1
|
Anuța V, Nica MA, Prisada RM, Popa L, Velescu BȘ, Marinas IC, Gaboreanu DM, Ghica MV, Cocoș FI, Nicolae CA, Dinu-Pîrvu CE. Novel Buccal Xanthan Gum-Hyaluronic Acid Eutectogels with Dual Anti-Inflammatory and Antimicrobial Properties. Gels 2025; 11:208. [PMID: 40136913 PMCID: PMC11942315 DOI: 10.3390/gels11030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Buccal drug delivery systems often struggle with poor drug solubility, limited adhesion, and rapid clearance, leading to suboptimal therapeutic outcomes. To address these limitations, we developed a novel hybrid eutectogel composed of xanthan gum (XTG), hyaluronic acid (HA), and a Natural Deep Eutectic Solvent (NADES) system (choline chloride, sorbitol, and glycerol in 2:1:1 mole ratio), incorporating 2.5% ibuprofen (IBU) as a model drug. The formulation was optimized using a face-centered central composite design to enhance the rheological, textural, and drug release properties. The optimized eutectogels exhibited shear-thinning behavior (flow behavior index, n = 0.26 ± 0.01), high mucoadhesion (adhesiveness: 2.297 ± 0.142 N·s), and sustained drug release over 24 h, governed by Higuchi kinetics (release rate: 237.34 ± 13.61 μg/cm2/min1/2). The ex vivo residence time increased substantially with NADES incorporation, reaching up to 176.7 ± 23.1 min. An in vivo anti-inflammatory evaluation showed that the eutectogel reduced λ-carrageenan-induced paw edema within 1 h and that its efficacy was sustained in the kaolin model up to 24 h (p < 0.05), achieving comparable efficacy to a commercial 5% IBU gel, despite a lower drug concentration. Additionally, the eutectogel presented a minimum inhibitory concentration for Gram-positive bacteria of 25 mg/mL, and through direct contact, it reduced microbial viability by up to 100%. Its efficacy against Bacillus cereus, Enterococcus faecium, and Klebsiella pneumoniae, combined with its significant anti-inflammatory properties, positions the NADES-based eutectogel as a promising multifunctional platform for buccal drug delivery, particularly for inflammatory conditions complicated by bacterial infections.
Collapse
Affiliation(s)
- Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Mihaela-Alexandra Nica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Răzvan-Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Bruno Ștefan Velescu
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Ioana Cristina Marinas
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (I.C.M.); (D.-M.G.)
| | - Diana-Madalina Gaboreanu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (I.C.M.); (D.-M.G.)
- Departament of Botany and Microbiology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Florentina Iuliana Cocoș
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Cristian Andi Nicolae
- National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania; (V.A.); (M.-A.N.); (L.P.); (M.V.G.); (F.I.C.); (C.-E.D.-P.)
- Innovative Therapeutic Structures Research and Development Centre (InnoTher), “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| |
Collapse
|
2
|
Hassan SA, Zaater MA, Abdel-Rahman IM, Ibrahim EA, El Kerdawy AM, Abouelmagd SA. Piperine solubility enhancement via DES formation: Elucidation of intermolecular interactions and impact of counterpart structure via computational and spectroscopic approaches. Int J Pharm 2024; 667:124893. [PMID: 39515673 DOI: 10.1016/j.ijpharm.2024.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The development of new forms of existing APIs with enhanced physicochemical properties is critical for improving their therapeutic potential. In this context, ionic liquids (ILs) and deep eutectic solvents (DESs) have gained significant attention in recent years due to their unique properties and potential for solubility enhancement. In this study, we explore the role of different counterparts in the formation of IL/DESs with piperine (PI), a poorly water-soluble drug. After screening a library of fourteen counterpart molecules, ten liquid PI-counterpart systems were developed and investigated. Thermal analysis confirmed the formation of IL/DES, while computational and spectroscopic studies revealed that hydrogen bonding played a crucial role in the interaction between PI and the counterparts, confirming DES formation. The solubility enhancement of PI in these systems ranged from ∼ 36 % to 294 %, with PI-Oxalic acid (OA) exhibiting the highest saturation solubility (49.71 μg/mL) and PI-Ibuprofen (IB) the lowest (17.23 μg/mL). The presence of hydrogen bonding groups in counterparts was key to successful DES formation. A negative correlation was observed between solubility and logP (r = - 0.75, p* = 0.0129), while a positive correlation was found between solubility and normalized polar surface area (PSA) (r = 0.68, p* = 0.029). PI-OA and PI-IB were located at the extreme ends of these regression lines, further validating the relationship between these properties and solubility enhancement. These findings highlight essential aspects of rational IL/DES design, optimizing their properties for broader applications.
