1
|
Li N, Mu W, Xia Z, Ma Q, Feng R, Gu P, Yang Q, Gao S, Zhang W, Wei S, Zheng Y, Zhao W, Liu Y, Zhang N. Soluble-microneedle enhance three T-cell activation signals as efficient tumor vaccines for melanoma prevention and treatment. J Control Release 2025; 383:113726. [PMID: 40233828 DOI: 10.1016/j.jconrel.2025.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Therapeutic tumor vaccines, which activate self-T cells to eliminate tumors, hold tremendous promise in future cancer immunotherapy with high specificity and low side effects. To effectively activate T cell, dendritic cells (DCs) need simultaneously provide three indispensable signals to naive T cells, including MHC-antigen signal, costimulation signal and cytokine stimulation. However, current marketed therapeutic tumor vaccines still suffer from lacking the ability to activate three stimulation signals at the same time, which resulted to the low response rate and unsatisfied therapeutic efficiency. Here, we proposed a soluble microneedle-based tumor vaccines (TR-12@LGMN) which facilitate triple activation of antigen presentation and induce high immune response rate. First, the melanoma-specific antigen tyrosinaserelated protein-2 (Trp2), Resiquimod (R848), and IL-12 mRNA co-loaded liposomes (TR-12@LIPO) was prepared. The TR-12@LIPO ensured triple-activating three essential signals of antigen presentation through enhancing the binding of MHC I-antigen peptides to T cell receptor (TCR), the binding of CD80/86 on DCs to CD28 on T cells, and the release of cytokines for T cells activation. Second, TR-12@LIPO was co-dispersed in polyvinylpyrrolidone-polyvinyl alcohol (PVP-PVA) matrix with granulocyte-macrophage colony stimulating factor (GM-CSF) to prepare TR-12@LGMN by mold method. The TR-12@LGMN was quadrilateral shape with sufficient mechanical strength for skin piercing. After skin insertion, TR-12@LGMN dissolved in the skin interstitial fluid to release GM-CSF and TR-12@LIPO. DCs were recruited by GM-CSF and uptaked TR-12@LIPO. TR-12@LIPO showed enhancement of cross-presentation by antigen cytoplasmic delivery, DCs maturation and IL-12 secretion. In vivo results showed that TR-12@LGMN could efficiently activate CD8+ T cells, induce antigen-specific cytotoxic T cells (CTLs) and memory T cell (Tm). Ultimately, strong anti-tumor immunity and long-term durable tumor control were achieved in the B16F10 tumor prevention and treatment model. Overall, our work proposes a triple-activated antigen presentation strategy and designs a microneedle-based tumor vaccine for skin delivery, revealing a potential promising direction for the development of new therapeutic tumor vaccines methods.
Collapse
Affiliation(s)
- Nan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenxing Xia
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruihua Feng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Gu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qinglin Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuying Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weihan Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Suyun Wei
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zhao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Li X, Yamazaki T, Ebara M, Shirahata N, Hanagata N. Rational design of adjuvants boosts cancer vaccines. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:101-125. [PMID: 39461749 DOI: 10.1016/bs.pmbts.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cancer vaccines are expected to be next breakthrough in cancer immunotherapy. In cancer vaccines, adjuvants play an important role by enhancing and reshaping tumor antigen-specific immune responses. Failures in previous cancer vaccine clinical trials can be attributed to inappropriate selection and design of tumor antigens and adjuvants. Using basic theories of tumor immunology, the development of sequencing technology and nanotechnology enables the creation of cancer vaccines through appropriate selection of tumor antigens and adjuvants and their nanoscale assembly based on the specific characteristics of each tumor. In this chapter, we begin by discussing the various types of cancer vaccines and categories of tumor antigens. Then, we summarize the classification of adjuvants for cancer vaccines, including immunostimulatory molecules and delivery systems, and clarify the various factors that influence the properties of adjuvants, such as chemical composition, structure, and surface modification. Finally, we provide perspectives and insights on rational design of adjuvants in cancer vaccines to enhance their efficacy.
