1
|
Zhang D, Zhu B, Xu Y, Luo F, Chen T, Chen L, Wang X, Wu D, Hu J. Oleanolic acid-based nanoparticles for the treatment of ulcerative colitis. Nanomedicine (Lond) 2025; 20:677-690. [PMID: 39988882 PMCID: PMC11970778 DOI: 10.1080/17435889.2025.2467019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
AIM This study aims to develop and assess the therapeutic potential of oleanolic acid nanoparticles (OA NPs) in treating ulcerative colitis (UC). MATERIALS & METHODS OA NPs were synthesized using an emulsion solvent evaporation method, forming spherical nanoparticles with an average diameter of 138.1 nm. The nanoparticles were designed to target the colon through the enhanced permeability and retention (EPR) effect. Network pharmacology and molecular docking identified key inflammatory pathways, and in vitro (RAW264.7 cells) and in vivo (DSS-induced UC mouse model) experiments evaluated their anti-inflammatory effects and therapeutic efficacy. RESULTS OA NPs successfully targeted the colon and demonstrated improved bioavailability. In vitro experiments showed that OA NPs reduced oxidative stress and inflammation by downregulating pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and promoting macrophage polarization from M1 to M2. In the DSS-induced UC mouse model, oral administration of OA NPs significantly alleviated colitis symptoms, improved colon length, reduced inflammation, and mitigated tissue damage. CONCLUSION OA NPs mitigate UC pathology through targeted delivery, enhanced stability, and modulation of inflammatory pathways, providing a promising approach for UC treatment. Further studies are needed to evaluate their long-term safety and clinical applicability.
Collapse
Affiliation(s)
- Dan Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Beiwei Zhu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yu Xu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Fengxian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xinchuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
2
|
Wasim M, Bergonzi MC. From Waste to Value: Solubility and Dissolution Enhancement of Bioactive Extracts from Olive Leaves Using Poloxamers. Molecules 2025; 30:928. [PMID: 40005238 PMCID: PMC11858259 DOI: 10.3390/molecules30040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 02/27/2025] Open
Abstract
The European Union, producing over 2.5 billion tons of waste annually, has prompted the European Parliament to implement legal measures and encourage the shift towards a circular economy. Millions of tons of biowaste from olive plant leaves are generated annually, resulting in environmental and economic challenges. To address this, the biowaste of olive leaves was valorized, resulting in the extraction of valuable components, triterpenes and polyphenols, which hold potential pharmaceutical, food, or cosmetic applications. Our research involved the formulation of a triterpene extract (TTP70, 70% triterpenes) as a solid dispersion using Poloxamer-188 (P188) and Poloxamer-407 (P407). The solid dispersions were prepared using a kneading method and various extract-to-polymer weight ratios, including 1:1, 1:2, and 1:5. The influence of hydrophilic carriers on the solubility, dissolution profile, and in vitro passive permeability of TTP70 was evaluated. Both carriers and all considered weight ratios significantly improved the solubility of hydrophobic extract and the dissolution of triterpenes. PAMPA experiments demonstrated the efficacy of the formulation in improving the passive permeation of triterpenes. Subsequently, the solid dispersions were physically mixed with a polyphenol-enriched extract (OPA40, 49% of polyphenols) also obtained from olive leaves, and they were used to fill hard gelatin capsules and produce an oral dosage form. The composite formulations improved the dissolution of both classes of constituents.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry “Ugo Schiff” (DICUS), University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
3
|
Vasarri M, Bergonzi MC, Leri M, Castellacci R, Bucciantini M, De Marchi L, Degl’Innocenti D. Protective Effects of Oleanolic Acid on Human Keratinocytes: A Defense Against Exogenous Damage. Pharmaceuticals (Basel) 2025; 18:238. [PMID: 40006051 PMCID: PMC11859478 DOI: 10.3390/ph18020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background/objectives: Aging leads to increased oxidative stress and chronic inflammation in the skin, which contribute to various disorders such as dermatitis and cancer. This study explores the cytoprotective effects of oleanolic acid (OA), a natural triterpenoid compound known for its potential in mitigating oxidative damage, on human keratinocyte (HaCaT) cells exposed to oxidative stress from tert-butyl hydroperoxide (tBHP). Methods: Using in vitro experiments, we assessed cell viability, reactive oxygen species (ROS) levels, nitric oxide (NO) production, and protein expression following OA pre-treatment. Advanced imaging techniques were employed to visualize protein localization. Results: Results demonstrated that OA significantly improved cell viability and reduced intracellular ROS levels compared with those in controls. Additionally, OA inhibited inducible nitric oxide synthase (iNOS) expression and subsequent nitric oxide release, indicating a modulation of inflammatory responses. Notably, while tBHP activated the Nrf2/HO-1 signaling pathway, OA did not enhance this response, suggesting that OA exerts cytoprotective effects through mechanisms independent of Nrf2 activation. Conclusion: OA shows promise in protecting HaCaT cells from tBHP-induced oxidative stress, highlighting its potential role in promoting skin health and addressing aging-related damage. The study proposes that OA operates through pathways distinct from Nrf2 and MAPKs, paving the way for new therapeutic strategies aimed at improving skin health against oxidative stress.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (M.L.); (M.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.B.); (R.C.)
