1
|
Jung W, Lee D, Kim H, Son B, Oh S, Gong JE, Kim D, Yoon J, Yeom J. Universal Chiral Nanopaint for Metal Oxide Biomaterials. ACS NANO 2025; 19:8632-8645. [PMID: 40025726 DOI: 10.1021/acsnano.4c14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Chirality is widespread in nature and governs the properties of various materials including inorganic nanomaterials. However, previously reported chiral inorganic materials have been limited to a handful of compositions owing to the physicochemical restrictions that impart chirality. Herein, chiral nanopaint applicable to diverse inorganic materials is presented. Various metal oxide nanoparticles (NPs) show chiroptical properties after coating with our chiral nanopaint, while maintaining their properties, such as magnetic properties. The combination of magnetism and chirality brings biomedical functionalities to chiral NPs, such as anticancer hyperthermia treatment. In vitro, d-nanopainted iron oxide NPs showed more than 50% higher cellular uptake compared to l-nanopainted iron oxide NPs, and this was due to the enantiospecific interaction between the cellular receptors on the cell surface and the chiral NPs. In vivo, d-nanopainted iron oxide NPs showed 4-fold superior anticancer efficiency by magnetic hyperthermia compared to l-nanopainted iron oxide NPs owing to improved adsorption to tumors. These chiral nanoparticles may provide potential synthesis strategies for chiral inorganic biomaterials, which exhibit elaborate combinations of intrinsic physical properties and extrinsic enantioselective properties for a variety of applications.
Collapse
Affiliation(s)
- Wookjin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dongkyu Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hohyeon Kim
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Boyoung Son
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seungjun Oh
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jeong Eun Gong
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu Goyang 10408, Republic of Korea
| | - Daehong Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu Goyang 10408, Republic of Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- NanoCentury Institute, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Wang B, Wang Y, Zhang X, Liu Y. Low temperature synthesis of chiral carbon dots for reducing H 2O 2 damage. Colloids Surf B Biointerfaces 2024; 235:113784. [PMID: 38364522 DOI: 10.1016/j.colsurfb.2024.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Recently, researches focused towards the chiral nanostructures have attracted vast attention. However, the synthesis of chiral carbon dots (CDs) through one-step method is still rather scarce. Herein, a universal approach to green synthesis of chiral CDs at low temperature was proposed. In brief, L-FruCDs and D-FruCDs were obtained by only heating the fructose and chiral cysteine molecules in the sodium hydroxide aqueous solution under atmospheric pressure. Circular dichroism spectra show that these prepared CDs exhibit opposite chirality ranging from 210 to 260 nm. Specially, the prepared L-FruCDs could reduce the intracellular oxidative damage induced by hydrogen peroxide and display a superior performance than that of D-FruCDs. Mechanism studies indicate that the probably protect mechanism is ascribed to the directly consumption the intracellular ROS. And the clearance efficiency of intracellular reactive oxygen species of L-FruCDs is 3-times than that of D-FruCDs. Furthermore, this newly synthesized method is scalable by replacing fructose precursor with ascorbic acid, sucrose or lactose. In sum, our work provides a new method for the preparation of chiral CDs and achieve a great success in exploring the chiral biological effects at nanoscale.
Collapse
Affiliation(s)
- Beibei Wang
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Yuying Wang
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiaoyang Zhang
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yi Liu
- Department of Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
3
|
Hu Y, Chen J. Editorial for Special Issue: Advanced Technologies for Developing the State-of-the-Art Nanomedicines. Pharmaceutics 2023; 15:1954. [PMID: 37514140 PMCID: PMC10383853 DOI: 10.3390/pharmaceutics15071954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This Special Issue aims to introduce advanced technologies that promote the development of nanomedicines [...].
Collapse
Affiliation(s)
- Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-Disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, China
| |
Collapse
|
4
|
Xia Q, Shen J, Ding H, Liu S, Li F, Li F, Feng N. Intravenous nanocrystals: fabrication, solidification, in vivo fate, and applications for cancer therapy. Expert Opin Drug Deliv 2023; 20:1467-1488. [PMID: 37814582 DOI: 10.1080/17425247.2023.2268512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Intravenous nanocrystals (INCs) have shown intrinsic advantages in antitumor applications, particularly their properties of high drug loading, low toxicity, and controllable size. Therefore, it has a very bright application prospect as a drug delivery system. AREAS COVERED The ideal formulation design principles, fabrication, solidification, in vivo fate of INCs, the applications in drug delivery system (DDS) and the novel applications are covered in this review. EXPERT OPINION It is vital to select a suitable formulation and fabrication method to produce a stable and sterile INCs. Besides, the type of stabilizers and physical characteristics can also influence the in vivo fate of INCs, which is worthy of further studying. Based on wide researches about applications of INCs in cancer, biomimetic INCs are concerned increasingly for its favorable compatibility. The output of these studies suggested that INCs-based drug delivery could be a novel strategy for addressing the delivery of the drug that faces solubility, bioavailability, and toxicity problems.
Collapse
Affiliation(s)
- Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyi Liu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Fengqian Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|