Collapse
Affiliation(s)
- Sara A Hassan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut, Egypt
| | - Marwa A Zaater
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt
| | - Islam M Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New-Minia, Minia, Egypt
| | - Elsayed A Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt; Institute for Drug Development and Innovation Research, Assiut University, Assiut, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt; School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Sara A Abouelmagd
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt; Institute for Drug Development and Innovation Research, Assiut University, Assiut, Egypt.
| |
Collapse
|
3
|
Bakr El-Nassan H. Applications of therapeutic deep eutectic solvents (THEDESs) as antimicrobial and anticancer agents. Pharm Dev Technol 2024; 29:1084-1092. [PMID: 39452425 DOI: 10.1080/10837450.2024.2421786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Deep eutectic solvents (DESs) are green alternatives to ionic liquids with wide applications in organic synthesis and catalysis. DESs are characterized by being easily prepared, biodegradable, nontoxic, and noninflammable. When one or more of the DES components is active pharmaceutical ingredient (API), the eutectic mixtures are named as therapeutic deep eutectic solvents (THEDESs). THEDESs are prepared in order to improve the solubility and/or the permeability of the APIs. This review presents a brief summary of the most important THEDESs reported to date having antimicrobial and/or anticancer activities. The challenges and limitations of THEDES preparation were also discussed. The work presented here indicated the importance of THEDES as a promising drug delivery system that can overcome the bioavailability problems while retaining or enhancing the biological activity of its components.
Collapse
Affiliation(s)
- Hala Bakr El-Nassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Javed S, Mangla B, Sultan MH, Almoshari Y, Sivadasan D, Alqahtani SS, Madkhali OA, Ahsan W. Pharmaceutical applications of therapeutic deep eutectic systems (THEDES) in maximising drug delivery. Heliyon 2024; 10:e29783. [PMID: 38694051 PMCID: PMC11058303 DOI: 10.1016/j.heliyon.2024.e29783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/09/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
The issue of poor solubility of active pharmaceutical ingredients (APIs) has been a salient area of investigation and novel drug delivery systems are being developed to improve the solubility of drugs, enhance their permeability and thereby their efficacy. Several techniques for solubilization enhancement of poorly soluble drugs are often employed at various stages of pharmaceutical drug product development. One such delivery system is the therapeutic deep eutectic system (THEDES), which showed great potential in the enhancement of solubility and permeability of drugs and ultimately augmenting their bioavailability. THEDES are made by mixing drugs with deep eutectic solvents (DESs) in a definite molar ratio by the hit and trial method. The DESs are a new class of green solvents which are non-toxic, cheap, easy to prepare, biodegradable and have multiple applications in the pharmaceutical industry. The terminologies such as ionic liquids (ILs), DES, THEDES, and therapeutic liquid eutectic systems (THELES) have been very much in use recently, and it is important to highlight the pharmaceutical applications of these unexplored reservoirs in drug solubilization enhancement, drug delivery routes, and in the management of various diseases. This review is aimed at discussing the components, formulation strategies, and routes of administration of THEDES that are used in developing the formulation. Also, the major pharmaceutical applications of THEDES in the treatment of various metabolic and non-metabolic diseases are reviewed.
Collapse
Affiliation(s)
- Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Bharti Mangla
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Muhammad H. Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Osama A. Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
5
|
Kapre S, Palakurthi SS, Jain A, Palakurthi S. DES-igning the future of drug delivery: A journey from fundamentals to drug delivery applications. J Mol Liq 2024; 400:124517. [DOI: 10.1016/j.molliq.2024.124517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
6
|
Anjali, Pandey S. Formation of Ethanolamine-Mediated Surfactant-Free Microemulsions Using Hydrophobic Deep Eutectic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2254-2267. [PMID: 38232323 DOI: 10.1021/acs.langmuir.3c03324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hydrophobic deep eutectic solvents (HDESs) are emerging as versatile, relatively benign, and inexpensive alternatives to conventional organic solvents in a diverse set of applications. In this context, the formation of microemulsions with HDES replacing the oil phase has become an area of active exploration. Because of recent reports on the undesirable toxicity of many common surfactants, efforts are under way to investigate the formation of surfactant-free microemulsions (SFMEs) using HDES as an oil phase. We present SFME formation using HDESs constituted of n-decanoic acid and five (5) structurally different terpenoids [thymol, l(-)-menthol, linalool, β-citronellol, and geraniol] at a 1:1 molar ratio as the oil phase and water as the hydrophilic phase. Ethanolamine (ETA) exhibited the best potential as a hydrotrope among several other similar small molecules. Results showed a drastic increase in water solubility within the HDESs in the presence of ETA. ETA exerted its hydrotropic action at different extent for each DES system via chemical interaction with the H-bond donor (HBD) constituent of the HDES. The optimum hydrotropic concentration (minimum hydrotrope and maximum water retention, XETAOPT) assigned for each DES/ETA/water system and water loading are reported, and the trends are discussed in detail. Ternary phase diagrams are constructed using visual observation and the dye staining method. The area under the single- and multiple-phase regions (assigned in ternary phase diagrams) was estimated. "Pre-Ouzo" enforced by ETA was investigated using dynamic light scattering (DLS) of the DES/ETA/water systems at XETAOPT. A systematic growth in nanoaggregates was observed with the subsequent addition of water in DES/ETA systems while continuously changing the existing microstructure. The presence of a core (oil)-shell (water)-like structure as indicated by the fluorescence response of Nile red in the "pre-Ouzo" region is speculated. We were able to prepare a homogeneous solution of [K3Fe(CN)6] salt in "pre-Ouzo" mixtures with no apparent deviation in the Beer-Lambert law.