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (M.L.); (M.B.)
| | - Rebecca Castellacci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.C.B.); (R.C.)
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (M.L.); (M.B.)
| | - Lucia De Marchi
- Veterinary Teaching Hospital, Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy;
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (M.L.); (M.B.)
| |
Collapse
|
4
|
Wang YQ, Dong YW, Qu HX, Qi JJ, Yan CX, Wei HK, Sun H, Sun BX, Liang S. Oleanolic acid promotes porcine oocyte maturation by activating the Nrf2/HO-1 signalling pathway. Theriogenology 2024; 230:203-211. [PMID: 39332380 DOI: 10.1016/j.theriogenology.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
This study investigated the potential role and underlying mechanisms of oleanolic acid (OA), a pentacyclic triterpene with antioxidant and anti-inflammatory properties, in porcine oocytes during in vitro maturation (IVM). The results showed that supplementation with 5 μM OA during IVM resulted in a greater percentage of mature oocytes, parthenogenetically activated embryos and somatic cell nuclear-transferred embryos. This was evidenced by significant increases in the rate of first polar body expulsion, the expansion of cumulus granulosa cells and the total cell number in blastocysts. Further analysis revealed that OA promoted fatty acid accumulation and upregulated the mRNA expression of genes involved in fatty acid β-oxidation. OA significantly increased the intracellular mitochondrial membrane potential and ATP levels and effectively inhibited BAX/BCL2 and Cleaved Caspase3 protein expression. Notably, OA increased the protein levels of intracellular Nrf2 and HO-1, and the GSH levels and the activities of the antioxidant enzymes SOD and catalase (CAT), while reducing ROS levels. Mechanistically, OA activated the Nrf2/HO-1 signalling pathway, which is crucial for regulating the expression of antioxidant-related targets in IVM porcine oocytes. Our findings indicated that OA improved antioxidant capacity by activating the Nrf2/HO-1 signalling pathway, thereby promoting porcine oocyte maturation.
Collapse
Affiliation(s)
- Yan-Qiu Wang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yan-Wei Dong
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - He-Xuan Qu
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jia-Jia Qi
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Chen-Xuan Yan
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Hua-Kai Wei
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Hao Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Bo-Xing Sun
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
5
|
Hemlata, Sharma S, Vasudeva N, Hooda T. Neuroprotective effects of oleanolic acid against secondary cascades of traumatic brain injury in mice. BRAIN DISORDERS 2024; 16:100173. [DOI: 10.1016/j.dscb.2024.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
6
|
Yang Y, Qian Z, Wu C, Cheng Y, Yang B, Shao J, Zhao J, Zhu X, Jia X, Feng L. Differential absorption and metabolic characteristics of organic acid components in pudilan xiaoyan oral liquid between young rats and adult rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118528. [PMID: 38972526 DOI: 10.1016/j.jep.2024.118528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pudilan Xiaoyan Oral Liquid (PDL) is a proprietary Chinese medicinal preparation approved by the State for treating acute pharyngitis in both adults and children (Approval No. Z20030095). It is worth noting that children exhibit unique physiopathological characteristics compared to adults. However, the in vivo regulatory characteristics of PDL in treating acute pharyngitis in children remain incompletely understood. AIM OF THE STUDY The differential absorption and metabolism characteristics of the main pharmacological components in PDL in young and adult rats were investigated with a view to providing a reference for preclinical data of PDL in medication for children. MATERIALS AND METHODS This study utilized UPLC-Q-TOF-MS to investigate the pharmacodynamic material basis of PDL. The focus was on the gastrointestinal digestion and absorption characteristics of organic acid components in PDL (PDL-OAC), known as the primary pharmacodynamic components in this formulation. The research combined in vitro dynamic simulation and a Quadruple single-pass intestinal perfusion model to examine these characteristics. The permeability properties of PDL-OAC were evaluated using an artificial parallel membrane model. Additionally, an acute pharyngitis model was established to evaluate the histopathological condition of the pharynx in young rats using H&E staining. The levels of IL-1β, TNF-α, IL-6, and IL-10 in blood and pharyngeal tissue homogenates of young rats were quantified using ELISA kits. RESULTS A total of 91 components were identified in PDL, including 33 organic acids, 24 flavonoids, 14 alkaloids, 5 terpenoids and coumarins, 3 sugars, and 12 amino acids. The PDL-OAC exhibited a significant reduction in