Collapse
Affiliation(s)
- Xia Li
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
| | - Tomohiko Yamazaki
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Mitsuhiro Ebara
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Tsukuba, Ibaraki, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Nobutaka Hanagata
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Tai Y, Chen M, Wang F, Fan Y, Zhang J, Cai B, Yan L, Luo Y, Li Y. The role of dendritic cells in cancer immunity and therapeutic strategies. Int Immunopharmacol 2024; 128:111548. [PMID: 38244518 DOI: 10.1016/j.intimp.2024.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Dendritic cells (DCs) are asserted as the most potent antigen-presenting cells (APCs) that orchestrate both innate and adaptive immunity, being extremely effective in the induction of robust anti-cancer T cell responses. Hence, the modulation of DCs function represents an attractive target for improving cancer immunotherapy efficacy. A better understanding of the immunobiology of DCs, the interaction among DCs, immune effector cells and tumor cells in tumor microenvironment (TME) and the latest advances in biomedical engineering technology would be required for the design of optimal DC-based immunotherapy. In this review, we focus on elaborating the immunobiology of DCs in healthy and cancer environments, the recent advances in the development of enhancing endogenous DCs immunocompetence via immunomodulators as well as DC-based vaccines. The rapidly developing field of applying nanotechnology to improve DC-based immunotherapy is also highlighted.
Collapse
Affiliation(s)
- Yunze Tai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Man Chen
- Hebei Yanda Lu Daopei Hospital, Langfang 065201, China
| | - Fang Wang
- Department of Medical Laboratory, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou 556000, China
| | - Yu Fan
- Department of Urology, National Clinical Research Center for Geriatrics and Organ Transplantation Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu 610041, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
D'Oro U, O'Hagan DT. The scientific journey of a novel adjuvant (AS37) from bench to bedside. NPJ Vaccines 2024; 9:26. [PMID: 38332005 PMCID: PMC10853242 DOI: 10.1038/s41541-024-00810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
A decade ago, we described a new approach to discover next generation adjuvants, identifying small-molecule immune potentiators (SMIPs) as Toll-like receptor (TLR)7 agonists. We also optimally formulated these drugs through adsorption to aluminum salts (alum), allowing them to be evaluated with a range of established and early-stage vaccines. Early proof-of-concept studies showed that a TLR7 agonist (TLR7a)-based SMIP, when adsorbed to alum, could perform as an effective adjuvant for a variety of different antigens, in both small and large animals. Studies in rodents demonstrated that the adjuvant enhanced immunogenicity of a recombinant protein-based vaccine against Staphylococcus aureus, and also showed potential to improve existing vaccines against pertussis or meningococcal infection. Extensive evaluations showed that the adjuvant was effective in non-human primates (NHPs), exploiting a mechanism of action that was consistent across the different animal models. The adjuvant formulation (named AS37) has now been advanced into clinical evaluation. A systems biology-based evaluation of the phase I clinical data with a meningococcal C conjugate vaccine showed that the AS37-adjuvanted formulation had an acceptable safety profile, was potent, and activated the expected immune pathways in humans, which was consistent with observations from the NHP studies. In the intervening decade, several alternative TLR7 agonists have also emerged and advanced into clinical development, such as the alum adsorbed TLR7/8 SMIP present in a widely distributed COVID-19 vaccine. This review summarizes the research and early development of the new adjuvant AS37, with an emphasis on the steps taken to allow its progression into clinical evaluations.