Collapse
Affiliation(s)
- Anjali
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
7
|
Gabriele F, Casieri C, Spreti N. Natural Deep Eutectic Solvents as Rust Removal Agents from Lithic and Cellulosic Substrates. Molecules 2024; 29:624. [PMID: 38338368 PMCID: PMC10856158 DOI: 10.3390/molecules29030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The peculiar physicochemical features of deep eutectic solvents (DESs), in particular their tunability, make them ideal media for various applications. Despite their ability to solubilize metal oxides, their use as rust removers from valuable substrates has not yet been thoroughly investigated. In this study, we chose three known DESs, consisting of choline chloride and acetic, oxalic or citric acid for evaluating their ability to remove corrosion products from a cellulose-based material as linen fabric and two different lithotypes, as travertine and granite. The artificial staining was achieved by placing a rusty iron grid on their surfaces. The DESs were applied by means of cellulose poultice on the linen fabrics, while on the rusted stone surfaces with a cotton swab. Macro- and microscopic observations, colorimetry and SEM/EDS analysis were employed to ascertain the cleaning effectiveness and the absence of side effects on the samples after treatment. Oxalic acid-based DES was capable of removing rust stains from both stone and cellulose-based samples, while choline chloride/citric acid DES was effective only on stone specimens. The results suggest a new practical application of DESs for the elimination of rust from lithic and cellulosic substrates of precious and artistic value.
Collapse
Affiliation(s)
| | | | - Nicoletta Spreti
- Department of Physical and Chemical Sciences, University of L’Aquila, I-67100 L’Aquila, Italy; (F.G.); (C.C.)
| |
Collapse
|
8
|
Zhuo Y, Cheng HL, Zhao YG, Cui HR. Ionic Liquids in Pharmaceutical and Biomedical Applications: A Review. Pharmaceutics 2024; 16:151. [PMID: 38276519 PMCID: PMC10818567 DOI: 10.3390/pharmaceutics16010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The unique properties of ionic liquids (ILs), such as structural tunability, good solubility, chemical/thermal stability, favorable biocompatibility, and simplicity of preparation, have led to a wide range of applications in the pharmaceutical and biomedical fields. ILs can not only speed up the chemical reaction process, improve the yield, and reduce environmental pollution but also improve many problems in the field of medicine, such as the poor drug solubility, product crystal instability, poor biological activity, and low drug delivery efficiency. This paper presents a systematic and concise analysis of the recent advancements and further applications of ILs in the pharmaceutical field from the aspects of drug synthesis, drug analysis, drug solubilization, and drug crystal engineering. Additionally, it explores the biomedical field, covering aspects such as drug carriers, stabilization of proteins, antimicrobials, and bioactive ionic liquids.