IL-1β, TNF-α, IL-6, and IL-10 levels in the pharyngeal tissues of young rats with acute pharyngitis. Results from dynamic simulation studies of gastrointestinal fluids revealed that the PDL-OAC (Specifically chlorogenic acid (CGA), gallic acid (GA), chicoric acid (CRA), and caffeic acid (CA)) were effectively stabilized in the gastrointestinal fluids of both children and adults in vitro. Young rats, characterized by thinner intestinal walls and higher permeability, efficiently absorbed the four organic acids across the entire intestinal segment. The absorption of CGA, GA, and CRA followed a concentration-dependent pattern, with CGA and GA absorption being influenced by exocytosis. CONCLUSION The efficacy of the PDL-OAC in treating acute pharyngitis was demonstrated in young rats. The absorption rate of these components was observed to be faster in young rats compared to adult rats, underscoring the need for dedicated studies on the drug's usage in children. This research provides valuable insights for the appropriate clinical use of PDL in pediatric patients.
Collapse
Affiliation(s)
- Yanjun Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Zhouyang Qian
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Chenhui Wu
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yue Cheng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Bing Yang
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Jianguo Shao
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing, 225400, PR China.
| | - Jing Zhao
- Jiangsu Key Laboratory of Chinese Medicine and Characteristic Preparations for Paediatrics, Jumpcan Pharmaceutical Co., Ltd., Taixing, 225400, PR China.
| | - Xiangjun Zhu
- Jiangsu Health Development Research Center, National Health and Family Planning Commission Contraceptives Adverse Reaction Surveillance Center, Nanjing, 210036, PR China.
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, Innovation Center for Industry-Education Integration of Pediatrics and Traditional Chinese Medicine, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
7
|
Vasarri M, Bergonzi MC, Ivanova Stojcheva E, Bilia AR, Degl’Innocenti D. Olea europaea L. Leaves as a Source of Anti-Glycation Compounds. Molecules 2024; 29:4368. [PMID: 39339362 PMCID: PMC11434099 DOI: 10.3390/molecules29184368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
High concentrations of advanced glycation end products (AGEs) have been linked to diseases, including diabetic complications. The pathophysiological effects of AGEs are mainly due to oxidative stress and inflammatory processes. Among the proteins most affected by glycation are albumin, the most abundant circulating protein, and collagen, which has a long biological half-life and is abundant in the extracellular matrix. The potential cellular damage caused by AGEs underscores the importance of identifying and developing natural AGE inhibitors. Indeed, despite initial promise, many synthetic inhibitors have been withdrawn from clinical trials due to issues such as cytotoxicity and poor pharmacokinetics. In contrast, natural products have shown significant potential in inhibiting AGE formation. Olea europaea L. leaves, rich in bioactive compounds like oleuropein and triterpenoids, have attracted scientific interest, emphasizing the potential of olive leaf extracts in health applications. This study investigates the anti-glycation properties of two polyphenol-rich extracts (OPA40 and OPA70) and a triterpene-enriched extract (TTP70) from olive leaves. Using in vitro protein glycation methods with bovine serum albumin (BSA)-glucose and gelatin-glucose systems, this study assesses AGE formation inhibition by these extracts through native polyacrylamide gel electrophoresis (N-PAGE) and autofluorescence detection. OPA40 and OPA70 exhibited strong, dose-dependent anti-glycation effects. These effects were corroborated by electrophoresis and further supported by similar results in a gelatin-glucose system. Additionally, TTP70 showed moderate anti-glycation activity, with a synergistic effect of its components. The results support the real possibility of using olive leaf bioproducts in ameliorating diabetic complications, contributing to sustainable bio-economy practices.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | | | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50139 Sesto Fiorentino, Italy; (M.V.); (A.R.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy;
| |
Collapse
|
8
|