Collapse
|
5
|
Saeed W, Shahbaz E, Maqsood Q, Ali SW, Mahnoor M. Cutaneous Oncology: Strategies for Melanoma Prevention, Diagnosis, and Therapy. Cancer Control 2024; 31:10732748241274978. [PMID: 39133519 PMCID: PMC11320697 DOI: 10.1177/10732748241274978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Skin cancer comprises one-third of all diagnosed cancer cases and remains a major health concern. Genetic and environmental parameters serve as the two main risk factors associated with the development of skin cancer, with ultraviolet radiation being the most common environmental risk factor. Studies have also found fair complexion, arsenic toxicity, indoor tanning, and family history among the prevailing causes of skin cancer. Prevention and early diagnosis play a crucial role in reducing the frequency and ensuring effective management of skin cancer. Recent studies have focused on exploring minimally invasive or non-invasive diagnostic technologies along with artificial intelligence to facilitate rapid and accurate diagnosis. The treatment of skin cancer ranges from traditional surgical excision to various advanced methods such as phototherapy, radiotherapy, immunotherapy, targeted therapy, and combination therapy. Recent studies have focused on immunotherapy, with the introduction of new checkpoint inhibitors and personalized immunotherapy enhancing treatment efficacy. Advancements in multi-omics, nanotechnology, and artificial intelligence have further deepened the understanding of the mechanisms underlying tumoral growth and their interaction with therapeutic effects, which has paved the way for precision oncology. This review aims to highlight the recent advancements in the understanding and management of skin cancer, and provide an overview of existing and emerging diagnostic, prognostic, and therapeutic modalities, while highlighting areas that require further research to bridge the existing knowledge gaps.
Collapse
Affiliation(s)
- Wajeeha Saeed
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Shinawar Waseem Ali
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammada Mahnoor
- Sehat Medical Complex Lake City, University of Lahore, Lahore Pakistan
| |
Collapse
|
6
|
Belda W, Passero LFD, de Carvalho CHC, Mojica PCR, Vale PA. Chromoblastomycosis: New Perspective on Adjuvant Treatment with Acitretin. Diseases 2023; 11:162. [PMID: 37987273 PMCID: PMC10660773 DOI: 10.3390/diseases11040162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Chromoblastomycosis (CBM) is a neglected human disease, caused by different species of pigmented dematiaceous fungi that cause granulomatous and suppurative dermatosis. This infection is difficult to treat and there are limited therapeutic options, including terbinafine, itraconazole, and tioconazole. Classic treatment is administered for a long period of time, but some patients do not respond properly, and therefore, such therapeutic approaches possess low cure rates. Therefore, it is vital to develop new strategies for the treatment of CBM. In this regard, it has been observed that the association of immunomodulatory molecules such as glucan with therapy carried out with antifungal drugs improves cutaneous lesions in comparison to treatment with antifungal drugs alone, suggesting that drug association may be an interesting and significant approach to incorporate into CBM therapy. Thus, the aim of this work was to associate classical antifungal therapy with the adjuvants imiquimod and acitretin. In the present case, we reported a patient with extensive CBM caused by Fonsaecae pedrosoi, that affected an extensive area of the right leg, that was left without treatment for 11 years. He was treated with a classical combination of itraconazole and terbinafine via the oral route plus topical imiquimod and oral acitretin, as an adjuvant therapy. After five months of treatment, a significant regression of verrucous plaques was observed, suggesting that the use of these adjuvants combined with the classical antifungal drugs, intraconazole plus terbinafine, can reduce treatment time and rapidly improve the patient's quality of life. This result confirms that the use of coadjuvant drugs may be effective in the treatment of this infectious disease.
Collapse
Affiliation(s)
- Walter Belda
- Dermatology Department, Medical School, University of São Paulo, Sao Paulo 05403-000, Brazil; (C.H.C.d.C.); (P.C.R.M.); (P.A.V.)
- Laboratory of Pathology of Infectious Diseases, Medical School, University of São Paulo, Sao Paulo 01246-000, Brazil
| | - Luiz Felipe Domingues Passero
- Institute of Biosciences, São Paulo State University (UNESP), Sao Vicente 11330-900, Brazil;
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Sao Vicente 11350-011, Brazil
| | | | - Paula Celeste Rubiano Mojica
- Dermatology Department, Medical School, University of São Paulo, Sao Paulo 05403-000, Brazil; (C.H.C.d.C.); (P.C.R.M.); (P.A.V.)
| | - Pablo Andrade Vale
- Dermatology Department, Medical School, University of São Paulo, Sao Paulo 05403-000, Brazil; (C.H.C.d.C.); (P.C.R.M.); (P.A.V.)
