056188 DOI: 10.3390/pharmaceutics15030922] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Significant progress in nanotechnology has enormously contributed to the design and development of innovative products that have transformed societal challenges related to energy, information technology, the environment, and health. A large portion of the nanomaterials developed for such applications is currently highly dependent on energy-intensive manufacturing processes and non-renewable resources. In addition, there is a considerable lag between the rapid growth in the innovation/discovery of such unsustainable nanomaterials and their effects on the environment, human health, and climate in the long term. Therefore, there is an urgent need to design nanomaterials sustainably using renewable and natural resources with minimal impact on society. Integrating sustainability with nanotechnology can support the manufacturing of sustainable nanomaterials with optimized performance. This short review discusses challenges and a framework for designing high-performance sustainable nanomaterials. We briefly summarize the recent advances in producing sustainable nanomaterials from sustainable and natural resources and their use for various biomedical applications such as biosensing, bioimaging, drug delivery, and tissue engineering. Additionally, we provide future perspectives into the design guidelines for fabricating high-performance sustainable nanomaterials for medical applications.
Collapse
Affiliation(s)
- Yuhang Zhang
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Kingsley Poon
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | | | - Yogambha Ramaswamy
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Gurvinder Singh
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW 2008, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| |
Collapse
|