Wasim M, Bergonzi MC. Unlocking the Potential of Oleanolic Acid: Integrating Pharmacological Insights and Advancements in Delivery Systems. Pharmaceutics 2024; 16:692. [PMID: 38931816 PMCID: PMC11206505 DOI: 10.3390/pharmaceutics16060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The growing interest in oleanolic acid (OA) as a triterpenoid with remarkable health benefits prompts an emphasis on its efficient use in pharmaceutical research. OA exhibits a range of pharmacological effects, including antidiabetic, anti-inflammatory, immune-enhancing, gastroprotective, hepatoprotective, antitumor, and antiviral properties. While OA demonstrates diverse pharmacological effects, optimizing its therapeutic potential requires overcoming significant challenges. In the field of pharmaceutical research, the exploration of efficient drug delivery systems is essential to maximizing the therapeutic potential of bioactive compounds. Efficiently delivering OA faces challenges, such as poor aqueous solubility and restricted bioavailability, and to unlock its full therapeutic efficacy, novel formulation strategies are imperative. This discussion thoroughly investigates different approaches and advancements in OA drug delivery systems with the aim of enhancing the biopharmaceutical features and overall efficacy in diverse therapeutic contexts.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
9
|
Shimazu K, Ookoshi K, Fukumitsu S, Kagami H, Mitsuhata C, Nomura R, Aida K. Effects of Oleanolic Acid Derived from Wine Pomace on Periodontopathic Bacterial Growth in Healthy Individuals: A Randomized Placebo-Controlled Study. Dent J (Basel) 2024; 12:133. [PMID: 38786531 PMCID: PMC11119493 DOI: 10.3390/dj12050133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Periodontal disease is caused by oral pathogenic bacteria and is associated with systemic disease and frailty. Therefore, its prevention is crucial in extending healthy life expectancy. This study aimed to evaluate the effect of orally administered oleanolic acid, extracted from wine pomace, on periodontopathic bacterial growth in healthy individuals. In this randomized, placebo-controlled, double-blind, parallel-group comparison study, 84 healthy adults were assigned to a placebo (n = 29), low-dose (n = 29, 9 mg oleanolic acid), or high-dose (n = 26, 27 mg oleanolic acid) groups. The number of oral bacteria in their saliva, collected before and 5 h after administration, was determined using the polymerase chain reaction-invader technique. The proportion of periodontopathic bacteria among the total oral bacteria in the saliva was calculated. Oleanolic acid significantly decreased the proportion of Porphyromonas gingivalis among the total oral bacteria in a dose-dependent manner (p = 0.005 (low-dose) and p = 0.003 (high-dose) vs. placebo, Williams' test). Moreover, high-dose oleanolic acid decreased the proportion of Tannerella forsythia (p = 0.064 vs. placebo, Williams' test). Periodontopathic bacteria are closely associated with the development and progression of periodontal disease; thus, the continuous daily intake of oleanolic acid derived from pomace may be helpful in maintaining a healthy oral microbiome by controlling the proportion of periodontopathic bacteria.
Collapse
Affiliation(s)
- Kyoko Shimazu
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | - Kouta Ookoshi
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | - Satoshi Fukumitsu
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| | | | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (C.M.); (R.N.)
| | - Ryota Nomura
- Department of Pediatric Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan; (C.M.); (R.N.)
| | - Kazuhiko Aida
- Innovation Center, Central Research Laboratory, Nippn Corporation, Yokohama 243-0041, Japan; (K.O.); (S.F.); (K.A.)
| |
Collapse
|
10
|
Talianu MT, Dinu-Pîrvu CE, Ghica MV, Anuţa V, Prisada RM, Popa L. Development and Characterization of New Miconazole-Based Microemulsions for Buccal Delivery by Implementing a Full Factorial Design Modeling. Pharmaceutics 2024; 16:271. [PMID: 38399325 PMCID: PMC10893023 DOI: 10.3390/pharmaceutics16020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
This research aimed to develop miconazole-based microemulsions using oleic acid as a natural lipophilic phase and a stabilizer mixture comprising Tween 20 and PEG 400 to solubilize miconazole as an antifungal agent known for its activity in oral candidiasis and to improve its bioavailability. The formulation and preparation process was combined with a mathematical approach using a 23-full factorial plan. Fluid and gel-like microemulsions were obtained and analyzed considering pH, conductivity, and refractive index, followed by extensive analyses focused on droplet size, zeta potential, rheological behavior, and goniometry. In vitro release tests were performed to assess their biopharmaceutical characteristics. Independent variables coded X1-Oleic acid (%, w/w), X2-Tween 20 (%, w/w), and X3-PEG 400 (%, w/w) were analyzed in relationship with three main outputs like mean droplet size, work of adhesion, and diffusion coefficient by combining statistical tools with response surface methodology. The microemulsion containing miconazole base-2%, oleic acid-5%, Tween 20-40%, PEG 400-20%, and water-33% exhibited a mean droplet size of 119.6 nm, a work of adhesion of 71.98 mN/m, a diffusion coefficient of 2.11·10-5 cm2/s, and together with remarked attributes of two gel-like systems formulated with higher oil concentrations, modeled the final optimization step of microemulsions as potential systems for buccal delivery.