| |
Collapse
|
7
|
Brai A, Poggialini F, Pasqualini C, Trivisani CI, Vagaggini C, Dreassi E. Progress towards Adjuvant Development: Focus on Antiviral Therapy. Int J Mol Sci 2023; 24:9225. [PMID: 37298177 PMCID: PMC10253057 DOI: 10.3390/ijms24119225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent decades, vaccines have been extraordinary resources to prevent pathogen diffusion and cancer. Even if they can be formed by a single antigen, the addition of one or more adjuvants represents the key to enhance the response of the immune signal to the antigen, thus accelerating and increasing the duration and the potency of the protective effect. Their use is of particular importance for vulnerable populations, such as the elderly or immunocompromised people. Despite their importance, only in the last forty years has the search for novel adjuvants increased, with the discovery of novel classes of immune potentiators and immunomodulators. Due to the complexity of the cascades involved in immune signal activation, their mechanism of action remains poorly understood, even if significant discovery has been recently made thanks to recombinant technology and metabolomics. This review focuses on the classes of adjuvants under research, recent mechanism of action studies, as well as nanodelivery systems and novel classes of adjuvants that can be chemically manipulated to create novel small molecule adjuvants.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Federica Poggialini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Pasqualini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Immacolata Trivisani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Chiara Vagaggini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Elena Dreassi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| |
Collapse
|
8
|
Tambunlertchai S, Geary SM, Naguib YW, Salem AK. Investigating silver nanoparticles and resiquimod as a local melanoma treatment. Eur J Pharm Biopharm 2023; 183:1-12. [PMID: 36549400 PMCID: PMC10158852 DOI: 10.1016/j.ejpb.2022.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Over the last decade, the potential for silver nanoparticles (AgNP) to be used as an anti-melanoma agent has been supported by both in vitro and in vivo evidence. However, an undesirably high concentration of AgNP is often required to achieve an antitumor effect. Therefore a combination treatment that can maintain or improve antitumor efficacy (with lower amounts of AgNP) while also reducing off-target effects is sought. In this study, the combination of AgNP and resiquimod (RSQ: a Toll-like receptor agonist) was investigated and shown to significantly prolong the survival of melanoma-challenged mice when added sequentially. Results from toxicity studies showed that the treatment was non-toxic in mice. Immune cell depletion studies suggested the possible involvement of CD8+ T cells in the antitumor response observed in the AgNP + RSQ (sequential) treatment. NanoString was also employed to further understand the mechanism underlying the increase in the treatment efficacy of AgNP + RSQ (sequential); showing significant changes, compared to the naive group, in gene expression in pathways involved in apoptosis and immune stimulation. In conclusion, the combination of AgNP and RSQ is a new combination worthy of further investigation in the context of melanoma treatment.
Collapse
Affiliation(s)
- Supreeda Tambunlertchai
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Sean M Geary
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Youssef W Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Biri-Kovács B, Bánóczi Z, Tummalapally A, Szabó I. Peptide Vaccines in Melanoma: Chemical Approaches towards Improved Immunotherapeutic Efficacy. Pharmaceutics 2023; 15:pharmaceutics15020452. [PMID: 36839774 PMCID: PMC9963291 DOI: 10.3390/pharmaceutics15020452] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer of the skin is by far the most common of all cancers. Although the incidence of melanoma is relatively low among skin cancers, it can account for a high number of skin cancer deaths. Since the start of deeper insight into the mechanisms of melanoma tumorigenesis and their strong interaction with the immune system, the development of new therapeutical strategies has been continuously rising. The high number of melanoma cell mutations provides a diverse set of antigens that the immune system can recognize and use to distinguish tumor cells from normal cells. Peptide-based synthetic anti-tumor vaccines are based on tumor antigens that elicit an immune response due to antigen-presenting cells (APCs). Although targeting APCs with peptide antigens is the most important assumption for vaccine development, peptide antigens alone are poorly immunogenic. The immunogenicity of peptide antigens can be improved not only by synthetic modifications but also by the assistance of adjuvants and/or delivery systems. The current review summarizes the different chemical approaches for the development of effective peptide-based vaccines for the immunotherapeutic treatment of advanced melanoma.
Collapse
Affiliation(s)
- Beáta Biri-Kovács
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Zoltán Bánóczi
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| | | | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
- MTA-TTK Lendület “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-13722500
| |
Collapse
|