Collapse
Affiliation(s)
- Yue Zhuo
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 511442, China;
| | - He-Li Cheng
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| | - Hai-Rong Cui
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| |
Collapse
|
9
|
Shumilin I, Tanbuz A, Harries D. Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin. Pharmaceutics 2023; 15:pharmaceutics15051462. [PMID: 37242704 DOI: 10.3390/pharmaceutics15051462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Deep eutectic solvents (DESs) show promise in pharmaceutical applications, most prominently as excellent solubilizers. Yet, because DES are complex multi-component mixtures, it is challenging to dissect the contribution of each component to solvation. Moreover, deviations from the eutectic concentration lead to phase separation of the DES, making it impractical to vary the ratios of components to potentially improve solvation. Water addition alleviates this limitation as it significantly decreases the melting temperature and stabilizes the DES single-phase region. Here, we follow the solubility of β-cyclodextrin (β-CD) in DES formed by the eutectic 2:1 mole ratio of urea and choline chloride (CC). Upon water addition to DES, we find that at almost all hydration levels, the highest β-CD solubility is achieved at DES compositions that are shifted from the 2:1 ratio. At higher urea to CC ratios, due to the limited solubility of urea, the optimum composition allowing the highest β-CD solubility is reached at the DES solubility limit. For mixtures with higher CC concentration, the composition allowing optimal solvation varies with hydration. For example, β-CD solubility at 40 wt% water is enhanced by a factor of 1.5 for a 1:2 urea to CC mole ratio compared with the 2:1 eutectic ratio. We further develop a methodology allowing us to link the preferential accumulation of urea and CC in the vicinity of β-CD to its increased solubility. The methodology we present here allows a dissection of solute interactions with DES components that is crucial for rationally developing improved drug and excipient formulations.
Collapse
Affiliation(s)
- Ilan Shumilin
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| | - Ahmad Tanbuz
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
10
|
Li M, Cui H, Cao Y, Lin Y, Yang Y, Gao M, Zhang W, Wang C. Deep eutectic solvents-Hydrogels for the topical management of rheumatoid arthritis. J Control Release 2023; 354:664-679. [PMID: 36682725 DOI: 10.1016/j.jconrel.2023.01.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Deep eutectic solvents (DES) have demonstrated their ability to facilitate skin penetrability of rigid nanoparticles (NPs). Here, we reported a feasible and simple transdermal delivery strategy using mesoporous silica nanoparticles impregnated in DES hydrogels for topical management of rheumatoid arthritis (RA). To achieve this goal, nanoceria was immobilized within a silica nanoparticle matrix (MSN) and encapsulated with methotrexate (MTX). The functionalized nanoparticles were first engineered in an Arginine (Arg)-citric acid (CA) DES and then transferred to the carbomer hydrogel matrix. Due to the strong affinity of DES hydrogels to the skin, combined with solvent-driven "Drag" effects, the prepared DES-MSNs hydrogels produced dynamic mobility of MSNs through skin layers, resulting in high skin penetrability. After application to the skin, the hydrogel solvent drove the rigid NPs across the skin barrier in a nonintrusive manner, resulting in sustained penetration and accumulation of MSNs at subcutaneous inflammation sites. Subsequently, the MTX payload exerted a direct therapeutic effect, while nanoceria moderated the inflammatory microenvironment by initiating reactive oxygen species (ROS) scavenging and transformation of the macrophage phenotype. In this way, the synergistic action of the combination of immuno- and chemotherapy of the drug and its carrier on RA was achieved. Our work provides a novel strategy for multisite regulation and controlled management of RA in a noninvasive way.
Collapse
Affiliation(s)
- Mingjian Li
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Hao Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yubiao Cao
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yameng Lin
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Mingju Gao
- College of Notoginseng Medicine and Pharmacy, Wenshan University, Wenshan 663000, Yunnan, PR China
| | - Wen Zhang
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
11
|
Physicochemical Properties and Transdermal Absorption of a Flurbiprofen and Lidocaine Complex in the Non-Crystalline Form. Pharmaceutics 2023; 15:pharmaceutics15020318. [PMID: 36839643 PMCID: PMC9961180 DOI: 10.3390/pharmaceutics15020318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Amorphous drug formulations exploiting drug-drug interactions have been extensively studied. This study aims to develop a transdermal system containing an amorphous complex of the nonsteroidal anti-inflammatory drug (NSAID) flurbiprofen (FLU) and lidocaine (LDC) for alleviating chronic pain. The high-viscosity complex between FLU and LDC (Complex) was obtained by heating in ethanol. For the complex, attenuated total reflection-Fourier transform infrared spectroscopy showed a shift in the carboxy-group-derived peak of FLU, and differential scanning calorimetry indicated the endothermic peaks associated with the melting of FLU and LDC disappeared. 13C dipolar decoupling and 15N cross-polarization magic-angle spinning nuclear magnetic resonance measurement suggested the interaction between the carboxyl group of FLU and the secondary amine of LDC. The interaction between the aromatic rings of FLU and LDC contributed to the molecular complex formation. The solubility of FLU from the complex was about 100 times greater than FLU alone. The skin permeation flux of FLU from the complex through the hairless mouse skin was 3.8 times higher than FLU alone in hypromellose gel. Thus, adding LDC to the formulation can be an effective method for enhancing the skin permeation of NSAIDs, which can prove useful for treating chronic pain and inflammatory diseases.
Collapse
|