Collapse
Affiliation(s)
- Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| | - Răzvan Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (R.M.P.); (L.P.)
- Innovative Therapeutic Structures R&D Center (InnoTher), “Carol Davila’’ University of Medicine and Pharmacy, 6 Traian Vuia Str., 020956 Bucharest, Romania
| |
Collapse
|
11
|
Luo Q, Wei Y, Lv X, Chen W, Yang D, Tuo Q. The Effect and Mechanism of Oleanolic Acid in the Treatment of Metabolic Syndrome and Related Cardiovascular Diseases. Molecules 2024; 29:758. [PMID: 38398510 PMCID: PMC10892503 DOI: 10.3390/molecules29040758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic syndromes (MetS) and related cardiovascular diseases (CVDs) pose a serious threat to human health. MetS are metabolic disorders characterized by obesity, dyslipidemia, and hypertension, which increase the risk of CVDs' initiation and development. Although there are many availabile drugs for treating MetS and related CVDs, some side effects also occur. Considering the low-level side effects, many natural products have been tried to treat MetS and CVDs. A five-cyclic triterpenoid natural product, oleanolic acid (OA), has been reported to have many pharmacologic actions such as anti-hypertension, anti-hyperlipidemia, and liver protection. OA has specific advantages in the treatment of MetS and CVDs. OA achieves therapeutic effects through a variety of pathways, attracting great interest and playing a vital role in the treatment of MetS and CVDs. Consequently, in this article, we aim to review the pharmacological actions and potential mechanisms of OA in treating MetS and related CVDs.
Collapse
Affiliation(s)
- Quanye Luo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Yu Wei
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Xuzhen Lv
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, The School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Dongmei Yang
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| | - Qinhui Tuo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (Q.L.); (Y.W.); (W.C.)
| |
Collapse
|
12
|
Vasarri M, Degl’Innocenti D, Albonetti L, Bilia AR, Bergonzi MC. Pentacyclic Triterpenes from Olive Leaves Formulated in Microemulsion: Characterization and Role in De Novo Lipogenesis in HepG2 Cells. Int J Mol Sci 2023; 24:12113. [PMID: 37569488 PMCID: PMC10419275 DOI: 10.3390/ijms241512113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Olea europaea L. leaves contain a wide variety of pentacyclic triterpenes (TTPs). TTPs exhibit many pharmacological activities, including antihyperlipidemic effects. Metabolic alterations, such as dyslipidemia, are an established risk factor for hepatocellular carcinoma (HCC). Therefore, the use of TTPs in the adjunctive treatment of HCC has been proposed as a possible method for the management of HCC. However, TTPs are characterized by poor water solubility, permeability, and bioavailability. In this work, a microemulsion (ME) loading a TTP-enriched extract (EXT) was developed, to overcome these limits and obtain a formulation for oral administration. The extract-loaded microemulsion (ME-EXT) was fully characterized, assessing its chemical and physical parameters and release characteristics, and the stability was evaluated for two months of storage at 4 °C and 25 °C. PAMPA (parallel artificial membrane permeability assay) was used to evaluate the influence of the formulation on the intestinal passive permeability of the TTPs across an artificial membrane. Furthermore, human hepatocarcinoma (HepG2) cells were used as a cellular model to evaluate the effect of EXT and ME-EXT on de novo lipogenesis induced by elevated glucose levels. The effect was evaluated by detecting fatty acid synthase expression levels and intracellular lipid accumulation. ME-EXT resulted as homogeneous dispersed-phase droplets, with significantly increased EXT aqueous solubility. Physical and chemical analyses showed the high stability of the formulation over 2 months. The formulation realized a prolonged release of TTPs, and permeation studies demonstrated that the formulation improved their passive permeability. Furthermore, the EXT reduced the lipid accumulation in HepG2 cells by inhibiting de novo lipogenesis, and the ME-EXT formulation enhanced the inhibitory activity of EXT on intracellular lipid accumulation.
Collapse
Affiliation(s)
- Marzia Vasarri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (D.D.)
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Donatella Degl’Innocenti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.V.); (D.D.)
| | - Laura Albonetti
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Anna Rita Bilia
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50519 Sesto Fiorentino, Italy; (L.A.); (A.R.B.)
| |
Collapse
|